一年级奥数之算式谜

合集下载

小学数学《算式谜(第一课时)》ppt

小学数学《算式谜(第一课时)》ppt

【规律小结】
1.在算式谜中,常用替换的方法使算式中的符号变统一,从而解开算式 谜。
2.解决竖式算式谜问题:除了用已知条件按一定次序(即分步)来求解 外,在分析中常应用“分枝”(或“分类”)讨论法。分枝讨论法、排除法 是解较难的数字问题的常用方法之一。
3.解算式谜,找到解题的突破口是关键。一般是从某个数的首位或末位 数字上寻找突破口。
【规律小结】
推理时应注意: (1)算式谜中的文字、字母或其它符
号,只取0~9中的某个数字;必要时应采 用枚举和试验法,逐步淘汰掉那些不符合 题意的数字。
(2)算式谜解出之后,不要忘了验算 一遍。
再见
ቤተ መጻሕፍቲ ባይዱ
算式谜
1、一加一不是二。(打一字) 谜底是:“王”。
2、七六五四三二一。(打一数学名词) 谜底是:“倒数”。
3、八分之七。(打一成语) 谜底是:“七上八下”。
【知识要点】
算式谜是指那些含有未知数字或未知运算符 号的算式。
这种不完整的算式,就像“谜”一样,要解开(“猜 出”)这样的谜,就得根据有关的运算法则、数的性质 (和、差、积、商的位数、尾数规律等)来进行正确的 推理、判断。
【思路点拨】
余下的“÷、+”只能用在(2)式 中,因为(2)式的右边□中要求填整 数,经过试算,27÷3=9,9+6=15, 所以第一个 内填“÷”,第二个 内 填“+”号。□中填15。即: 27÷3+6=15
解答:
【变式题2】
在下式的□中填入合适的数字,并要 求等式中没有重复的数字:
756=□×□□□。
解答:根据上面的分析:▲=12,☆=24
【变式题1】
已知△+●=218,(△+●+■)÷2= 114,那么■是几?

(小学奥数)乘除法数字谜(二)

(小学奥数)乘除法数字谜(二)

5-1-2-3.乘除法數字謎(二)教學目標數字謎是杯賽中非常重要的一塊,特別是迎春杯,數字謎是必考的,一般學生在做數字謎的時候都採用嘗試的方式,但是這樣會在考試中浪費很多時間.本模組主要講乘除豎式數字謎的解題方法,學會通過找突破口來解決問題.最後通過例題的學習,總結解數字謎問題的關鍵是找到合適的解題突破口.在確定各數位上的數字時,首先要對填寫的數字進行估算,這樣可以縮小取值範圍,然後再逐一檢驗,去掉不符合題意的取值,直到取得正確的解答.知識點撥1.數字謎定義:一般是指那些含有未知數字或未知運算符號的算式.2.數字謎突破口:這種不完整的算式,就像“謎”一樣,要解開這樣的謎,就得根據有關的運算法則,數的性質(和差積商的位數,數的整除性,奇偶性,尾數規律等)來進行正確的推理,判斷.3.解數字謎:一般是從某個數的首位或末位數字上尋找突破口.推理時應注意:⑴數字謎中的文字,字母或其他符號,只取0~9中的某個數字;⑵要認真分析算式中所包含的數量關係,找出盡可能多的隱蔽條件;⑶必要時應採用枚舉和篩選相結合的方法(試驗法),逐步淘汰掉那些不符合題意的數字;⑷數字謎解出之後,最好驗算一遍.模組一、與數論結合的數字謎(1)、特殊數字【例 1】 如圖,不同的漢字代表不同的數字,其中“變”為1,3,5,7,9,11,13這七個數的平均數,那麼“學習改變命運”代表的多位數是 .1999998⨯学习改变命运变【考點】與數論結合的數字謎之特殊數字 【難度】2星 【題型】填空【關鍵字】學而思杯,4年級,第9題【解析】 “變”就是7,19999987285714÷=【答案】285714【例 2】 右邊是一個六位乘以一個一位數的算式,不同的漢字表示不同的數,相同的漢字表示相同的數,其中的六位數是______ 。

杯小9望99999×赛赛希学【考點】與數論結合的數字謎之特殊數字 【難度】3星 【題型】填空【關鍵字】希望杯,4年級,初賽,20題【解析】 賽×賽的個位是9,賽=3或7,賽=3,小學希望杯賽=333333,不合題意,舍去;故賽=7,小學希望杯賽=999999÷7=142857【答案】142857【例 3】 右面算式中相同的字母代表相同的數字,不同的字母代表不同的數字,問A 和E 各代表什麼數字?E AE D E E E E E ×3C B【考點】與數論結合的數字謎之特殊數字 【難度】3星 【題型】填空例題精講【解析】 由於被乘數的最高位數字與乘數相同,且乘積為EEEEEE ,是重複數字根據重複數字的特點拆分, 將其分解質因數後為:=37111337EEEEEE E ⨯⨯⨯⨯⨯,所以3A =或者是7A =①若A =3,因為3×3=9,則E =1,而個位上1×3=3≠1,因此,A≠3。

小学奥数 加减法数字谜 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  加减法数字谜 精选练习例题 含答案解析(附知识点拨及考点)

