单芯电缆金属护套的连接与接地共22页

合集下载

单芯电缆金属护套接地方式比较分析

单芯电缆金属护套接地方式比较分析
的环流 问题 , 对常见 的10k 1 V单芯电缆金属护套接地方 式进行分析, 比各种接地方 式的优缺 点. 对 根据 实际情况
选 择 合理 的金 属 护 套 接地 方 式 。 关 键 词 : 芯 电力 电缆 ; 属 护 套 ; 流 : 地 方 式 单 金 环 接 中 图分 类 号 :M 4 T 27 文 献标 志码 : A 文 章 编 号 :6 3 7 9 (0 1 0 — 0 8 0 1 7 — 5 8 2 1 )2 0 4 — 4
广 的是 1 V 0k 电力 电缆 , 一般使 用交 联聚 乙烯铠 装三
芯 电缆 , 而j 芯 电缆都采 用两 端接 地方式 , 因为在 电 缆 正常 运行 中 ,流 过3 线芯 的 电流相量 和为 零 , 个 在
电缆铜 屏蔽层 及金 属铠装 层两 端基 本上 没有感 应 电 压 , 芯 电缆 铜屏 蔽及 金属铠 装两 端一般 只需 直接
0 10 ) 7 0 3
59 0 ; 100
3 华 北 电力 大学 电气与 电子工程 学院 . . 河北 保 定

要 :10k 1 V电力 电缆 以其设计寿命长 、 受外界 自然条件影响小、 日常维护工作量相对较小 、 不影响城 市景观
等优 点得到广泛使 用。但是, 1 V电力 电缆是单芯电缆, 10k 必需考虑其金属护套上的环流 问题。针对金属护套上
作用 : 属铝 护 套部 分起 机械 保 护作 用 , 金 能够 使 电缆 承 受一 定正 压力 , 高 电缆抗 机 械损 伤 的能力 。 能 提 并 起 到一 定 的电磁 屏蔽 作用 , 如果 电缆 绝缘 发生 破损 。
泄露 出来 的 电流 可 以顺 屏 蔽 层 流人 接地 网 , 到安 起
芯上 绕包 内半导层 ,可使绝 缘 和电缆导 体有 良好 的 接触 , 除 了气 隙 , 除和 减少 了局 部放 电 。 到 均 排 消 达

66kV及以上三相单芯电缆基本的接地方式

66kV及以上三相单芯电缆基本的接地方式

66kV及以上三相单芯电缆基本的接地方式简介本文档旨在介绍66kV及以上三相单芯电缆的基本接地方式。

根据电缆的特点和要求,为确保安全和稳定的电力运行,接地是非常重要的环节。

直接接地方式直接接地是最常用的一种接地方式。

具体步骤如下:1. 准备接地电极:将电极埋入地下,通常采用铜或镀锌钢制成。

2. 连接电缆与接地电极:将电缆的金属护套或铠装与接地电极连接。

3. 确保连接可靠:使用合适的接地夹、焊接或螺旋连接等方式,确保电缆与接地电极之间的连接牢固可靠。

绝缘中性点接地方式绝缘中性点接地方式是为了减小故障电流和三相电流不平衡的影响,提高电力系统的可靠性。

具体步骤如下:1. 找到电缆的中性点:对于三相单芯电缆,将三个相导体分别连接到电缆的中性点。

2. 接地中性点:将电缆中性点与地面接地电极连接。

3. 安装故障指示器:在接地线路上安装故障指示器,以监测电缆的故障情况。

电压位移接地方式电压位移接地方式是为了减小故障电流和限制故障电压的影响,提高电力系统的可靠性。

具体步骤如下:1. 根据电缆长度和接线容量,确定适当的电容量。

2. 安装电:将电连接到电缆线路上,使其与地面接地电极相连。

3. 调整电参数:根据实际情况,调整电参数,以达到故障电流和电压限制的要求。

总结根据电缆的特点和要求,选择合适的接地方式非常重要。

直接接地方式简单可靠,而绝缘中性点接地方式和电压位移接地方式可以提高电力系统的可靠性。

在实际应用中,还应考虑具体的场景和要求,选择最合适的接地方式。

浅谈电缆金属护套的接地方法和措施

浅谈电缆金属护套的接地方法和措施

浅谈电缆金属护套的接地方法和措施随着我国电网改造的深入,大量的架空线被电力电缆取代。

电力电缆跟架空线不同,它被埋在地下,运行维护较困难,正确使用电缆,是降低工程投资,保证安全可靠供电的重要条件。

在城市配电网络中,应用最广的是10 kV的电力电缆,一般是使用交联聚乙烯铠装三芯电缆,这种电缆金属护套一般只需直接接地即可。

而单芯电缆金属护套的接地和三芯电缆不同。

现从单芯电缆使用过程中经常被忽略的金属护套的感应电动势,现分析一起变电所单芯电力电缆金属护套错误接地引起的故障,并介绍实用的接地措施。

1 单芯电缆金属护套过电压和环流的产生单芯电力电缆的导体中通过交流电流时,其周围产生的磁场会与金属护套交链,在金属护套上会产生感应电动势。

感应电动势的大小与导体中的电流大小、电缆的排列和电缆长度有关。

对三相等边三角形排列的电缆,如果将金属护套两端直接接地,就会在金属护套中形成环流,环流的大小与电缆相应的长度,导体中电流大小有关。

出于经济安全考虑,在一些电缆不长,导体中电流不大的场合,环流很小,对电缆载流量影响也不大,是可以将金属护套的两端直接接地的。

如果仅将电缆的金属护套一端直接接地,在正常运行时,电缆的金属护套另一端感应电压应不超过50 V(或有安全措施时不超过100 V),否则应划分适当的单元设置绝缘接头。

在发生短路故障时,导体中有很大的电流,可能会在金属护套上产生很高的过电压,危及护层绝缘,因此在电缆线路单相接地时,在电缆的未接地端,应加装过电压保护器接地。

2 单芯电缆金属护套的连接与接地为了解决电缆金属护套两端同时接地存在环流,和一端直接接地,在另一端会出现过电压矛盾的问题,电缆金属护套应针对电缆长度和导体中电流大小采取不同的接地形式。

电缆线路不长时,电缆金属护套应在线路一端直接接地,另一端经过电压保护器接地,如图1所示。

电缆越长,电缆非直接接地端产生的感应电压越高,为保证人身安全,电缆在正常运行时,非直接接地端感应电压应限制在50 V以内,在短路等故障情况下,金属护套绝缘的冲击耐压和过电压保护器在冲击电流作用下的残压,配合系数不小于1.4。

