周期与奇偶性

周期与奇偶性

第1页,共1页 周期性与奇偶性

2020年7月29日 命题人:胡维乐

1. 下列函数中,是偶函数且在(0,+∞)上为增函数的是( ) A. B. y =?x 2+1 C. D. y =|x +1|

2. 下列函数是奇函数的是( )

A. f(x)=2x +2?x

B. f(x)=x +1

C. f(x)=2x +3x

D. f(x)=x 12 3. 下列函数中,既是奇函数又在定义域上单调递增的是( )

A. y =?x

B. y =x 2

C. y =sinx +1

D. y =x 3

4. 函数f(x)=x 3的图象( )

A. 关于x 轴对称

B. 关于y 轴对称

C. 关于直线y =x 对称

D. 关于原点对称

5. 函数f(x)为奇函数,g(x)为偶函数,且e x =f(x)+g(x),则f(x)=( )

A. e x ?e ?x

2 B. e x +e ?x

2 C. e ?x ?e x

2

D. ?e ?x ?e x 2 6. 已知函数

的最小正周期为π2,则f(π3)=( ) A. ?√32 B. √32 C. 12 D. ?1

2 7. 已知函数f(x)的定义域为R 且满足f(?x)=?f(x),f(x)=f(2?x),若f(1)=4则f(6)+f(7)=( )

A. ?8

B. ?4

C. 0

D. 4

8. 已知函数f(x)是定义域为R 的奇函数且f(x +1)=?f(x),则f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=( )

A. 4

B. 0

C. 3

D. 2

9. 定义在R 上的函数满足f(x)={2?x ,x ≤0f(x ?6),x >0

则f (2019)等于( ) A. 13 B. 18 C. 3 D. 8

10. 已知f (x )是定义在R 上的偶函数,且f (x +3)=f (x ?1),若当x ∈[?2,0]时,f(x)=3?x +1,则f (2021)=( ).

A. 6

B. 4

C. 2

D. 1

11. 函数的最小正周期是( )

A. π

B. 2π

C. 3π

D. 4π

12. 函数f (x )是在R 上的周期为3的奇函数,当0

13. 已知函数f(x)=2sinxcosx +2√3cos 2x ?√3.

(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)当x ∈[?π3,5π

12]时,求f(x)的值域.

函数对称性、周期性和奇偶性规律总结

( 函数对称性、周期性和奇偶性 关岭民中数学组 (一)、同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的对称性) 1、奇偶性:(1) 奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f (2)偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 2、奇偶性的拓展 : 同一函数的对称性 (1)函数的轴对称: 函数)(x f y =关于a x =对称?)()(x a f x a f -=+ > )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 若写成:)()(x b f x a f -=+,则函数)(x f y =关于直线 2 2)()(b a x b x a x +=-++= 对称 证明:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知, )2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点 ),(11y x 与点),2(11y x a -关于x=a 对称。得证。 说明:关于a x =对称要求横坐标之和为2a ,纵坐标相等。 ∵1111(,)(,)a x y a x y +-与 关于x a =对称,∴函数)(x f y =关于a x =对称 ?)()(x a f x a f -=+ ∵1111(,)(2,)x y a x y -与关于x a =对称,∴函数)(x f y =关于a x =对称 ?)2()(x a f x f -= ∵1111(,)(2,)x y a x y -+与关于x a =对称,∴函数)(x f y =关于a x =对称 ?)2()(x a f x f +=- (2)函数的点对称: · 函数)(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-

函数对称性、周期性和奇偶性的规律总结大全-.

函数对称性、周期性和奇偶性的规律总结大全-.