数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。

横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。

主要涉及小数、分数、循环小数的数字谜问题,因此,会需要利用数论的知识解决数字谜问题一、数字迷加减法1.个位数字分析法2.加减法中的进位与退位3.奇偶性分析法二、数字谜问题解题技巧1.解题的突破口多在于竖式或横式中的特殊之处,例如首位、个位以及位数的差异;2.要根据不同的情况逐步缩小范围,并进行适当的估算;3.题目中涉及多个字母或汉字时,要注意用不同符号表示不同数字这一条件来排除若干可能性;4.注意结合进位及退位来考虑;模块一、加法数字谜【例 1】 “华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?0191杯华24+例题精讲知识点拨教学目标5-1-2-1.加减法数字谜【考点】加法数字谜 【难度】1星 【题型】填空 【关键词】华杯赛,初赛,第1题【解析】 由0+“杯”=4,知“杯”代表4(不进位加法);再由191+“华”=200,知“华”代表9.因此,“华杯”代表的两位数是94.【答案】94【例 2】 下面的算式里,四个小纸片各盖住了一个数字。

被盖住的四个数字的总和是多少?1+49【考点】加法数字谜 【难度】2星 【题型】填空 【关键词】华杯赛,初赛,第5题【解析】 149的个位数是9,说明两个个位数相加没有进位,因此,9是两个个位数的和,14是两个十位数的和。

于是,四个数字的总和是14+9=23。

【答案】23【例 3】 在下边的算式中,被加数的数字和是和数的数字和的三倍。

问:被加数至少是多少?【考点】加法数字谜 【难度】3星 【题型】填空 【关键词】第四届,华杯赛,初赛,第2题【解析】 从“被加数的数字和是和的数字和的三倍”这句话,可以推断出两点:①被加数可以被3整除。

一年级数字谜游戏通用版(奥数拓展+测试)

一年级数字谜游戏通用版(奥数拓展+测试)

数字谜游戏(方格类)我们一起的目标:1.培养数字敏感度2.观察能力3.逻辑推理能力4.多角度分析能力5.细心能力解题方法:(针对方格类数字谜)1.数的唯一性:是指每行、每列以及每个粗线框内各个数字只出现一次。

适用于:只要求数字不重复。

额外补充:如果方格内数字比较多,就用从数字较多的地方入手。

2.区域分析:对粗线框中的运算关系进行分析,得出粗框中的数字。

适用于:不仅要求数字不重复,而且要求满足粗线框中的运算关系。

3.先乘除,后加减:是指既包括加减法算式,又包括乘除法算式的方格类数字谜。

适用于:既包括加减法算式,又包括乘除法算式的方格类数字谜。

例1、填入1~4的数字,使每行每列每个区域内的四个数字不重复。

知识本源典型例题【练习1.1】填入1~4的数字,使每行、每列、每个区域内的四个数字不重复。

问第一行所填的四个数按照从左到右的顺序组成的一个四位数是_________.【练习1.2】把1、2、3、4分别填入图中,使每行每列及每个角上的2×2方格中恰好都有数字1、2、3、4.图中已有四个数字.问第二行所填的四个数字按从左到右的顺序组成的四位数是________.例2、如右图,在25个1×1的空格内填入数字,使每行、每列以及每个粗线框中的数字为1、2、3、4、5,且不重复,那么五角星所在空格内的数字是多少?【练习2.1】填1~4,使每行、每列、每个区域内的四个数字不能重复。

问第三列所填的四个数,按照从上到下组成的一个四位数是_______.【练习2.2】在下面的方格中每行每列都有1~4这四个数,并且每行每列都只出现一次,问☆应该是________?例3、如下图,在6×6的空格内填入数字1~6,使每行、每列、每个标有粗线的2×3区域内的六个数字都不能重复。

问第三行六个数组成的六位数是多少?【练习3.1】如下图,在6×6的空格内填入数字1~6,使每行、每列、每个标有粗线的2×3区域内的六个数字都不能重复。

(小学奥数)算式谜(一)

(小学奥数)算式谜(一)

5-1-1-1.算式謎(一)教學目標數字謎從形式上可以分為橫式數字謎與豎式數字謎,從運算法則上可以分為加減乘除四種形式的數字謎。

橫式與豎式亦可以互相轉換,本講中將主要介紹數字謎的一般解題技巧。

主要橫式數字謎問題,因此,會需要利用數論的簡單奇偶性等知識解決數字謎問題。

知識點撥一、基本概念填算符:指在一些數之間的適當地方填上適當的運算符號(包括括弧),從而使這些數和運算符號構成的算式成為一個等式。

算符:指+、-、×、÷、()、[]、{}。

二、解決巧填算符的基本方法(1)湊數法:根據所給的數,湊出一個與結果比較接近的數,再對算式中剩下的數字作適當的增加或減少,從而使等式成立。

(2)逆推法:常是從算式的最後一個數字開始,逐步向前推想,從而得到等式。

三、奇數和偶數的簡單性質(一)定義:整數可以分為奇數和偶數兩類(1)我們把1,3,5,7,9和個位數字是1,3,5,7,9的數叫奇數.(2)把0,2,4,6,8和個位數是0,2,4,6,8的數叫偶數.(二)性質:①奇數≠偶數.②整數的加法有以下性質:奇數+奇數=偶數;奇數+偶數=奇數;偶數+偶數=偶數.③整數的減法有以下性質:奇數-奇數=偶數;奇數-偶數=奇數;偶數-奇數=奇數;偶數-偶數=偶數.④整數的乘法有以下性質:奇數×奇數=奇數;奇數×偶數=偶數;偶數×偶數=偶數.例題精講模組一、巧填算符(一)巧填加減運算符號【例1】在下面算式適當的地方添上加號,使算式成立。