单芯电缆接地电流偏大的处理

单芯电缆接地电流偏大的处理

单芯电缆接地电流偏大的处理发布时间:2022-04-24T06:25:26.206Z 来源:《福光技术》2022年6期作者:徐卫国[导读] 邯钢新区10V单芯电力电缆在设计时因未考虑合理的接地方式,也有些单芯电缆线路虽说加装了接地装置,但因电缆线路运行时间较长,接地箱出现了严重锈蚀,电缆接地装置已不能有效地抵消感应电流的作用,致使一些单芯电缆外护套中的感应电流过大,变电站的消弧线圈不能及时灭弧,曾接连发生过几起因电缆接地而导致的电缆短路事故,我们通过对高压单芯电缆接地方式优化改造,按电缆线路的长短,遵循经济合理的原则,分别采用金属护套交叉互联接、两端保护接地、中间直接接地或者一端保护接地等等措施,使电缆的屏蔽层合理可靠接地,并且在护套的一定位置采用了特殊的连接与接地的方式、装设护层的绝缘保护器等等。

河北钢铁邯钢公司邯宝能源中心河北邯郸 056015摘要:邯钢新区10V单芯电力电缆在设计时因未考虑合理的接地方式,也有些单芯电缆线路虽说加装了接地装置,但因电缆线路运行时间较长,接地箱出现了严重锈蚀,电缆接地装置已不能有效地抵消感应电流的作用,致使一些单芯电缆外护套中的感应电流过大,变电站的消弧线圈不能及时灭弧,曾接连发生过几起因电缆接地而导致的电缆短路事故,我们通过对高压单芯电缆接地方式优化改造,按电缆线路的长短,遵循经济合理的原则,分别采用金属护套交叉互联接、两端保护接地、中间直接接地或者一端保护接地等等措施,使电缆的屏蔽层合理可靠接地,并且在护套的一定位置采用了特殊的连接与接地的方式、装设护层的绝缘保护器等等。

关键词:单芯电缆;接地方式;感应电压;交叉互联接地引言邯钢新区有10V单芯的电力电缆当初投运之时,因为未能考虑到合理的接地方式,有着十几路线路比较长、负荷比较大的单芯电缆外护套的感应电压过高,经过实测则发现最高可以达到154V,感应的电流最高可以达到12A,已经严重超出了电力系统的运行以及设计规定按照《电力工程电缆设计规程》的要求,曾经多次发生了运行电缆单相接地之时因为系统接地电容电流过大,消弧线圈不能及时进行灭弧而导致的短路事故,严重影响整个电力系统的安全运行;也有些单芯电缆线路虽说加装了接地装置,但因电缆线路运行时间较长,接地箱出现了严重锈蚀,同轴电缆接头、连接排锈蚀、绝缘降低等情况。

35kV及以上三相单芯电缆基本的接地方式

35kV及以上三相单芯电缆基本的接地方式

35kV及以上三相单芯电缆基本的接地方式在高压电缆线路安装运行中,单芯电缆线路的金属护套只有一点接地时,需要采取安全措施以保证不超过50V,同时对地绝缘。

然而,由于不规范的敷设和接地方式、电缆外护套受损、电缆护层保护器被击穿等原因,单芯电缆系统故障时常常出现接地环流异常的情况。

因此,监控金属屏蔽层接地环流是预防或减少事故发生的有效方法。

以下是三相单芯电缆常用的四种接地方式:1.金属屏蔽两端直接接地:这种方式适用条件比较苛刻,一般不宜采用。

2.金属屏蔽一端直接接地,另一端通过护层保护接地:适用于单相电缆线路长度X≤L(基本上为一盘电缆长度,L长500米内)。

3.金属屏蔽中点接地:适用于单相电缆线路长度X在L<X≤2L(基本上为两盘等长电缆,L长1000米内)。

有两种方式可选:方式A:中间接地点安装一个直通接头。

方式B:中间接地点安装一个绝缘接头。

A、B两种接地方式的区别:通过直通接头接地,减少一台“直接接地箱”,但电缆外护套出现故障时,不方便确定故障点位置;通过绝缘接头接地,多一台“直接接地箱”,成本略有增加,但能快速确定故障点位置,方便维护。

当电缆线路长度X略大于2L时,可在分段中再装设回流线。

这样可以降低屏蔽的感应电压,单段电缆长度也可以适当加长。

4.金属屏蔽层交叉互联:适用于电缆线路长度X在2L<X≤3L(基本上为三盘等长电缆,L长1500米内)。

每三段电缆为一单元,每单元内安装两个绝缘接头,通过同轴电缆引出金属护套并经互联箱进行交叉互联后,通过电缆护层保护器接地,电缆两端的金属护套直接接地,形成一个互联段位。

每单元之间安装直通中间头,金属护套互联后直接接地。

在电缆线路设计中,选择合适的电缆长度和数量是非常重要的。

根据实际情况,当电缆线路长度在3L到9L之间时,可以采取不同长度和数量的电缆。

当电缆线路长度在3L到4L之间时,我们通常选择四盘等长电缆,每盘电缆长度不超过2000米。

当电缆线路长度在4L到5L之间时,我们通常选择五盘等长电缆,每盘电缆长度不超过2500米。

10kV及以上三相单芯电缆基本的接地方式

10kV及以上三相单芯电缆基本的接地方式

10kV及以上三相单芯电缆基本的接地方式三相单芯电缆在10kV及以上电压等级下的接地方式有以下几种基本方法:1. 电气接地:三相单芯电缆可以采用电气接地方式,即将电缆的金属护套和接地系统连接。