换种说法: )(x f y =与)(x g y =若满足)2()(x a g x f -=,即它们关于a x =对称。 1、 )(x f y =与)(2x f a y -=关于直线a y =对称。 换种说法:)(x f y =与)(x g y =若满足a x g x f 2)()(=+,即它们关于a y =对称。 2、 )2(2)(x a f b y x f y --==与关于点(a,b)对称。 换种说法:)(x f y =与)(x g y =若满足b x a g x f 2)2()(=-+,即它们关于点(a,b)对称。 3、 )(x a f y -=与)(b x y -=关于直线2 b a x +=对称。 4、 函数的轴对称: 定理1:如果函数 ()x f y =满足()()x b f x a f -=+,则函数()x f y =的图象关于直线2 b a x +=对称. 推论1:如果函数()x f y =满足()()x a f x a f -=+,则函数()x f y =的图象关于直线a x =对称. 推论2:如果函数 ()x f y =满足()()x f x f -=,则函数()x f y =的图象关于直线0=x (y 轴)对称.特别地,推论2就是偶函数的定义和性质.它是上述定理1的简化. 5、 函数的点对称: 定理2:如果函数 ()x f y =满足()()b x a f x a f 2=-++,则函数()x f y =的图象关于点()b a ,对 称. 推论3:如果函数()x f y =满足()()0=-++x a f x a f ,则函数()x f y =的图象关于点()0,a 对称. 推论4:如果函数()x f y =满足()()0=-+x f x f ,则函数()x f y =的图象关于原点()0,0对称.特别地,推论4就是奇函数的定义和性质.它是上述定理2的简化. 三、总规律:定义在R上的函数 ()x f y =,在对称性、周期性和奇偶性这三条性质中,只要有两条存在,则第三条一定存在。 四、试题 1.已知定义为R 的函数()x f 满足()()4+-=-x f x f ,且函数()x f 在区间()+∞,2上单调递增.如果212x x <<,且421<+x x ,则()()21x f x f +的值(A ). A .恒小于0 B .恒大于0 C .可能为0 D .可正可负.

《函数的奇偶性与周期性》教案

教学过程 一、课堂导入 我们生活在美的世界中,有过许多对美的感受,请想一下有哪些美? 对于对称美,请想一下哪些事物给过你对称美的感觉呢? 生活中的美引入我们的数学领域中,它又是怎样的情况呢?若给它适当地建立直角坐标系,那么会发现什么特点? 数学中对称的形式也很多,这节课我们就来复习在坐标系中对称的函数

二、复习预习 1、复习单调性的概念 2、复习初中的轴对称和中心对称 3、预习奇偶性的概念 4、预习奇偶性的应用

三、知识讲解 考点1 函数的奇偶性 [探究] 1. 提示:定义域关于原点对称,必要不充分条件. 2.若f(x)是奇函数且在x=0处有定义,是否有f(0)=0?如果是偶函数呢? 提示:如果f(x)是奇函数时,f(0)=-f(0),则f(0)=0;如果f(x)是偶函数时,f(0)不一定为0,如f(x)=x2+1. 3.是否存在既是奇函数又是偶函数的函数?若有,有多少个? 提示:存在,如f(x)=0,定义域是关于原点对称的任意一个数集,这样的函数有无穷多个.

考点2 周期性 (1)周期函数: 对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y =f(x)为周期函数,称T为这个函数的周期. (2)最小正周期: 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.

四、例题精析 【例题1】 【题干】判断下列函数的奇偶性 (1)f(x)=lg 1-x 1+x ;(2)f(x)= ? ? ?x2+x(x>0), x2-x(x<0); (3)f(x)= lg(1-x2) |x2-2|-2 .

对称性、奇偶性和周期性的综合运用

函数的对称性、奇偶性和周期性的综合运用 一.函数的对称性 的图象自身对称 1、轴对称 对于函数f(x)的定义域内任意一个x, 称. . 推论1 . 推论2 . 2、中心对称 对于函数f(x)的定义域内任意一个x, . . . . 小结: 轴对称与中心对称的区别 轴对称:f(a+x)= f(b-x)中,自变量系数互为相反数(内反),函数值相等(差为零);

中心对称:f(a+x)= - f(b-x)+2c中,自变量系数互为相反数(内反),函数值和为定值.(二)两个函数的图象相互对称 1; 特别地,函数y=f(a+x)与y=f(a-x)关于直线x=0(y轴)轴对称; y轴对称; 求对称轴方法:令a+x=b-x,得 2、函数y=f(a+x)+c与y=-f(b-x)+d 特别地,函数y=f(a+x)与y=-f(a-x)关于点(0,0)(原点)中心对称. . 求对称中心方法:横坐标令a+x=b-x,得 二.函数的奇偶性 1. 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x) (f(x) -f(-x)=0),那么 函数f(x)叫做偶函数.偶函数的图象关于y轴(x=0)对称. 推论:若y=f(x+a)为偶函数,则f(x+a)=f(-x+a),即y=f(x)的图像关于直线x=a轴对称. 2. 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x) (f(x) +f(-x)=0),那么 函数f(x)叫做奇函数.奇函数的图象关于原点(0,0)对称. 推论:若y=f(x+a)为奇函数,则f(-x+a)=-f(a+x),即y=f(x) 的图像关于点(a,0)中心对称. 三.函数的周期性 1. 定义:对于定义域内的任意一个,都存在非零常数,使得