88888888=1000【考點】巧填算符之湊數法【難度】3星【題型】填空【解析】要在八個8之間只添加號,使和為1000,可先考慮在加數中湊出一個較接近1000的數,它可以是888,而888+88=976,此時,用去了五個8,剩下的三個8應湊成1000-976=24,這只要三者相加就行了。

本題的答案是:888+88+8+8+8=1000【答案】888+88+8+8+8=1000【例2】在等號左邊9個數字之間填寫6個加號或減號組成等式:1 2 3 4 56 7 8 9=101【考點】巧填算符之湊數法【難度】3星【題型】填空【關鍵字】迎春杯,中年級,初賽,第2題【解析】(不唯一)123456789101++++-+=或123456789101-+-+++=【答案】123456789101++++-+=或123456789101-+-+++=【例3】在下面的□中填入“+”、“一”,使算式成立:1110987654210=□□□□□□□□3□□【考點】巧填算符之湊數法【難度】3星【題型】填空【關鍵字】希望杯,4年級,初賽,5題【解析】11+10+9-8-7-6-5-4+3-2-1=0.(答案不唯一)【答案】11+10+9-8-7-6-5-4+3-2-1=0.(答案不唯一)【巩固】在下面的□中填入“+”、“一”,使算式成立:11109876321=□□□□□□5□4□□【考點】巧填算符之湊數法【難度】3星【題型】填空【關鍵字】希望杯,六年級,初賽,第2題,6分【解析】11+10+9……3+2=65,所以只要將其中和為32的幾項的加號改成減號即11-10-9-8+7+6-5+4+3+2=1【答案】11-10-9-8+7+6-5+4+3+2=1【例4】在下面算式中合適的地方,只添兩個加號和兩個減號使等式成立。