这可以防止电缆金属护套产生电场,减小电磁辐射的干扰,并对电缆产生的故障电流进行安全地引流。

电气接地:三相单芯电缆可以采用电气接地方式,即将电缆的金属护套和接地系统连接。

这可以防止电缆金属护套产生电场,减小电磁辐射的干扰,并对电缆产生的故障电流进行安全地引流。

2. 绝缘接地:绝缘接地是指将电缆的金属护套与绝缘层隔离,不与接地系统连接。

这种方式适用于要求较高的绝缘保护,以及在电缆路径中存在其他导体需要接地的情况。

绝缘接地:绝缘接地是指将电缆的金属护套与绝缘层隔离,不与接地系统连接。

这种方式适用于要求较高的绝缘保护,以及在电缆路径中存在其他导体需要接地的情况。

3. 共模接地:共模接地是指将电缆的三相导体同时与接地系统连接。

这种方式适用于需要减小电缆的正常和故障电流对环境的影响,降低电磁辐射水平的场合。

共模接地:共模接地是指将电缆的三相导体同时与接地系统连接。

这种方式适用于需要减小电缆的正常和故障电流对环境的影响,降低电磁辐射水平的场合。

4. 单点接地:单点接地是指将电缆的一相导体与接地系统连接,而其他两相导体绝缘处理。

这种方式可以减小电缆的故障电流流经接地电阻产生的接地电位差,降低对电缆承压层的影响。

单点接地:单点接地是指将电缆的一相导体与接地系统连接,而其他两相导体绝缘处理。

这种方式可以减小电缆的故障电流流经接地电阻产生的接地电位差,降低对电缆承压层的影响。

5. 多点接地:多点接地是指将电缆的多个点与接地系统连接,以分散电缆的接地电位差。

这种方式适用于特殊环境,要求对电缆的接地保护更加严格的场合。

多点接地:多点接地是指将电缆的多个点与接地系统连接,以分散电缆的接地电位差。

这种方式适用于特殊环境,要求对电缆的接地保护更加严格的场合。

110kV单芯电缆金属护套感应电压计算及分段

110kV单芯电缆金属护套感应电压计算及分段

110kV单芯电缆金属护套感应电压计算及分段作者:蔡高凤来源:《科技创新导报》 2014年第36期蔡高凤(广东电网公司云浮供电局广东云浮 527300)摘要:电缆线路较长时将引起过高的金属护套感应电压,从而降低电缆的使用寿命,并危及人身安全。

建立三相线芯对屏蔽层感应电压计算模型,推导出单芯电缆金属护套的感应电压表达式,得到了正常运行条件下不同长度的单芯电缆线路感应电压。

关键词:单芯电缆金属护套电磁场理论感应电压交叉互联接地分段中图分类号:TE937文献标识码:A 文章编号:1674-098X(2014)12(c)-0073-02随着架空电力线路走廊的日趋紧缺及电缆技术的发展,城市敷设110 kV高压电缆越来越广泛。

在工程实际中,为了提高单芯电力电缆线路的输送容量,可以采取电缆金属护套接地的方法,但金属护套上不可避免地会产生感应电压。

当电缆线路很长时,电缆金属护套的感应电压会达到较高的数值,威胁人身安全,同时增大护套感应电流,导致电缆温度过高而影响电缆载流量且降低电缆的使用寿命。

因此,需要采取相应的措施来降低或消除金属护套的感应电压。

由于在电缆的负荷、短路电流以及电缆三相排列方式等因素确定的情况下,电缆段长是控制电缆金属护套感应电压的主要因素,因此目前常采用的降压方法是对电缆进行分段处理。

工程上采用的传统计算公式对金属护套的感应电压进行估算时,由于公式极其复杂,使用非常不便。

为此,在传统计算公式的基础上对金属护套的感应电压计算公式进行改进,推导出较为简便的感应电压计算公式。

1 电缆感应电压及产生原因对于单芯电缆,金属护套的感应电压就可能达到很大的数值,危及人身安全及降低电缆使用寿命。

因此,必须验算感应电压及采取有效的限制措施,将电缆金属护套感应电压限制在规程规定的范围内。

单芯电力电缆的金属导线与金属护套或屏蔽层可看作双绕组变压器的线圈。

当电缆通过交流电时,导体电流产生的一部分磁通与金属护套或屏蔽层铰链,这部分磁通使屏蔽层产生感应电压[2]。

高压单芯电缆金属护套的接地方式

高压单芯电缆金属护套的接地方式
采 用这种 方式 。
22金属护套一端接地 ,一端保护接地 .
电缆线路较短 时 ( 0 以 内) 5 m 0 ,金属护套 通常 采用一 端直 接接 地 ,另 一端 通 过保 护器 接地 ,对 地绝 缘 没有 构 成 回路 ,可 以减少及 消 除环 流,有 利 于提 高 电缆 的传 输 容量 和 电缆 的安 全运 行 。根 据 G 5 2 -4要求 , 非直 B01 9 7 接 接地 的一 端金 属护 套 上的 感应 电压 不得 超 过 5 V 0 ,如 果 与 架 空 线 路连 接 时 ,直 接 接 地 一 般 装 设 在 架 空 线 路 端,保 护器装 设在另 一端 。
收稿 日期 :0 7 1 ・ 8 2 0 —O2
图1 1k 1 0 V金 属护套 中点接地
24金属护套的交叉互联 .
当 电缆线路 很长 时 (0 0 及 以上) 电缆金属 护 套 10m , 可 以采用 交叉 互联 方式 安装 ,这 种 方式 可 以减 少金 属护 套 的感 应电压 和环 流 ,有 利于 提高 电缆的 传输 容 量 交
设 了回流 线,接 地方式 如 图式及特 点
21 金属护套两端直接接地 .
这种 接地 方式 可 减少工 作量 ,但 是在 金 属护 套上 存
在 环流 ,适 用的条件 比较苛 刻 ,要 求 电缆线 路 很短 、传
输功率很小、传输容量有很大的裕度等,因此一般不宜
种接 地方 式 。
地装置 ,并做好 防水处理 ;如果 电缆线路是两盘电缆,
则 中间接地 点安 装一个 直通 中间头 即可 。
其 中 22 . .、2 3所述 的都 属 于金 属护 套只有 一 端接地 的 情 况, 还应 该 安 装 一条 沿 电缆 线路 平 行 敷设 的导 体 , 即回流 线, 当发生 单 相接 地短 路故 障 时 ,接地 短路 电流

关于110kV高压单芯电缆线路金属护套接地方式

关于110kV高压单芯电缆线路金属护套接地方式

关于110kV高压单芯电缆线路金属护套接地方式摘要:110kV高压电缆具有供电可靠性高、受外界因素影响小、占地少、对城市市容环境影响小等优点,在城市输配电网中得到了广泛的应用。

由于金属护套中存在感应电压,高压电缆通常通过金属护套的交叉连接来抑制感应电压。

但是,负载电流不平衡、电缆截面不均匀、电缆排列方式不同、电缆相间距离不同,都会引起金属护套感应电压不平衡,从而产生通过大地的地面环流。

当金属护套接地环大量流过时,会造成大量损耗,导致电缆温度升高,降低电缆的传输效率,缩短电缆的使用寿命。

鉴于此,文章结合笔者多年工作经验,对110kV高压单芯电缆线路金属护套接地方式提出了一些建议,仅供参考。

关键词:110kV高压;单芯电缆线路;金属护套;接地方式引言近年来,随着城市改造和建设的加快,大量的110kV高压电缆线路投入运营,大量的110kV高压电缆线路分布在人口密集地区,因此其运行安全更为重要。