对称性和周期性性质总结

函数の对称性和周期性 一、几个重要の结论 (一)函数图象本身の对称性(自身对称) 1、函数 )(x f y =满足 )()(x T f x T f -=+(T 为常数)の充要条件是 )(x f y =の图象关于直线 T x =对称。 2、函数 )(x f y =满足 )2()(x T f x f -=(T 为常数)の充要条件是 )(x f y =の图象关于直线 T x =对称。 3、函数 )(x f y =满足 )()(x b f x a f -=+の充要条件是 )(x f y =图象关于直线 22)()(b a x b x a x +=-++=对称。特殊地,如果a=0,b=0,则其关于x=0即关于y 轴对称,此时)()(x b f x a f -=+变为f(x)=f(-x),其实就是偶函数。 4、如果函数 )(x f y =满足 )()(11x T f x T f -=+且 )()(22x T f x T f -=+,( 1T 和 2T 是不相等の常数),则 )(x f y =是以为 )(212T T -为周期の周期函数。 5、如果偶函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以2T 为周期の周期性函数。 6、如果奇函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以4T 为周期の周期性函数。

我当初の总结是:函数对称包涵两种:一是点对称,而是线对称,比如偶函数属于线对称,奇函数属于点对称,奇偶函数对称都是关于0.即偶函数关于x=0对称,奇函数关于(0,0)对称。那么如果一个函数是双重对称,那么该函数就是周期函数,那么什么叫多重对称呢?且看下面列子你就明白了: 1, 若函数关于两条线x=a 和x=b 对称(这就叫双重对称),那么该函数一定是周 期函数,且周期为2|b-a|。 2, 若函数关于两个点(a,0)和(b,0)(注都是x 轴上の点),那么该函数一定是 周期函数,且周期为2|b-a|。 3, 若函数关于一点(a,0)和一条线x=b 对称,那么该函数一定是周期函数,且 周期为4|b-a|。 就是说同类对称为2倍,异类对称为4倍。 结合上面4,5,6条你还会发现这种双重性质,4条为周期周期为2倍,5条为线(偶函数)周期为2倍。(仅仅这里不符合异类为4倍,我再三确认后没错),6条为点(奇函数)周期为4倍。 (注意:上面指の是一个函数) (二)两个函数の图象对称性(相互对称) 1、曲线 )(x f y =与 )(x f y -=关于X 轴对称。(这是两条不同曲线) 2、曲线 )(x f y =与 )(x f y -=关于Y 轴对称。 3、曲线 )(x f y =与 )2(x a f y -=关于直线 a x =对称。 4、曲线 0),(=y x f 关于直线 b x =对称曲线为 0)2,(=-y b x f 。

函数的奇偶性与周期性练习题

函数的奇偶性与周期性 1.奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (1)=1,则f (8)+f (9)= ( ) A. -2 B.-1 C. 0 D. 1 2.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π +=x y ,④)42tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ 3.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 4.已知()f x 是定义在R 上的奇函数,且是以2为周期的周期函数,若当(]0,1x ∈时 2()1f x x =-,则7()2 f 的值为 A 34- B 34 C 12- D 12 5.下列函数为偶函数的是 A. sin y x = B. 3y x = C. x y e = D. y = 6.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5 ()2f -= (A) -12 (B)1 4- (C)14 (D)12 7.下列函数中,既是偶函数又在()0,+∞单调递增的函数是 (A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= 8.下列函数为偶函数的是() A.()1f x x =- B.()2f x x x =+ C.()22x x f x -=- D.()22x x f x -=+ 9.偶函数y=f(x)的图像关于直线x=2对称,f(3)=3,则f(-1)=_______. 10.函数)4)(()(-+=x a x x f 为偶函数,则实数a = . 11.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g f =+-==则 .