9 小学奥数——算式谜 试题及解析

9 小学奥数——算式谜 试题及解析

小学奥数——算式谜一.选择题(共49小题)1.“凑24点”游戏规则是:从一副扑克牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24,每张牌必须用一次且只能用一次,并不能用几张牌组成一个多位数,如抽出的牌是3、8、8、9,那么算式为(98)83-÷⨯等,在下面4个选项中,唯一-⨯⨯或(988)3无法凑出24点的是()A.1、2、3、3B.1、5、5、5C.2、2、2、2D.3、3、3、32.在下面的每个方框中填入“+”或“-”,得到所有不同计算结果的总和是()25□9□7□5□3□1.A.540B.600C.630D.6503.将6、7、8、9填入右边算式的方格中:“□⨯□+□□”那么这个算式的结果最大为()A.152B.145C.140D.1544.在5()4()6()3的括号中.选用+、-、⨯、÷符号填入(每个符号只用一次),能得到的最大结果是()A.17B.19C.23D.265.在10口10口10口10口10的四个口中填入“+”“-”“⨯”“÷”运算符号各一个,所成的算式的最大值是()A.104B.109C.114D.1196.在下面乘法竖式的每个方格中填入一个非零数字,使算式成立.那么,乘积的最大值等于()A.6292B.6384C.6496D.66887.在下列算式中加一括号后,算式的最大值是()⨯+÷-.791232A.75B.147C.89D.908.某校买来36套单座课桌椅,不料发票给墨水弄污了,单价只剩下两个数字:□23.□□元,总价只剩下四个数字:4□44.2□元,那么总价应是()元.A.4944.24B.4444.20C.4544.28D.4644.209.在下边的乘法算式中,“二”、“月”、“四”、“日”、“数”、“学”、“科”、“普”、“节”分别表示1~9中的不同数字,且“二”2=,如果四位数“二月四日”的22倍=,“四”4等于五位数“数学科普节”,那么,“数”+“学”+“科”+“普”+“节”的和等于()A.12B.15C.16D.2710.如果一个整数,与1,2,3这三个数,通过加减乘除运算(可以添加括号)组成算式,结果等于24,那么这个整数称为可用的,那么,在4,5,6,7,8,9,10这七个数中,可用的整数有()个.A.7B.6C.5D.411.已知□□□+□□□1199=,那么6个□中的6个数字之和是()A.30B.29C.28D.2012.下面的算式中,同一个汉字代表同一个数字,不同的汉字代表不同的数字.团团⨯圆圆=大熊猫,则“大熊猫”代表的三位数是()A.123B.968C.258D.23613.在下面的五组数中:①4,4,4,4;②5,5,5,5;③6,6,6,6;④7,7,7,7;⑤9,9,9,9.通过添上合适的运算符号(+、-、⨯、)÷,使计算结果等于24,那么满足条件的组数是()A.1B.2C.3D.4E.514.3☆86⨯是一道三位数乘一位数的算式,那么下面三个数中()可能是它的得数.A.2028B.1508C.196415.若两个三位数的和为□□□+□□□1949=,那么6个□中的数字之和是()A.14B.23C.32D.4116.用四则运算符号+、-、⨯、÷(每种可用多次,也可不用),括号(如果需要的话)及四个数3、4、6、10组成算式,使最后得数为24.算式为()A.(1046)324+-⨯= B.4631024+÷⨯=C.3641024⨯-+= D.以上都可以17.如果???÷的商用数字来表示是()⨯+⨯+⨯+⨯=,那么??+-=⨯,?A.8B.4C.618.金鸡唱响圆中国梦⨯□=中中中中中中中中中上面的横式中不同的汉字代表不同的数字,□代表某个一位数.那么,“中”字所代表的数字是()A.3B.5C.7D.919.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是()A.2986B.2858C.2672D.275420.加法算式中,七个方格中的数字和等于()A.51B.56C.49D.4821.如图所示竖式成立时的除数与商的和为()A.589B.653C.723D.73322.如图竖式成立时除数与商的和为()A.289B.351C.723D.113423.如图的两个竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么ABCD所代表的四位数是()A.5240B.3624C.7362D.756424.如图算式的有()种不同的情况.A.2B.3C.4D.525.如图所示,将乘法竖式补充完整后,两个乘数的差是()A.564B.574C.664D.67426.下面的除法算式给出了部分数字,请将其补充完整.当商最大时,被除数是()A.21944B.21996C.24054D.2411127.在竖式中填入适当的数字,使竖式成立,那么第一个竖式的和(也就是第二个竖式的被减数)是()A.1000B.1001C.1002D.100328.在图所示的算式中,每个字母代表一个非零数字,不同的字母代表不同的数字,则和的最小值是()A.369B.396C.459D.54929.在右面的加法算式中,每个汉字代表一个非零数字,不同的汉字代表不同的数字.当算式成立吋,贺+新+春(=)A.24B.22C.20D.1830.在如图所示的两位数的加法运算式中,已知22A B C D +++=,则(X Y += )A.2B.4C.7D.1331.在下面竖式乘法中,*代表任何数字(不必相同),而P 代表某个数字,要使竖式成立,则P 可能为下列选项中的( )A.7B.6C.5D.9E.832.a 、b 、c 、d 表示09-中不同的四个整数,如果它们满足下面的整式,那么(acac bcc bc ++= )A.2017B.2016C.2015D.201433.如图6个空格中分别放有1、2、3、4、5、6六个数,并且要使计算结果正确.如果每个数字只能使用一次,带问号的空格中的数是( )A.2B.3C.4D.5E.634.图中表示三个3位数相加.三位数各位数上的数字不重复地使用了1~9中的数字.这一加法算式不可能得到下列答案中的( )A.1500B.1503C.1512D.153935.如图乘法竖式中P、Q及R分别代表不同的数字.则P、Q及R的和等于()A.16B.14C.13D.12E.1036.