当单芯电缆芯线通过电流时,会产生一个由磁力线构成的金属屏蔽层,这会在两端产生感应电压。

感应电压的大小与电缆的长度和流过导体的电流成正比。

当高压电缆很长时,护套上的感应电压会叠加,危及人身安全。

当发生短路故障、操作过电压或雷击时,会在屏蔽层上形成高感应电压,甚至可能击穿护套绝缘。

因此,加强110kV高压单芯电缆线路的金属护套接地方法十分重要。

1、高压输电线路接地故障定位原理当高压输电线路因为雷击?电容器?投切或断路器等原因产生接地故障时,在高压线路的接地故障点会形成折射行波和反射行波,两种行波会分别向输电线路的两端传播?高压输电线路接地故障点折射和反射行波传播原理图如图1所示?电压波在高压输电线路传播的过程中,如果输电线路突然发生接地故障,会使输电线路的波阻抗发生突变,变得不连续,从而使电压波在故障点处的能量发生改变?图1中A点为高压输电线路的接地故障点,Z1是接地故障点左侧的输电线路波阻抗,Z2是接地故障点右侧的输电线路波阻抗,u1q是高压输电线路未发生接地故障时的行波,u2q和u1f分别是发生接地故障后的折射波和反射波?本文中所采用的行波测距原理如图2所示,其中M点是检测端,从M点向高压输电线路接地故障处发射调制?2、110kV高压单芯电缆金属护套接地问题芯电缆通常用于满足当前电气工程规范的要求。

35kV及以上三相单芯电缆基本的接地方式

35kV及以上三相单芯电缆基本的接地方式

35kV 及以上及以上三相三相三相单芯电缆基本的接地方式单芯电缆基本的接地方式单芯电缆基本的接地方式高压电缆线路安装运行时,按照GB50217-1994《电力工程电缆设计规程》4.1.9项要求:单芯电缆线路的金属护套只有一点接地时,未采取不能任意接触金属护套的安全措施时不得大于50V,采取有效措施时,不得大于100V,并对地绝缘。

近年来随着单芯电缆的使用量的增多,其敷设、接地方式不规范、电缆外护套受外力损伤、电缆护层保护器被击穿等导致电缆系统发生故障时有发生,其事前都表现出接地环流异常,故对单芯电缆金属屏蔽层接地环流进行监控,是预防或减少事故发生的有效办法。

以下为三相单芯电缆常用四种接地方式:1、金属金属屏蔽屏蔽屏蔽两端直接接地两端直接接地两端直接接地这种接地方式可减少工作量,但是在金属护套上存在环流,适用的条件比较苛刻,要求电缆线路很短、传输功率很小、传输容量有很大的裕度等,因此一般不宜采用这种方式。

2、金属金属屏蔽一端直接接地屏蔽一端直接接地屏蔽一端直接接地,,另一端通过护层保护接地另一端通过护层保护接地::当单相电缆线路长度X≤L 时采用(基本上为一盘电缆长度,L 长500米内)。

3、金属金属屏蔽中点接地屏蔽中点接地屏蔽中点接地当单相单相电缆电缆电缆线路长度线路长度X 在L <X ≤2L 时采用时采用((基本上为两盘基本上为两盘等长等长等长电缆电缆电缆,,L 长1000米内米内)。

)。

方式A :中间接地点安装一个直通接头中间接地点安装一个直通接头。

方式B :中间接地点安装一个绝缘接头中间接地点安装一个绝缘接头。

A、B 两种接地方式的区别:通过直通接头接地,可减少一台“直接接地箱”,但电缆外护套出现故障时,不便确定故障点在接头的左边而是右边,电缆维护不方便;通过绝缘接头接地,多一台“直接接地箱”,成本略有增加,但能很快确定故障点在接头的左边而是右边,方便维护。

当电缆线路长度X 略大于2L 时,在分段中再装设回流线。

单芯高压电缆的敷设及接地资料讲解

单芯高压电缆的敷设及接地资料讲解

单芯高压电缆的敷设及接地单芯高压电缆的敷设及接地随着城市化的发展高压长距离电缆工程越来越多,由于三芯高压电缆不能制造得太长,这样线路中不得不存在多处电缆中间接头,给输电系统的带来了诸多安全隐患。

与三芯电缆相比单芯电缆在其单根长度、敷设环节和电缆头制作等环节中显示了三芯电缆所无法比拟的优点。

因此单芯电缆多用在长距离输电线路中。

对单芯电缆与三芯电缆各自特点进行总结。

单芯电缆:单芯电缆不能承受机械外力;不带铠装,不允许直埋敷设,电缆不允许敷设在钢管等磁性管道中。

外径小,重量轻、电缆长度可以不受重量限制,400 mm?电缆可以做到1000米以上。

单芯电缆需要敷设在三根非磁性管道材料中,管材消耗较大,占地面积较大,在变电所多出线场所不易采纳,一般适应与占地面积较大,线路比较长,对景观带要求比较严格地段,单芯电缆虽便与敷设,但是敷设长度为三芯电缆的三倍,总体施工强度比较大,由于电芯电缆电缆头比较多,在进出线位置布置空间要求大,布置起来比较困难,在电缆上杆时,需要电缆布线,单芯电缆由于相间距离比较大,电缆虽比较容易受潮、劣化、甚少发生相间短路,发生事故多为接地短路。

由于电缆不能带磁性钢带铠装,对敷设环境要求要求比较严格,一般敷设在密封电缆沟内,严禁外力作用电缆。

单芯电缆长期运行中如发生外护套损伤,金属屏蔽多处接地后,电缆不能保持安全运行,金属护套直接接地会产生很大环流,引起点啦发热烧坏电缆。

三芯电缆与单芯电缆相比能承受一定的拉力与压力,可以直接埋地敷设,也可以在磁性管道中进行敷设,敷设条件没有严格的环境要求。

由于三芯电缆自身重量,通常情况不能制作太长,300 mm?大截面电缆,基本不采用三芯电缆,在大功率送电中多采用单芯电缆。

三芯电缆虽不便于敷设但由于长度为单芯电缆1/3,施工周期较短,在电缆终端塔,户内布线时,空间要求比较少,电缆头制作比单芯电缆要求严格,施工材料比较节省。

由于电缆可以铠装,对敷设环境较为宽松,对应力有一定防护,三芯电缆由于三相报过在一块,相间依靠绝缘材料进行绝缘,绝缘层老化,受潮后容易引起相间短路,三芯电缆长期运行如外护套据部破损,金属保护层发生接地后,电缆可以安全运行。

110kV高压单芯电缆金属护套接地方式探讨

110kV高压单芯电缆金属护套接地方式探讨

110kV高压单芯电缆金属护套接地方式探讨摘要:近年来,随着城市转型的加速,大批110千伏高压电缆投入使用,大批110千伏高压电缆敷设到人口稠密地区。

基于目前接地110kV高压单芯电缆金属护套方法和需要考虑的问题,可以对其详细介绍,对110kV高压单芯电缆安全运行起到积极的作用和价值。

关键词:高压单芯电缆;金属护套;接地方式;110 kV外护套绝缘电缆频繁事故,促使设计、运营和维护部门对护套的电压和电流进行调查研究。

电缆的金属外护套几乎没有磁场和感应电压,当单芯电缆高压电流中循环时,电流变得非常大,金属屏蔽检测到非常高的感应电压,这可能威胁到人们的安全或导致电缆的绝缘和损坏。