函数对称性、周期性和奇偶性的规律总结大全 .分解

函数对称性、周期性和奇偶性规律 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数 )(x f y =,如果存在一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周 期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==, 即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数 )(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在 )(x f y =上,即) (11x f y =,通过 b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以 1 112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得 证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数 )(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个 y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则 有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数 )(x f y =满足如下关系系,则T x f 2)(的周期为 A 、 )()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+= +或 C 、 )(1)(1)2(x f x f T x f -+=+或) (1) (1)2(x f x f T x f +-=+(等式右边加负号亦成立)

函数奇偶性对称性与周期性有关结论

函数奇偶性对称性与周期性有关结论 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

函数奇偶性、对称性与周期性 奇偶性、对称性和周期性是函数的重要性质,下面总结关于它们的一些重要结论及运用它们解决抽象型函数的有关习题。 一、几个重要的结论 (一)函数)(x f y =图象本身的对称性(自身对称) 2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称。 3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称。 4、)()(x b f x a f -=+ ?)(x f y =的图象关于直线2 2)()(b a x b x a x +=-++=对称。 5、b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称。 6、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称。 7、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称。 8、c x b f x a f 2)()(=-++ ?)(x f y =的图象关于点),2 (c b a +对称。 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称。 2、函数)(x f y =与)2(x a f y -=图象关于直线a x =对称

3、函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称 4、函数)(x a f y +=与)(x b f y -=图象关于直线0)()(=--+x b x a 对称 即直线2a b x -= 对称 5、函数)(x f y =与)(x f y -=图象关于X 轴对称。 6、函数)(x f y =与)(x f y -=图象关于Y 轴对称。 7、函数)(x f y =与)(x f y --=图象关于原点对称 (三)函数的周期性 1、)()(x f T x f =+ ?)(x f y =的周期为T 2、)()(b x b f a x f ++=+ )(b a < ?)(x f y =的周期为a b T -= 3、)()(x f a x f -=+ ?)(x f y =的周期为a T 2= 4、) (1)(x f a x f =+ ?)(x f y =的周期为a T 2= 5、)(1)(x f a x f - =+ ?)(x f y =的周期为a T 2= 6、) (1)(1)(x f x f a x f +-=+ ?)(x f y =的周期为a T 3= 7、 1)(1)(+- =+x f a x f ?)(x f y =的周期为a T 3= 8、) (1)(1)(x f x f a x f -+=+ ?)(x f y =的周期为a T 4=

函数的对称性与周期性

函数的对称性与周期性 一、相关结论 1.关于x 轴、y 轴、原点、x y =对称 2.周期性(内同) ① 若)()(x f T x f =+(0≠T ),则)(x f 为周期函数,T 为一个周期。 ② 若)()(b x f a x f +=+(b a ≠),则)(x f 为周期函数,||a b -为一个周期。 ③ 若)()(x f a x f -=+(0≠a ),则)(x f 为周期函数,a 2为一个周期。 ④ 若) (1 )(x f a x f =+(0≠a ),则)(x f 为周期函数,a 2为一个周期。 3.自对称性(内反) ①若)()(x b f x a f -=+,则)(x f 的图像关于直线2 b a x += 对称;特别地,若)()(x a f x a f -=+,则)(x f 的图像关于直线a x =对称;0=a 为偶函数。 ②若)()(x b f x a f --=+,则)(x f 的图像关于点)0,2 ( b a +对称;特别地,若)()(x a f x a f --=+,则)(x f 的图像关于点)0,(a 对称;0=a 为奇函数。 ③若c x b f x a f =-++)()(,则)(x f 的图像关于点)2 ,2(c b a +对称。 4.互对称性 ①函数)(x a f y +=与函数)(x b f y -=的图像关于直线2a b x -=对称; ②函数)(x a f y +=与函数)(x b f y --=的图像关于点)0,2 (a b -对称; ③函数)(x a f y +=与函数)(x a f y -=的图像关于直线0=x 对称。 5. 对称性与周期性的关系 ①若)(x f 的图像有两条对称轴a x =和b x =(b a ≠),则)(x f 为周期函数, ||2a b -为一个周期。 ②若)(x f 的图像有两个对称中心)0,(a 和)0,(b (b a ≠),则)(x f 为周期函数, ||2a b -为一个周期。 若)(x f 的图像有一条对称轴a x =和一个对称中心)0,(b (b a ≠),则)(x f 为周期函 数,||4a b -为一个周期。