不同字母表示不同的数字,关于下面四进制的加法运算,描述正确的有()A.字母A的值是2B.字母B的值是3C.字母C的值是2D.字母D的值是037.如图,这个乘式中,PQRS是一个四位数,且P、Q、R及S分别为不同的数码.下列叙述不正确的是()A.PQRS是9的倍数B.1P=C.0Q= D.7R=E.9S=38.在如图的算式中,每个汉字代表0至9中的一个数字,不同汉字代表不同的数字.当算式成立时,“好”字代表的数字是()A.1B.2C.4D.639.如图,在55⨯的空格内填入数字,使每行、每列及每个粗线框中的数字为1,2,3,4,5,且不重复.那么五角星所在的空格内的数字是()A.1B.2C.3D.440.将1、2、3、4、5、6、7、8这8个数字分别填入图中的八个“〇”内(每个数字只用一次),如果两个大圆圈上五个“〇”内的数字之和都是22,那么A、B两个“〇”内不可能填()A.1和7B.4和8C.3和5D.2和641.下列算式中,乘积的千位数是()A.0B.1C.3D.742.在下面的乘法算式中“骐骐⨯骥骥=奇奇迹迹”,不同的汉字代表不同的数字,相同的汉字代表相同的数字,汉字“奇迹”表示的数是?()A.38B.83C.64D.5443.在如图所示的竖式里,四张小纸片各盖住了一个数字.被盖住的4个数字的总和是()A.14B.24C.23D.2544.如图所示的算式中,如果七个方格中的数字互不相同,那么和的最大值是( )A.153B.176C.183D.19645.在如图的33⨯的各格中每行每列都包含1、2、3三个数,则(A B += )A.1B.3C.4D.5 .6E46.将1到8这8个自然数分别填入如图数阵中的8个圆圈,使得数阵中各条直线上的三个数之和都相等,那么A 和B 两个圆圈中所填的数之和最大是( )A.8B.10C.12D.1447.在竖式中有若干个数字被遮盖住了,则竖式被遮盖住的几个数字的和为( )A.33B.34C.35D.3648.将1~8这八个数字分别填入下图的圆圈内,每个数字只能用一次,如果两个大圆上五个圆圈内的数之和为22,那么A 、B 两个圆圈内不可能填( )A.1和7B.4和8C.3和5D.2和649.下列选项正确的是( )A.趣5=,味6=B.趣4=,味7=C.趣6=,味5=D.趣3=,味8=参考答案与试题解析一.选择题(共49小题)1.“凑24点”游戏规则是:从一副扑克牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24,每张牌必须用一次且只能用一次,并不能用几张牌组成一个多位数,如抽出的牌是3、8、8、9,那么算式为(98)83-÷⨯等,在下面4个选项中,唯一-⨯⨯或(988)3无法凑出24点的是()A.1、2、3、3B.1、5、5、5C.2、2、2、2D.3、3、3、3【解析】A、(12)332724+⨯⨯=>,有可能凑出24点;+⨯⨯=>,有可能凑出24点;B、(15)5515024⨯⨯⨯=<,不可能凑出24点;C、22221624D、33338124⨯⨯⨯=>,有可能凑出24点;故选:C.2.在下面的每个方框中填入“+”或“-”,得到所有不同计算结果的总和是()25□9□7□5□3□1.A.540B.600C.630D.650【解析】由于259753150+++++=,所以我们猜测0~50之间的所有偶数都有可能得到,+⨯÷=;0~50所有偶数的总和是(050)262650当把1前面的+号变成-号,可得259753148⨯,++++-=,比50小12当把3前面的+号变成-号,可得259753144⨯,+++-+=,比50小32当把3和1前面的+号变成-号,可得259753142⨯,+++--=,比50小42当把5前面的+号变成-号,可得259753140⨯,++-++=,比50小52⋯---+-=,221579=+++,因此当把1,5,7,9前面的+号变成-号,可得25975316----+=,=+++,因此当把3,5,7,9前面的+号变成-号,可得25975312 243579=++++,因此当把1,3,5,7,9前面的+号变成-号,可得25975310-----=,2513579根据上述规律可得,但是数字2和23无法凑出来,那么偶数4和46无法取到,所以答案是:650446600--=.故选:B.3.将6、7、8、9填入右边算式的方格中:“□⨯□+□□”那么这个算式的结果最大为()A.152B.145C.140D.154【解析】同类枚举找最大:67981506789⨯+=>⨯+.⨯+=.6897145⨯+=.6987141⨯+=.7896152⨯+=.7986149⨯+=.8976148经比较152为最大.故选:A.4.在5()4()6()3的括号中.选用+、-、⨯、÷符号填入(每个符号只用一次),能得到的最大结果是()A.17B.19C.23D.26【解析】试算如:546323-+⨯=,546317⨯-+=,+⨯-=,546319⨯+-=,546326所以能得到的最大结果是26,故选:D.5.在10口10口10口10口10的四个口中填入“+”“-”“⨯”“÷”运算符号各一个,所成的算式的最大值是()A.104B.109C.114D.119【解析】因为减号只能用一次,减数不能为0,那么10101÷=做减数时,运算的结果最大:⨯+-÷1010101010=+-100101=109故选:B.6.在下面乘法竖式的每个方格中填入一个非零数字,使算式成立.那么,乘积的最大值等于()A.6292B.6384C.6496D.6688【解析】满足条件的竖式有或故选:D.7.在下列算式中加一括号后,算式的最大值是()⨯+÷-.791232A.75B.147C.89D.90【解析】791232⨯+÷-加上括号最大是:⨯+÷-7(9123)2=⨯-7132=-912=89加上一个括号后算式的最大值是89.故选:C.8.某校买来36套单座课桌椅,不料发票给墨水弄污了,单价只剩下两个数字:□23.□□元,总价只剩下四个数字:4□44.2□元,那么总价应是()元.A.4944.24B.4444.20C.4544.28D.4644.20【解析】根据题意,单价百位为1,123364428⨯=,∴总价为4444.2□元,Q,4444.236123.45÷=故可得总价为4444.20,单价为123.45元,故选:B.9.