因此,应采用适当的接地方法降低电缆的感应电压,以保证电缆安全、经济地运行。

以下是有关电缆性能的国家标准,各种接地方法,金属护套高压线性电缆的应用,不同铺设条件、护套接地的比较,电压对其电缆的影响,接地方式选择和限制,操作和维护。

一、110 kV高压单芯电缆金属护套接地问题根据中国目前的电力电缆设计方案,35kV以下的电缆是一种三芯电缆。

在电缆线中,综合为零电流通过流经三个。

因此,金属屏幕两端没有感应电压。

这意味着在这种类型的电缆中,当两端直接连接到地面时,感应电流不会通过金属屏幕。

当电压超过35kV时,电缆通常是单根电缆。

当电流通过电缆芯时,存在磁力线和金属层,两端产生感应电压,与电缆的长度和流经导体的电流成正比。

如果高压电缆很长,则可以将感应电压应用于护套上,这将危及人类安全。

如果电缆在短路故障工作电压或雷电冲击,屏幕会产生高电感电压,有时会导致击穿护套。

即使在这种情况下,当金属屏蔽层末端接地处理是三相互联时,其也会产生非常大的环流,换流值为电缆芯电流的50-95%。

电缆损坏的原因显而易见。

同时,金属屏幕表面产生热量,影响电缆线路运行时的能耗,加速其绝缘老化。

也就是说,对于35kV以上的高压电缆,电缆的两端不能直接接地。

但是,如果金属屏幕的一端没有接地,如果沿着高压单芯电缆电流,则金属屏蔽不会暴露在不接地端的冲击电压下,系统会短路,短路电流通过元件,会产生高电压,金属屏蔽频率为一端互联接地。

浅谈单芯电力电缆护层接地及护套损伤危害性

浅谈单芯电力电缆护层接地及护套损伤危害性

浅谈单芯电力电缆护层接地及护套损伤危害性摘要:单芯电缆护层一端直接接地,另一端通过护层保护接地是可采用的接地方式,而护套两端接地方式不常用,仅适用于极短电缆和小负载电缆线路。

通过护层保护器接地的电缆头接地引线须全绝缘包缠处理。

精细勘察设计优选电缆敷设路径,避免交叉施工、争取合理工期、创造有利电缆敷设环境,把握和优化电缆敷设时机、方法,强化电缆敷设之后的成品保护。

鉴于此,本文主要分析单芯电力电缆护层接地及护套损伤危害性。

关键词:单芯电力电缆;护层接地;护套损伤1、电缆护层接地方式单芯电力电缆正常运行时,金属护层出现感应电势,金属护层均会做接地处理,采用一端接地或两端接地等形式。

(1)护层一端单点直接接地时,未接地端护层将产生感应电势。

在线路发生短路或过电压情况下感应电势很大,危及设备和人员的安全,严重时可能击穿电缆主绝缘层。

采用这种护层接地方式时,需要计算不接地端可能产生的最大感应电势,确保电缆不受过高感应电势而损坏。

(2)护层中央部位单点直接接地方式,与护层单端直接接地相同,在线路未接地端也将产生感应电势。

这种接地方式相比于护层单端接地时,线路长度可以延长1倍。

(3)护层两端直接接地时,通过大地的连通,护层与大地形成环路。

由于感应电势的作用,护层中产生环流。

环流使线路不断发热,电缆运行温度升高,降低线路的载流容量。

由于两端接地,护层上产生电势降低,绝缘层和电缆外护套不易被感应过电压击穿。

由于金属护层中环流值正比于线路电流、长度,线路越长,载流量越大时,环流越大。

因此,这种护层接地方式不适合大容量长距离的单芯电缆线路。

(4)电缆护层交叉互联接地时,护层接地方式接线复杂,施工难度大,成本高,且有多种变化的接线方式,如电缆位置互换等。

每交叉互换单元的护层三相感应电势相位相差120°,相互抵消,线路每单元的感应电势几乎为0,使线路得到最大的保护。

当单芯电缆线路为km以上时,采用这种护层接地方式能满足线路的大容量、长距离要求。

高压单芯电缆金属屏蔽层及接地问题探究

高压单芯电缆金属屏蔽层及接地问题探究

高压单芯电缆金属屏蔽层及接地问题探究摘要:按照现有国家有关标准规定,电力电缆屏蔽短路试验由制造厂与用户考虑电网实际短路条件确定;中压电力电缆标准缺少关于金属屏蔽截面积的规定,制造厂一般都没有对电缆的金属屏蔽层进行短路热稳定试验;在实际招投标过程中,往往缺少对电力电缆金属屏蔽的截面积的明确规定,虽然单芯电缆的使用提高了单回电缆的输送能力,减少了接头,方便了电缆敷设和附件安装,但高压单芯电力电缆在敷设安装中还存在一些问题。

关键词:高压电力;单芯电缆;金属屏蔽层;接地问题;探究 1 引言高压单芯电力电缆线路金属屏蔽层或金属护套上感应电势的幅值,与线路的长度和电流大小成正比关系。

当电缆越长或电流越大时,感应电势叠加起来就越大,会危及人身安全和电缆绝缘安全;当高压单芯电力电缆线路发生短路故障、遭受雷电冲击或操作过电压时,该感应电势很高,有可能击穿金属屏蔽层绝缘。

2 高压单芯电力电缆与统包电力电缆接地方式差异性分析高压电力电缆作为电力系统的重要组成部分,有着良好的市场前景,对于国家经济发展和推动社会发展有至关重要的作用,因此相关人员对于高压电力电缆的检测工作越来越重视。

为了能使电缆更好地运行、发挥重要作用,必须掌握高压电力电缆运行中常见的故障,并能够做出正确处理,同时运用正确的试验方法对其进行质量评估和检测,需要具备一定的专业素质。

在统包电力电缆中,涉及到三芯或者四芯电缆,电力电缆内的芯线分布方式就是“品字形”,而且具有对称性特点。

如果在三相负荷平衡的状态中,就会得到相等大小的流经各芯线电流,以及三相电流矢量和是零。

因此,感应电压并不会发生于金属护套或金属屏蔽层中。

但是在单芯电力电缆中,如果芯线内出现流经交流电流的情况,则金属屏蔽层或者金属护套上,高压单芯电力电缆能够形成磁链现象。

这时,在单芯电力电缆金属屏蔽层仅予以一端接地的情况下,如果电压等流经单芯电力电缆线芯就会于形成高冲击电压。

而且在出现电力系统短路故障期间,高压单芯电力电缆的金属屏蔽层不接地端容易产生高工频感应电势,一旦不能对此电压产生承受,则势必会大大损伤到电缆金属屏蔽层绝缘,另外高压单芯电力电缆也会形成多点接地现象产生环流问题。