函数对称性、周期性和奇偶性规律总结

函数对称性、周期性和奇偶性规律总结

注:换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=y 对称。 2、()y f x =与()y f x =-关于Y 轴对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以()y f x =-经过点11(,)x y - ∵11(,)x y 与11(,)x y -关于Y 轴对称,∴()y f x =与()y f x =-关于Y 轴对称。 注:因为11(,)x y -代入()y f x =-得111(())()y f x f x =--=所以()y f x =-经过点11(,)x y - 换种说法:)(x f y =与()()y g x f x ==-若满足)()(x g x f -=,即它们关于0=x 对称。 ()(())()g x f x f x -=--= 3、()y f x =与(2)y f a x =-关于直线x a = 对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以(2)y f a x =-经过点11(2,)a x y - ∵11(,)x y 与11(2,)a x y -关于x a =轴对称,∴()y f x =与(2)y f a x =-关 于直线x a = 对称。 注:换种说法:)(x f y =与()(2)y g x f a x ==-若满足)2()(x a g x f -=,即它们关于a x =对称。 4、)(x f y =与)(2x f a y -=关于直线a y =对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以)(2x f a y -=经过点11(,2)x a y - ∵11(,)x y 与11(,2)x a y -关于y a =轴对称,∴)(x f y =与)(2x f a y -=关于直线a y =对称. 注:换种说法:)(x f y =与()2()y g x a f x ==-若满足a x g x f 2)()(=+,即它们关于a y =对称。 5、)2(2)(x a f b y x f y --==与关于点(a,b)对称。 证明:设()y f x =上任一点为11(,)x y 则11()y f x =,所以2(2)y b f a x =--经过点11(2,2)a x b y --

奇偶性,周期性

函数的性质(奇偶性、单调性、周期性、对称性) “定义域优先”的思想是研究函数的前提,在求值域、奇偶性、单调性、周期性、换元时易忽略定义域,所以必须先考虑函数的定义域,离开函数的定义域去研究函数的性质没有任何意义。 1. 奇偶性 f(-x)与f(x)之间的关系:①f(-x)=f(x)为偶函数;f(-x)=-f(x)为奇函数; ②f(-x)-f(x)=0为偶;f(x)+f(-x)=0为奇; ③f(-x)÷f(x)=1是偶;f(x)÷f(-x)=-1为奇函数. (1)若定义域关于原点对称 (2)若定义域不关于原点对称 非奇非偶 例如:3 x y =在)1,1[-上不是奇函数 常用性质: 1.0)(=x f 是既奇又偶函数; 2.奇函数若在0=x 处有定义,则必有0)0(=f ; 3.偶函数满足) ()()(x f x f x f =-=; 4.奇函数图象关于原点对称,偶函数图象关于y 轴对称; 5.0)(=x f 除外的所有函数的奇偶性满足: (1)奇函数±奇函数=奇函数 偶函数±偶函数=偶函数 奇函数±偶函数=非奇非偶 (2) 奇函数×奇函数=偶函数 偶函数×偶函数=偶函数 奇函数×偶函数=奇函数 6.任何函数)(x f 可以写成一个奇函数 2) ()()(x f x f x --= ?和一个偶函数 2) ()()(x f x f x -+= ψ的和。 2. 单调性 定义:函数定义域为A ,区间,若对任意 且 ① 总有 则称 在区间M 上单调递增 ② 总有则称在区间M 上单调递减 应用:(一)常用定义法来证明一个函数的单调性 一般步骤:(1)设值(2)作差(3)变形(4)定号(5)结论 (二) 求函数的单调区间 定义法、图象法、复合函数法、导数法(以后学) 注:常用结论 (1) 奇函数在对称区间上的单调性相同 (2) 偶函数在对称区间上的单调性相反 (3) 复合函数单调性-------同增异减