在下边的乘法算式中,“二”、“月”、“四”、“日”、“数”、“学”、“科”、“普”、“节”分别表示1~9中的不同数字,且“二”2=,如果四位数“二月四日”的22倍=,“四”4等于五位数“数学科普节”,那么,“数”+“学”+“科”+“普”+“节”的和等于()A.12B.15C.16D.27【解析】二月四日22⨯为23492251678⨯=,++++=,5167827“数”+“学”+“科”+“普”+“节”的和等于27.故选:D.10.如果一个整数,与1,2,3这三个数,通过加减乘除运算(可以添加括号)组成算式,结果等于24,那么这个整数称为可用的,那么,在4,5,6,7,8,9,10这七个数中,可用的整数有()个.A.7B.6C.5D.4【解析】因为123424⨯⨯⨯=,所以4可用;因为(51)2324-⨯⨯=,所以5可用;因为(321)624+-⨯=,所以6可用;因为371224⨯++=,所以7可用;因为38(21)24⨯⨯-=,所以8可用;因为392124⨯--=,所以9可用;因为1021324⨯++=,所以10可用.答:可用的数字是7个.故选:A.11.已知□□□+□□□1199=,那么6个□中的6个数字之和是()A.30B.29C.28D.20【解析】根据分析可得,个位数+个位数9=,=,百位数+百位数11=,十位数+十位数9所以6个数字之和是:991129++=.答:6个□中的6个数字之和是29.故选:B.12.下面的算式中,同一个汉字代表同一个数字,不同的汉字代表不同的数字.团团⨯圆圆=大熊猫,则“大熊猫”代表的三位数是()A.123B.968C.258D.236【解析】设a、b分别代表汉字团、圆,则(10)(10)1111121⨯=+⨯+=⨯=;aa bb a a b b a b ab121ab是一个三位数,ab可能的取值为:2,3,4,5,6,7,8,对应的三位数分别为:242、363、484、605、726、847、968,根据不同的汉字代表不同的数字,可得三位数只能是968.故选:B.13.在下面的五组数中:①4,4,4,4;②5,5,5,5;③6,6,6,6;④7,7,7,7;⑤9,9,9,9.通过添上合适的运算符号(+、-、⨯、)÷,使计算结果等于24,那么满足条件的组数是()A.1B.2C.3D.4E.5【解析】因为,444424⨯++=;⨯-÷=;555524+++=;6666247,7,7,7和9,9,9,9怎么添加运算符号都得不到24.故选:C.14.3☆86⨯是一道三位数乘一位数的算式,那么下面三个数中()可能是它的得数.A.2028B.1508C.1964【解析】根据乘数是一位数乘法的计算方法可知,因为因数6乘三位数个位上的8,6848⨯=,满四十,所以在积的个位上要写8并向前一位进4,首先排除C;用因数6乘三位数百位上的3,6318⨯=,再排除B;所以根据这两种情况判断,只有选项A符合要求.故选:A.15.若两个三位数的和为□□□+□□□1949=,那么6个□中的数字之和是()A.14B.23C.32D.41【解析】由两个3位数的和为1949知,9□□9=,+□□1949则□□+□□19492900149=-⨯=,所以第1个三位数的后两位数字在50~99,第2个三位数与之对应的后两位数字为99~50,其组合方式有50~99、49~98、48~97、⋯、99~50,每种组合方式其四个数字之和均为509923+++=,则6个□中的数字之和是239941++=,故选:D.16.用四则运算符号+、-、⨯、÷(每种可用多次,也可不用),括号(如果需要的话)及四个数3、4、6、10组成算式,使最后得数为24.算式为()A.(1046)324+-⨯= B.4631024+÷⨯=C.3641024⨯-+= D.以上都可以【解析】选项A、(1046)38324+-⨯=⨯=,正确;选项B、4631042024+÷⨯=+=,正确;选项C、364101841024⨯-+=-+=,正确;又各选项中的算式数字及运算符号的使用符合要求,所以选项A、B、C都正确,故选:D.17.如果???÷的商用数字来表示是()+-=⨯,?⨯+⨯+⨯+⨯=,那么??A.8B.4C.6【解析】???+-=⨯可得:?=⨯;因为?⨯+⨯+⨯+⨯=,所以4?=,⨯=,即4??则??4??4÷=÷=;故选:B.18.金鸡唱响圆中国梦⨯□=中中中中中中中中中上面的横式中不同的汉字代表不同的数字,□代表某个一位数.那么,“中”字所代表的数字是()A.3B.5C.7D.9【解析】根据题意可以得到答案为:故选:C.19.请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是()A.2986B.2858C.2672D.2754【解析】首先根据结果中的首位数字是2,如果有进位那么0上边只能是9,根据910多除以7得130多,7前面只能是1,与数字0矛盾那么乘数中的三位数的首位只能是1或者2,因为乘数中有7而且结果是三位数,那么乘数中三位数首位只能是1.那么已知数字7前面只能是2,根据已知数字0再推出乘数三位数中的十位数字是0.再根据乘数中的数字7与三位数相乘有1的进位,尾数只能是2.所以是102272754⨯=.故选:D.20.加法算式中,七个方格中的数字和等于()A.51B.56C.49D.48【解析】依题意可知:根据两数相加最大进位是1可知.个位数字相加结果是14,十位和百位数字相加和为18,千位有1个进位1.+++=.141818151故选:A.21.如图所示竖式成立时的除数与商的和为()A.589B.653C.723D.733【解析】依题意可知用字母表示如图:S 首先判断0A =,4B =.再根据除数的2倍是四位数,那么E 是大于4的.除数与D 的积是三位数,那么D 就是小于2的非零数字,即1D =.再根据顺数第三行最后一位为1可以确定D 和C 的取值为(1,1).根据1C =,4B =,那么商的十位数字就是4,根据有余数推理5E =.再根据除数的2倍的数字中有6.那么除数的十位数字可能是3或者8.枚举得知除数是581商是142.581142723+=.故选:C.22.如图竖式成立时除数与商的和为()A.289B.351C.723D.1134【解析】首先根据倒数第三行可以确定0B=;A=,4再根据顺数第三行最后一位为1可以确定,第一行D和C的取值为(1,1)或(3,7)或(9,9)或(7,3).根据除数的2倍是四位数,那么除数是大于500的数字,再根据第一个的结果是三位数,那么C和D只有是(1,1)符合条件.