10kV单芯XLPE绝缘电缆金属屏蔽层接地方式解说

10kV单芯XLPE绝缘电缆金属屏蔽层接地方式解说

10kV单芯XLPE绝缘电缆金属屏蔽层接地方式解说10kV电缆金属屏蔽层通常采用两端直接接地的方式。

这是由于10千伏电缆多数是三芯电缆的缘故。

八十年代中期前,10kV电缆均采用油浸纸绝缘三芯电缆。

结构多为统包型,少量为分相屏蔽型。

八十年代末期开始大量使用交联聚乙烯绝缘分相屏蔽三芯电缆,逐步淘汰了油纸电缆。

九十年代以来,随着大连经济建设的迅猛发展,负荷密度增大,环网开关柜等小型设备的应用,市区变电所出线和电缆网供电主干线电缆开始采用较大截面单芯电缆。

单芯电缆的使用提高了单回电缆的输送能力,减少了接头,短段电缆可以使用,方便了电缆敷设和附件安装。

也由此带来了金属屏蔽接地方式的问题。

一、单芯电缆金属护套工频感应电压计算单芯电缆芯线通过电流时,在交变电场作用下,金属屏蔽层必然感应一定的电动势。

三芯电缆带平衡负荷时,三相电流向量和为零金属屏蔽上的感应电势叠加为零,所以可两端接地。

单芯电缆每相之间存在一定的距离,感应电势不能抵消。

金属屏蔽层感应电压的大小与电缆长度和线芯负荷电流成正比,还与电缆排列的中心距离、金属屏蔽层的平均直径有关。

1、电缆正三角形排列时,金属屏蔽单位长度的感应电压可按下面公式计算:公式1I---负荷电流,S---电缆中心距离,D--电缆金属屏蔽层平均直径以YJSY-8.7/15kV-1×300mm,2单芯电缆为例,电缆屏蔽层平均直径40mm,PVC护套厚度3.6mm,当电缆“品”字形紧贴排列,负荷电流为200A时,算得电缆护层的感应电压为每公里10.7伏。

2、电缆三相水平排列时,设电缆间距相等,金属屏蔽单位长度的感应电压可按下式计算:公式2、3 、4当三相电缆紧贴水平排列,其它条件与1相同时,算得边相的感应电压为每公里16.9伏,中相的感应电压为每公里10.7伏;当电缆间距200mm时,算得边相的感应电压为每公里36.1伏,中相的感应电压为每公里31伏。

边相感应电压高于中相感应电压。

01单芯电缆线路接地系统的处理及感应电势计算

01单芯电缆线路接地系统的处理及感应电势计算

单芯电缆线路接地系统的处理及感应电势计算1 概述一般情况下,高压电力电缆和截面较大的中压电力电缆常常制造成单芯结构。

在单芯电缆线路的敷设过程中,常常要涉及到电缆的接地方式及电缆金属屏蔽的感应电势计算。

单芯电缆的导线与金属屏蔽的关系,可看作一个变压器的初级绕组与次级绕组。

当电缆的导线通过交流电流时,其周围产生的一部分磁力线将与屏蔽层铰链,使屏蔽层产生感应电压,感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷击冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。

如果屏蔽两端同时接地使屏蔽线路形成闭合通路,屏蔽中将产生环形电流,电缆正常运行时,屏蔽上的环流与导体的负荷电流基本上为同一数量级,将产生很大的环流损耗,使电缆发热,影响电缆的载流量,减短电缆的使用寿命。

因此,电缆屏蔽应可靠、合理的接地,电缆外护套应有良好的绝缘。

2 几种常用的接地方式以下是单芯电缆线路接地线路的几种常用接地方式:2.1 屏蔽一端直接接地,另一端通过护层保护接地当线路长度大约在500~700m及以下时,屏蔽层可采用一端直接接地(电缆终端位置接地),另一端通过护层保护器接地。

这种接地方式还须安装一条沿电缆线路平行敷设的回流线,回流线两端接地。

敷设回流线时应使它与中间一相电缆的距离为0.7s(s为相邻电缆间的距离),并在线路一半处换位。

见图1:图11、电缆2、终端3、电缆金属屏蔽(护套)接地线4、护层保护器5、接地保护箱6、回流线7、接地箱2.2 屏蔽中点接地当线路长度大约在1000~1400m时,须采用中点接地方式。

在线路的中间位置,将屏蔽直接接地,电缆两端的终端头的屏蔽通过护层保护器接地。

中间接地点一般需安装一个直通接头。

见图2:图21、电缆2、终端3、电缆金属屏蔽(护套)接地线4、保护器5、接地保护箱6、接地线7、接地箱8、中间接地点(直通接头)中点接地方式也可采用第二种方式,即在线路中点安装一个绝缘接头,绝缘接头将电缆屏蔽断开,屏蔽两端分别通过护层保护器接地,两电缆终端屏蔽直接接地。

单芯电缆金属护套的连接与接地

单芯电缆金属护套的连接与接地

单芯电缆金属护套的连接与接地2010-06-17 09:56浅谈高压电缆接地的问题129湖北安全生产信息网(安全生产资料大全) 寻找资料>>高压电力电缆的铜屏蔽和钢铠一般都需要接地,两端接地和一端接地有什么区别?制作电缆终端头时,钢铠和铜屏蔽层能否焊接在一块?制作电缆中间头时,钢铠和铜屏蔽层能否焊接在一块?35KV高压电缆多为单芯电缆,单芯电缆在通电运行时,在屏蔽层会形成感应电压,如果两端的屏蔽同时接地,在屏蔽层与大地之间形成回路,会产生感应电流,这样电缆屏蔽层会发热,损耗大量的电能,影响线路的正常运行,为了避免这种现象的发生,通常采用一端接地的方式,当线路很长时还可以采用中点接地和交叉互联等方式。

在制作电缆头时,将钢铠和铜屏蔽层分开焊接接地,是为了便于检测电缆内护层的好坏,在检测电缆护层时,钢铠与铜屏蔽间通上电压,如果能承受一定的电压就证明内护层是完好无损。

如果没有这方面的要求,用不着检测电缆内护层,也可以将钢铠与铜屏蔽层连在一起接地(我们提倡分开引出后接地)。

为什么高压单芯交联聚乙烯绝缘电力电缆要采用特殊的接地方式?电力安全规程规定:35kV及以下电压等级的电缆都采用两端接地方式,这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。