(完整版)函数的周期性与对称性总结

一:有关周期性的讨论 在已知条件()()f a x f b x +=-或 ()()f x a f x b +=-中, (1) 等式两端的两自变量部分相加得常数,如()()a x b x a b ++-=+,说明f x ()的图像具有对称性,其对称轴为2 b a x +=。 (2)等式两端的两自变量部分相减得常数,如()()x a x b a b +--=+,说明 f (x )的图像具有周期性,其周期T=a +b 。 设a 为非零常数,若对于)(x f 定义域内的任意x 恒有下列条件之一成立 周期性规律 对称性规律 (1))()(a x f a x f +=- a T 2=? (1))()(x a f x a f -=+ a x =? (2))()(a x f x f += a T =? (2))()(x b f x a f -=+ 2 b a x += ? (3))()(x f a x f -=+ a T 2=? (3) )()(x b f x a f +=- 2b a x +=? (4))(1)(x f a x f =+ a T 2=? (4) )()(x b f x a f --=+ 中心点)0,2 (b a +? (5))(1)(x f a x f - =+ a T 2=? (5) )()(x a f x a f --=+ 为对称中心点)0,(a ? (6)1 )(1)()(-+=+x f x f a x f a T 2=? (7) 1()()1() f x f x a f x -+=+ a T 2=? (8) 1()()1()f x f x a f x -+=- + a T 4=? (9) ) (1)(1)(x f x f a x f -+=+ a T 4=? (10) )()()(a x f a x f x f ++-=, 0>a a T 6=?

奇偶性周期性

§2.3 函数的奇偶性与周期性 知识梳理: 1.奇、偶函数的概念 2.奇、偶函数的图象特征 3.具有奇偶性函数的定义域的特点 4.周期函数的概念 (1)周期、周期函数 (2)最小正周期 5.函数奇偶性与单调性之间的关系 (1)若函数f (x )为奇函数,在[a ,b ]上为增(减)函数,则f (x )在[-b ,-a ]上应为 ; (2)若函数f (x )为偶函数,在[a ,b ]上为增(减)函数,则f (x )在[-b ,-a ]上应为 . 6.奇、偶函数和与积的奇偶性的判定 基础自测: (2013·广东)定义域为R 的四个函数y =x 3, y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是( ) A .4 B .3 C .2 D .1 (2013·山东)已知函数f (x )为奇函数,且当 x >0时,f (x )=x 2+1 x ,则f (-1)=( ) A .-2 B .0 C .1 D .2 (2014·湖南)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=( ) A .-3 B .-1 C .1 D .3 (2014·四川)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )= ? ????-4x 2 +2,-1≤x <0,x ,0≤x <1, 则f ????32=________ . (2014·湖南)若f (x )=ln (e 3x +1)+ax 是偶函数,则a =________. 例题分析: 判断下列函数的奇偶性: (1)f (x )=(x +1)1-x 1+x ; (2)f (x )=? ????-x 2+2x +1,x >0, x 2+2x -1,x <0; (3)f (x )=4-x 2 x ; (4)f (x )=x 2-1+1-x 2; (5)f (x )=log a (x +x 2+1)(a >0且a ≠1). 判断下列函数的奇偶性: (1)f (x )=lg (4-x 2) |x -2|+|x +4|; (2)f (x )=? ????x 2+x ,x <0, -x 2+x ,x >0. 已知函数f (x )满足f (x )·f (x +2)=13. (1)求证:f (x )是周期函数; (2)若f (1)=2,求f (99)的值; (3)若当x ∈[0,2]时,f (x )=x ,试求x ∈[4,8]时函数f (x )的解析式. 已知函数f (x ),x ∈R 的图象关于y 轴对称, 且当x ∈[0,1]时,f (x )=x 2,同时f (x +2)= f (x ),求f (x ). 设定义在[-2,2]上的偶函数f (x )在区间 [0,2]上单调递减,若f (1-m )<f (m ),则实数m 的取值范围是________________. 已知定义域为(-1,1)的奇函数f (x ),在 (-1,1)上又是减函数,且满足f (2x -1)+f ???? 13<0,则x 的取值范围为______________. (2014·安徽)若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=?? ???x (1-x ),0≤x ≤1, sinπx ,1<x ≤2, 则f ????294+f ????416=________. (2014·石家庄一模)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3 a +1, 则实数a 的取值范围为( ) A .(-1,4) B .(-2,1) C .(-1,0) D .(-1,2) 作业: 1.(2014·广东)下列函数为奇函数的是( ) A .2x -1 2 x B .x 3sin x C .2cos x +1 D .x 2+2x 2.(2014·新课标Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结