那么商的十位数字就是4才能满足个位是4,所以除数的百位数字只有5满足条件.再根据最后的四位数的十位数字是6,从而确定除数的十位数字是8.被除数为58114282502.581142723⨯=+=故选:C.23.如图的两个竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么ABCD所代表的四位数是()A.5240B.3624C.7362D.7564【解析】根据左边的数字谜中,可分析出A、C是相邻的,B、D是差2 的.右边的数字谜中,显然19GH=,若个位没有向十位进位,则F、J分别是0、4,E、I是8、3 或6、5,但无论是哪组解都不能满足左边数字谜“A、C相邻,B、D差2”的要求. 故知右边个位向十位进位了,14+=,E、I只能分别E IF J+=,F、J只能分别是8、6,10是3、7,此时得到5240ABCD=.故选:A.24.如图算式的有()种不同的情况.A.2B.3C.4D.5【解析】首先容易定出第一排百位是1,第二排个位是1,才能保证第三行的结果是100多.同时要保证第四排是4位数,第二排的百位必须大于5,要保证第四排的十位为4,当第二排百位数字是6时,没有满足已知数字4的情况.当第二排百位数字是7时,1927⨯符合条件.当第二排百位数字是8时,没有符合条件的数字,当第二排百位数字是9时,1729⨯满足条件.有两种情况:192701⨯;⨯,172901故选:A25.如图所示,将乘法竖式补充完整后,两个乘数的差是()A.564B.574C.664D.674【解析】依题意可知:如上图所示,可以直接判断第4行的前两位数字的值均为9,结果的前三位数字分别为1、0、0.根据数字6成第一个乘数结果为三位数,那么第一行的首位数字是1.在这个乘法竖式中,没有十位对应的乘积,所以可以得出十位数字为0第四行的三位数字结果是偶数那么只有990,992,994,996,998这5个数字.同时对应第一个乘数的尾数是2即可.÷=(不符合题意);9905198992不是6的倍数不能构成一个乘数尾数是2;9947142÷=(符合题意);÷不整除不符合题意9968所以,原来的两个乘数分别为:142和706,差为706142564-=.故选:A.26.下面的除法算式给出了部分数字,请将其补充完整.当商最大时,被除数是()A.21944B.21996C.24054D.24111【解析】明显商的百位乘以除数是二百零几,如果是100多那么余数是三位数.2 乘以除数是三位数,所以商最大时,结果中个位数字是4.所有除数的个位是2 或7,要满足0 的话就只能为2,这时除数为52.商最大为42,因为最后一行只能为一百多,最大是52的3倍,所以商最大为423.这时被除数为2199652423÷=,符合条件故选:B.27.在竖式中填入适当的数字,使竖式成立,那么第一个竖式的和(也就是第二个竖式的被减数)是()A.1000B.1001C.1002D.1003【解析】根据后面四位数减三位数可得,上个竖式的和是1000或1001,减数是998或者999,再根据两个加数可得最小是900和101,和为1001,所以只能是1001故选:B.28.在图所示的算式中,每个字母代表一个非零数字,不同的字母代表不同的数字,则和的最小值是()A.369B.396C.459D.549【解析】根据题干分析可得:答:和的最小值是459.故选:C.29.在右面的加法算式中,每个汉字代表一个非零数字,不同的汉字代表不同的数字.当算式成立吋,贺+新+春(=)A.24B.22C.20D.18【解析】(1)假设个位与十位相加都进位,则可得:炮+年10-=+=+新19=+春,鞭+龙10新,放+迎=贺1-,则炮+年+鞭+龙+放+迎10=+春9++新+贺1-=贺+新+春18+,所以放=鞭+炮+迎+龙+年+贺+新+春2=(贺+新+春)1845+=,即贺+新+春272=,不符合题意;(2)假设只有个位数字相加进位,则炮+年10=+春,鞭+龙=新1-,放+迎=贺,则炮+年+鞭+龙+放+迎10=+春+新1-+贺=贺+新+春9+,所以放=鞭+炮+迎+龙+年+贺+新+春2=(贺+新+春)945+=,即贺+新+春18=,符合题意;(3)假设只有十位数字相加进位,则炮+年=春,鞭+龙10=+新,放+迎=贺1-,则炮+年+鞭+龙+放+迎=春10++新+贺1-=贺+新+春9+,所以放=鞭+炮+迎+龙+年+贺+新+春2=(贺+新+春)945+=,即贺+新+春18=,符合题意;(4)假设都不进位,则炮+年=春,鞭+龙=新,放+迎=贺,则炮+年+鞭+龙+放+迎=春+新+贺,所以放=鞭+炮+迎+龙+年+贺+新+春2=(贺+新+春)45=,即贺+新+春452=,不符合题意. 综上所述,贺+新+春18=.故选:D .30.在如图所示的两位数的加法运算式中,已知22A B C D +++=,则(X Y += )A.2B.4C.7D.13【解析】根据题干分析可得:9B D +=,则22913A C +=-=,所以可得1x =,3y =,则134x y +=+=.故选:B .31.在下面竖式乘法中,*代表任何数字(不必相同),而P 代表某个数字,要使竖式成立,则P 可能为下列选项中的( )A.7B.6C.5D.9E.8 【解析】根据题干分析可得:原题可能是:所以3P =或8.故选:E .32.a 、b 、c 、d 表示09-中不同的四个整数,如果它们满足下面的整式,那么(acac bcc bc ++= )A.2017B.2016C.2015D.2014【解析】bcd ccd addd +=,从个位开始分析,可知0d =,再想10c c +=,5c =,再想5110b ++=,4b =,最后可知a 百位相加满10后进的1,所以1a =;再把1a =,4b =,5c =,0d =,代入算式1515455452015acac bcc bc ++=++=, 故选:C .33.如图6个空格中分别放有1、2、3、4、5、6六个数,并且要使计算结果正确.如果每个数字只能使用一次,带问号的空格中的数是( )A.2B.3C.4D.5E.6【解析】1与任何数相乘都得1,而每个数字只能使用一次,所以带问号的空格中的数不是1,1只能是积里的数字;带问号的空格中的数如是2,被乘数的个位数字只能是3,积的个位数字是6,被乘数的十位数字只能是5,2乘5为10,而六个数中没有0,所以带问号的空格中的数不是2;带问号的空格中的数如是4,被乘数的个位数字为1,2,5,6,积的个位数字应为4,8,0,4不合要求;被乘数的个位数字如是3,积的个位数字应是2,被乘数的十位数字只剩下5或6,一乘又会出现2,所以带问号的空格中的数不是4;带问号的空格中的数如是5,被乘数的个位数字为1,2,3,4,6,积的个位数字应为5,0,5,0,0不合要求,所以带问号的空格中的数不是5.