但是当电压超过35kV时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。

当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。

感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。

论单芯电缆线路接地系统的处理

论单芯电缆线路接地系统的处理

线路 的长度和流过 导线 的电流成正 比, 电缆很长时 , 屏蔽 层上每厘米 长
度的感应 电压叠加起来可达到危及人身安全 的程度 ; 在线路发生 不对称 短路 故障 、 遭受操作 过电压或霄 电过 电压时 , 屏蔽层上 的感 应 电压会 达 到很大的数值 , 甚至可能击穿护套绝缘。如果屏蔽两端同时接地使屏蔽 线路形成闭合通路 , 中将 产生环形电流 , 屏蔽 电缆正常运行时 , 屏蔽上 的 环形 电流与导体的负荷电流基本上为同一数量级 , 将产生很大的环流损 耗, 使电缆发热 , 响电缆 的载流量 , 影 减少电缆的使用寿命 。 因此 , 电缆屏 蔽应可靠 合理的接地 , 电缆护 套对地应有 良好 的绝缘 , 安装时应 根据线 路的不同情 况. 照经济合理 的原则在护 套的一 定位置采用特殊的连接 按 和接 地方式 、 装置护层绝缘保护器等 , 以防止 电缆护层绝缘被击穿。
叉互联 , 这种方法是将 电缆 线路分成若 干大段 , 每大段原 则上分成长 度 相等 的 3 小段 , 每小段之间装设 绝缘接头 , 缘接头处护 套三 相之间用 绝 同轴 电缆经 接线 盒进行交叉互联 , 绝缘接头处 装设一组保护器 , 每一大
段 的两端 护套分别互联接地 。 242 护套 交叉互联的作 用 .. () 1感应 电压低 , 环流小 。如果 电缆线路 的三相排列是对称的 , 由 则
大裕度时 , 电缆线 路可以采用 护套两端接地 , 套两端接地后 , 护 不需要装 设保护器, 还可 以减少维护工作 , 与护层损耗 的损 失相 比, 这 可能还是经
济的。 22 护套 一端接地 .
大段 两端接地 , 当线路发生单 相接地 短路 时 , 接地电流不通过大地 , 则
每相的护套通过 1 , 3的接地 电流 , 此时的护套也相当于回流线 , 每小段护

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单芯电缆金属护套的连接与接地2010-06-17 09:56浅谈高压电缆接地的问题作者:未知文章来源:本站原创点击数: 129 更新时间:2008-5-21 22:27:54【字体:小大】湖北安全生产信息网(安全生产资料大全) 寻找资料>>高压电力电缆的铜屏蔽和钢铠一般都需要接地,两端接地和一端接地有什么区别?制作电缆终端头时,钢铠和铜屏蔽层能否焊接在一块?制作电缆中间头时,钢铠和铜屏蔽层能否焊接在一块?35KV高压电缆多为单芯电缆,单芯电缆在通电运行时,在屏蔽层会形成感应电压,如果两端的屏蔽同时接地,在屏蔽层与大地之间形成回路,会产生感应电流,这样电缆屏蔽层会发热,损耗大量的电能,影响线路的正常运行,为了避免这种现象的发生,通常采用一端接地的方式,当线路很长时还可以采用中点接地和交叉互联等方式。

在制作电缆头时,将钢铠和铜屏蔽层分开焊接接地,是为了便于检测电缆内护层的好坏,在检测电缆护层时,钢铠与铜屏蔽间通上电压,如果能承受一定的电压就证明内护层是完好无损。

如果没有这方面的要求,用不着检测电缆内护层,也可以将钢铠与铜屏蔽层连在一起接地(我们提倡分开引出后接地)。

为什么高压单芯交联聚乙烯绝缘电力电缆要采用特殊的接地方式?电力安全规程规定:35kV及以下电压等级的电缆都采用两端接地方式,这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。

但是当电压超过35kV时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。

当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。

感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。

此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%--95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,因此单芯电缆不应两端接地。

[个别情况(如短电缆或轻载运行时)方可将铝包或金属屏蔽层两端三相互联接地。

然而,当铝包或金属屏蔽层有一端不接地后,接着带来了下列问题:当雷电流或过电压波沿线芯流动时,电缆铝包或金属屏蔽层不接地端会出现很高的冲击电压;在系统发生短路时,短路电流流经线芯时,电缆铝包或金属屏蔽层不接地端也会出现较高的工频感应电压,在电缆外护层绝缘不能承受这种过电压的作用而损坏时,将导致出现多点接地,形成环流。

因此,在采用一端互联接地时,必须采取措施限制护层上的过电压,安装时应根据线路的不同情况,按照经济合理的原则在铝包或金属屏蔽层的一定位置采用特殊的连接和接地方式,并同时装设护层保护器,以防止电缆护层绝缘被击穿。

据此,高压电缆线路安装时,应该按照GB50217-1994《电力工程电缆设计规程》的要求,单芯电缆线路的金属护套只有一点接地时,金属护套任一点的感应电压不应超过50-100V(未采取不能任意接触金属护套的安全措施时不大于50V;如采取了有效措施时,不得大于100V),并应对地绝缘。

如果大于此规定电压时,应采取金属护套分段绝缘或绝缘后连接成交叉互联的接线。

为了减小单芯电缆线路对邻近辅助电缆及通信电缆的感应电压,应尽量采用交叉互联接线。

对于电缆长度不长的情况下,可采用单点接地的方式。

为保护电缆护层绝缘,在不接地的一端应加装护层保护器。

漏电保护器安全使用系列问答漏电保护器基本知识作者:佚名文章来源:转载点击数: 456 更新时间:2007-9-12 18:26:34 【字体:小大】湖北安全生产信息网(安全生产资料大全) 寻找资料>> 1.什么是漏电保护器?答:漏电保护器(漏电保护开关)是一种电气安全装置。

将漏电保护器安装在低压电路中,当发生漏电和触电时,且达到保护器所限定的动作电流值时,就立即在限定的时间内动作自动断开电源进行保护。

2.漏电保护器的结构组成是什么?答:漏电保护器主要由三部分组成:检测元件、中间放大环节、操作执行机构。

①检测元件。

由零序互感器组成,检测漏电电流,并发出信号。

②放大环节。

将微弱的漏电信号放大,按装置不同(放大部件可采用机械装置或电子装置),构成电磁式保护器相电子式保护器。

③执行机构。

收到信号后,主开关由闭合位置转换到断开位置,从而切断电源,是被保护电路脱离电网的跳闸部件。

3.漏电保护器的工作原理是什么?答:①当电气设备发生漏电时,出现两种异常现象:一是,三相电流的平衡遭到破坏,出现零序电流;二是,正常时不带电的金属外壳出现对地电压(正常时,金属外壳与大地均为零电位)。