函数的单调性奇偶性和周期性和对称性之间的关系

函 数 的 对 称 性 一个函数的自对称 定义1、定义域为R 的函数()f x ,若满足()()f a x f a x +=-或是(2)()f a x f x -=,图像特征函数自身关于x a =对称。就是该函数的对称轴是x a =。 定义2、定义域为R 的函数()f x ,若满足()()f a x f a x +=--或是(2)()f a x f x -=-,图像特征函数自身关于点(,0)a 对称。就是该函数的对称点是(,0)a 。 定义3、定义域为R 的函数()f x ,若满足()()f a x f b x +=-,图像特征函数自身关于2a b x += 对称。就是该函数的对称轴是2 a b x +=。 定义2、定义域为R 的函数()f x ,若满足()()f a x f b x +=--,图像特征函数自身关于点( ,0)2a b +对称。就是该函数的对称点是(,0)2 a b +。 还可以推广为()()f a x m f b x +=-- 含义:函数()f x 关于( ,)22a b m +这个点对称。 周期性:若()f x 对于定义域中的任意x 均有()()f x T f x +=,则()f x 是周期函数. 它的变形有: (1)f(x-1)=f(x+1) (2)f(x+2)=-f(x);(3)f(x+2)=1() f x - (4)f(x+3) +f(x)=1 (5)f(x+1)=) (11)(x f x f -+ 特征是x 的符号相同。 习 题 1、已知()f x 是R 上的偶函数,且f(-x-1)=f(-x+1) 当[0,1]x ∈时,()1f x x =-+,求当[5,7]x ∈时,()f x 的解析式。 2、定义域为R 的()f x 既是奇函数又是周期函数,T 是它的一个周期.问:区间[,]T T -上它有几个根?(财富:奇函数的半周期也是0点) 3、定义在R 上的偶函数()f x 以3为周期,且(2)0f =,则方程()0f x =在区间(0,6) 上有几个根? 4、()f x 是R 上的偶函数,若将()f x 的图象向右平移一个单位又得到一个奇函数,且(2)1f =-,求(1)(2)(3)(2008)f f f f ++++L 的值. 5、定义在R 上的函数()f x 满足5()()02 f x f x ++=且5 ()4 f x +为奇函数,下列结论谁正确? ①函数()f x 的最小正周期是52;②函数()f x 的图象关于点(5,04)对称;③函数()f x 的图象关于52 x =对称;④函数()f x 的最大值为5()2f . 6、函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( )(A) ()f x 是偶函数; (B) ()f x 是奇函数 (C) ()(2)f x f x =+ ; (D) (3)f x +是奇函数 例4举例子,构造新函数,用定义,平移,伸缩处理四道抽象函数题。 (1)f(x)是奇函数,则有f(-x+a)= f(x+a)是奇函数,则f(-x+a)= (2)函数f(x-1)是偶函数,求y=f(x)的对称轴。

(完整版)常见函数对称性和周期性

(一)函数)(x f y =图象本身的对称性(自身对称) 若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。 推论1:)()(x a f x a f -=+ ?)(x f y =的图象关于直线a x =对称 推论2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称 推论3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称 推论1、b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称 推论3、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称 2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数 3、函数)(x f y =与()y f x =-图象关于X 轴对称 4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称 推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称 推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称 推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称

函数的奇偶性与周期性

函数的奇偶性与周期性 1.函数的奇偶性 2.(1)周期函数 对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期 如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)若f (x )是定义在R 上的奇函数,则f (-x )+f (x )=0.(√) (2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×) (3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.(√) (4)定义域关于原点对称是函数具有奇偶性的一个必要条件.(√) (5)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.(√) (6)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.(√) (7)函数f (x )=0,x ∈(0,+∞)既是奇函数又是偶函数.(×) (8)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.(√) (9)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.(√) (10)若某函数的图象关于y 轴对称,则该函数为偶函数;若某函数的图象关于(0,0)对称,则该函数为奇函数.(√) 考点一 判断函数的奇偶性

函数的奇偶性与周期性

函数的奇偶性与周期性 考点梳理 一、函数的奇偶性 (探究:奇、偶函数的定义域有何特点?若函数f(x)具有奇偶性,则f(x)的定义域关于原点对称,反之,若函数的定义域不关于原点对称,则函数无奇偶性。) 二、奇、偶函数的性质 1、奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上单调性相反。 2、在公共定义域内, (1)两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数。(2)两个偶函数的和函数、积函数是偶函数。 (3)一个奇函数,一个偶函数的积函数是奇函数。 3、若f(x)是奇函数且在x=0处有定义,则f(0)=0。 (探究:若f(x)是偶函数且在x=0处有定义,是否有f(x)=0?不一定,