②零序电流互感器的作用漏电保护器通过电流互感器检测取得异常讯号,经过中间机构转换传递,使执行机构动作,通过开关装置断开电源。

电流互感器的结构与变压器类似,是由两个互相绝缘绕在同一铁心上的线圈组成。

当一次线圈有剩余电流时,二次线圈就会感应出电流。

③漏电保护器工作原理将漏电保护器安装在线路中,一次线圈与电网的线路相连接,二次线圈与漏电保护器中的脱扣器连接。

当用电设备正常运行时,线路中电流呈平衡状态,互感器中电流矢量之和为零(电流是有方向的矢量,如按流出的方向为“+”,返回方向为“-”,在互感器中往返的电流大小相等,方向相反,正负相互抵销)。

由于一次线圈中没有剩余电流,所以不会感应二次线圈,漏电保护器的开关装置处于闭合状态运行。

当设备外壳发生漏电并有人触及时,则在故障点产生分流,此漏电电流经人体?大地?工作接地,返回变压器中性点(并未经电流互感器),致使互感器申流入、流出的电流出现了不平衡(电流矢量之和不为零),一次线圈申产生剩余电流。

因此,便会感应二次线圈,当这个电流值达到该漏电保护器限定的动作电流值时,自动开关脱扣,切断电源。

谈施工现场用电设备、设施绝缘电阻的测试作者:佚名文章来源:本站原创点击数: 418 更新时间:2007-10-31 22:36:07【字体:小大】湖北安全生产信息网(安全生产资料大全) 寻找资料>>建筑施工现场使用的机械设备中,绝大部分都是以电作为能源的,随着机械化施工水平的提高,使用电动机械,接触电气设备的人越来越多,而这些人的安全用电知识和技能水平又相对偏低,不能辨识危害和危险,在遇到触电事故后又缺乏及时有效的急救措施,因此在安装使用电气设备过程中易发生触电伤亡事故。

据统计每年因触电事故死亡人数都占到全部事故死亡人数7%以上,经济损失更大,加强施工现场安全用电,防止触电事故的发生刻不容缓。

笔者从事施工现场安全管理工作多年,在现场检查发现很多用电设备、设施工作环境很差,经常和水、泥浆打交道,由于维修保养不及时,破损、老化严重,造成用电设备、设施绝缘性能下降,而现场电工对这些用电设备、设施不能定期进行绝缘电阻测试,如果这类用电设备、设施保护装置性能差的话,操作人员工作过程中极容易造成直接触电事故。

因此,良好的绝缘是保证设备和线路正常运转的必要条件,也是防止触电伤亡事故的重要措施。

下面笔者谈一下如何在施工现场对用电设备、设施的绝缘电阻进行测试。

一、测试内容施工现场主要测试电气设备、设施和动力、照明线路的绝缘电阻。

二、测试仪器测试设备或线路的绝缘电阻必须使用兆欧表(摇表),不能用万用表来测试。

兆欧表是一种具有高电压而且使用方便的测试大电阻的指示仪表。

它的刻度尺的单位是兆欧,用ΜΩ表示。

在实际工作中,需根据被测对象来选择不同电压等级和阻值测量范围的仪表。

而兆欧表测量范围的选用原则是:测量范围不能过多超出被测绝缘电阻值,避免产生较大误差。

施工现场上一般是测量500V以下的电气设备或线路的绝缘电阻。

因此大多选用500V,阻值测量范围0----250ΜΩ的兆欧表。

兆欧表有三个接线柱:即L(线路)、E(接地)、G (屏蔽),这三个接线柱按测量对象不同来选用。

三、测试方法1、照明、动力线路绝缘电阻测试方法线路绝缘电阻在测试中可以得到相对相、相对地六组数据。

首先切断电源,分次接好线路,按顺时针方向转动兆欧表的发电机摇把,使发电机转子发出的电压供测量使用。

摇把的转速应由慢至快,待调速器发生滑动时,要保证转速均匀稳定,不要时快时慢,以免测量不准确。

一般兆欧表转速达每分钟120转左右时,发电机就达到额定输出电压。

当发电机转速稳定后,表盘上的指针也稳定下来,这时指针读数即为所测得的绝缘电阻值。

测量电缆的绝缘电阻时,为了消除线芯绝缘层表面漏电所引起的测量误差,其接线方法除了使用“L”和“E”接线柱外,还需用屏蔽接线柱“G”。

将“G”接线柱接至电缆绝缘纸上。

2、电气设备、设施绝缘电阻测试方法首先断开电源,对三相异步电动机定子绕组测三相绕组对外壳(即相对地)及三相绕组之间的绝缘电阻。

摇测三相异步电动机转子绕组测相对相。

测相对地时“E”测试线接电动机外壳,“L”测试线接三相绕组。

即三相绕组对外壳一次摇成;若不合格时则拆开单相分别摇测;测相对相时,应将相间联片取下。

四、绝缘电阻值测试标准1、现场新装的低压线路和大修后的用电设备绝缘电阻应不小于0.5ΜΩ。

2、运行中的线路,要求可降至不小于每伏1000Ω。

3、三相鼠笼异步电动机绝缘电阻不得小于0.5ΜΩ。

4、三相绕线式异步电动机的定子绝缘电阻值热态应大于0.5ΜΩ、冷态应大于2ΜΩ,转子绝缘电阻值热态应大于0.15ΜΩ、冷态应大于0.8ΜΩ。

5、手持电动工具带电零件与外壳之间绝缘电阻值:Ⅰ类手持电动工具应大于2ΜΩ、Ⅱ类手持电动工具应大于7ΜΩ、Ⅲ类手持电动工具应大于1ΜΩ。

6、变压器一、二次绕组之间及对铁芯的绝缘电阻值应大于2ΜΩ。

五、需要进行绝缘电阻值测试的几种情况1、新安装的用电设备投入运行前;2、长期未使用的设备或停用3个月以上再次使用前;3、电机进行大修后或发生故障时;4、移动用电设备(如:磨石机、潜水泵、打夯机、平板振动机、软管振动机等)在现场第一次使用前;5、手持电动工具除了在第一次使用前要测试,以后每隔一段时期定期测试;6、安全隔离变压器(如:行灯变压器)在使用前。

六、绝缘电阻值测试时应注意的问题1、测量电气设备的绝缘电阻时,先切断电源,然后将设备充分放电。

2、仪表应放置在水平位置。

3、兆欧表的测量引线应使用绝缘良好的单根导线,且应充分分开,不得与被测量设备的其它部位接触。

4、测量电容量较大的电机、电缆、变压器及电容器应有一定的充电时间,摇动一分钟后读值,测试完毕后将设备放电。

相关文档
最新文档