如f(x)= 21x +,而f(0)=1。) 三、函数的周期性 一般的,对于函数f(x),如果存在一个非零常数T ,使得当x 取定义域的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期。 对于一个周期函数f(x),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期。 (探究:若偶函数f(x)满足对任意的x R ∈,都有f(2+x)=f(-x),那么函数f(x)是周期函数吗? 是周期函数,()()(),(2)() (2)(),()=2f x f x f x f x f x f x f x f x T ∴-=+=-∴ += 是偶函数, 又所以是以为周期的函数) 例题解析 要点1:函数奇偶性的判定 判断函数奇偶性的一般方法 (1)首先确定函数的定义域,看其是否关于原点对称,否则,既不是奇函数也不是偶函数。 (2)若定义域关于原点对称,则可用下述方法进行判断: ①定义判断: ()()()()-()()f x f x f x f x f x f x -=?-=?为偶函数, 为奇函数。 ②等价形式判断:

函数的周期性和对称性(解析版)

专题二:函数的周期性和对称性 【高考地位】 函数的周期性和对称性是函数的两个基本性质。在高中数学中,研究一个函数,首看定义域、值域,然后就要研究对称性(中心对称、轴对称),并且在高考中也经常考查函数的对称性和周期性,以及它们之间的联系。因此,我们应该掌握一些简单常见的几类函数的周期性与对称性的基本方法。 【方法点评】 一、函数的周期性求法 使用情景:几类特殊函数类型 解题模板:第一步 合理利用已知函数关系并进行适当地变形; 第二步 准确求出函数的周期性; 第三步 运用函数的周期性求解实际问题. 例1 (1) 函数)(x f 对于任意实数x 满足条件) (1 )2(x f x f = +,若5)1(-=f ,则=))5((f f ( ) A .5- B .5 C .51 D .5 1- 【答案】D 考点:函数的周期性. (2) 已知()x f 在R 上是奇函数,且满足()()x f x f -=+5,当()5,0∈x 时,()x x x f -=2 ,则()=2016f ( ) A 、-12 B 、-16 C 、-20 D 、0 【答案】A 试题分析:因为()()5f x f x +=-,所以()()()105f x f x f x +=-+=,()f x 的周期为10,因此 ()()()()20164416412f f f =-=-=--=-,故选A . 考点:1、函数的奇偶性;2、函数的解析式及单调性. 【点评】(1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值.(2)求函数周期的方法 【变式演练1】已知定义在R 上的函数()f x 满足()()f x f x -=-,(3)()f x f x -=,则(2019)f =( ) A .3- B .0 C .1 D .3 【答案】B

有关周期性与对称性的常见结论

有关周期性的常见结论:),0(b a a ≠≠ 1、 若)(x f 对定义域内的任意x 都有)()(x f a x f -=+,则a T 2=; 2、 若)(x f 对定义域内的任意x 都有) (1)(x f a x f =+,则a T 2=; 3、 若)(x f 对定义域内的任意x 都有)(1)(x f a x f - =+,则a T 2=; 4、 若)(x f 对定义域内的任意x 都有) (1)(1)(x f x f a x f +-=+,则a T 2=; 5、 若)(x f 对定义域内的任意x 都有)(1)(1)(x f x f a x f -+= +,则a T 4=; 6、 若)(x f 的图象关于a x =对称,且关于b x =对称,则||2b a T -=; 7、 若)(x f 的图象关于)0,(a 对称,且关于b x =对称,则||4b a T -=; 8、 若)(x f 的图象关于)0,(a 对称,且关于)0,(b 对称,则||2b a T -=; 有关对称性的常见结论: 1、 若)(x f 对定义域内的任意x 都有)()(x a f x a f -=+,则)(x f 的图象关于直线a x =对称; 2、 若)(x f 对定义域内的任意x 都有)()(x a f x f -=,则)(x f 的图象关于直线2 a x = 对称; 3、 若)(x f 对定义域内的任意x 都有)()(x b f x a f -=+,则)(x f 的图象关于直线2b a x +=对称; 4、 若)(x f 对定义域内的任意x 都有0)()(=-++x a f x a f ,则)(x f 的图象关于点)0,(a 对称; 5、 若)(x f 对定义域内的任意x 都有0)()(=-++x b f x a f ,则)(x f 的图象关于点)0,2 ( b a +对称; 6、 若)(x f 对定义域内的任意x 都有 c x b f x a f =-++)()(,则)(x f 的图象关于点)2,2(c b a +对称;

相关文档
最新文档