所以带问号的空格中的数只能是3.故选:B .34.图中表示三个3位数相加.三位数各位数上的数字不重复地使用了1~9中的数字.这一加法算式不可能得到下列答案中的( )A.1500B.1503C.1512D.1539【解析】假设A 成立,(1)在最左侧竖行开头的 7,8一定不能定去了,因为不用进位,就超过了1500.(2)1,2,3,4,5,6两两相加没有进位,十位不为0,如果用6,8,那么进位的只有5,7,9,十位不为0.(3)如果用5,9 那么进为的只有6,7,8十位也不为0;所以确定答案A 错误.故选:A .35.如图乘法竖式中P 、Q 及R 分别代表不同的数字.则P 、Q 及R 的和等于( )A.16B.14C.13D.12E.10【解析】由题意知道,一个三位数乘以3以后还是一个三位数, P 的数值最大为3.当1P =时,可得Q 的数值133⨯=…,当3Q =时,1R =,结果不合题意;当4Q =时,8R =,其结果为:可以验证其它情况不成立;当2P =时,Q 的数值236⨯=…,所以Q 可取7,8,9,经验证均不成立;当3P =时,可得Q 的数值只能为339⨯=,那么3R =,P 与R 重合,不合题意;综合以上,P ,Q ,R 的和为:14813++=,故选:C .36.不同字母表示不同的数字,关于下面四进制的加法运算,描述正确的有( )A.字母A 的值是2B.字母B 的值是3C.字母C 的值是2D.字母D 的值是0【解析】因为所以:答:A 表示3,B 表示1,C 表示2,D 表示0.故选:C .37.如图,这个乘式中,PQRS 是一个四位数,且P 、Q 、R 及S 分别为不同的数码.下列叙述不正确的是( )A.PQRS 是9的倍数B.1P =C.0Q =D.7R =E.9S = 【解析】据以上分析可得,乘法竖式计算如下:1P =,0Q =,8R =,9S =.所以7R =是错误的.故选:D .38.在如图的算式中,每个汉字代表0至9中的一个数字,不同汉字代表不同的数字.当算式成立时,“好”字代表的数字是( )A.1B.2C.4D.6【解析】根据分析可得, “好好好”,表示为:111373n n =⨯⨯,不同汉字代表不同的数字,所以1n ≠,2n =,则“好好好” 376=⨯(符合要求)或743⨯(不符合要求), 3n =,则“好好好” 379=⨯(不符合要求), 4n =,则“好好好” 746=⨯(不符合要求), 5n =,则“好好好” 3715=⨯(不符合要求), 6n =,则“好好好” 749=⨯(不符合要求), 所以,“好好好” 376222=⨯=,即“好”字代表的数字是2.故选:B .39.如图,在55⨯的空格内填入数字,使每行、每列及每个粗线框中的数字为 1,2,3,4,5,且不重复.那么五角星所在的空格内的数字是( )A.1B.2C.3D.4【解析】依题意可知:首先根据在第一宫格中必须有4,那么第二行的第二列的数字只能为4.同理在第二行第四列的数字只能是1.继续推理可得:所以再五角星的空格位置填写1.故选:A.40.将1、2、3、4、5、6、7、8这8个数字分别填入图中的八个“〇”内(每个数字只用一次),如果两个大圆圈上五个“〇”内的数字之和都是22,那么A、B两个“〇”内不可能填()A.1和7B.4和8C.3和5D.2和6【解析】中间的数字之和应为222(12345678)8⨯-+++++++=,而1~8中,只有178+=,268+=,还剩4和8.+=,358故选:B.41.下列算式中,乘积的千位数是()A.0B.1C.3D.7【解析】为了便于表达把相应的空白处用字母代替,如下图①由9BB⨯+(进位)和的个位数是19⇒⨯积C⨯积的个位上的数是73C⇒=,进位2;92的个位数是91=⇒进位3=,91A⨯+(进位)和的十分位⨯+(进位)30⇒=;39B⇒=.34A②因3⇒=.D⨯=⨯积的个位数是17C D D③39341397331061⨯=⨯=ABC D故选:B.42.在下面的乘法算式中“骐骐⨯骥骥=奇奇迹迹”,不同的汉字代表不同的数字,相同的汉字代表相同的数字,汉字“奇迹”表示的数是?()A.38B.83C.64D.54【解析】因为44773388⨯=,所以汉字“奇迹”表示的数是38;故选:A.43.在如图所示的竖式里,四张小纸片各盖住了一个数字.被盖住的4个数字的总和是()A.14B.24C.23D.25【解析】个位上,两个数字的和是9;十位上,两个数字和是14,那么,被盖住的4个数字的总和就是:91423+=.故选:C .44.如图所示的算式中,如果七个方格中的数字互不相同,那么和的最大值是( )A.153B.176C.183D.196【解析】根据题干分析可得:故选:B .45.在如图的33⨯的各格中每行每列都包含1、2、3三个数,则(A B += )A.1B.3C.4D.5 .6E【解析】第一列已经有1,第二行已有2,则C 处方格只能填3,那么D 处只能填2,A 处只能填1, 所以,B 处只能填3,所以,134A B +=+=故选:C .46.将1到8这8个自然数分别填入如图数阵中的8个圆圈,使得数阵中各条直线上的三个数之和都相等,那么A 和B 两个圆圈中所填的数之和最大是( )A.8B.10C.12D.14【解析】设幻和为a,则52(1238)=⨯+++⋯+-,572a B=-a B又因两条斜线和下面一条横线的和也相等,可知=+++⋯++,可得336a A3(1238)a A=+÷,所以A只能是3或6=+,123a A当A是3时幻和是13,当A是6时幻和是14,再根据572=-a B可确定当3B=A=时,7当4A=时,6+=.B=,所以幻和最大是3710故选:B.47.在竖式中有若干个数字被遮盖住了,则竖式被遮盖住的几个数字的和为()A.33B.34C.35D.36【解析】19515++=因为每进位一次数字和减少9,当个位不进位时,则竖式被遮盖住的几个数字的和为:15924+=当个位进位时,则竖式被遮盖住的几个数字的和为:24933+=故选:A.48.将1~8这八个数字分别填入下图的圆圈内,每个数字只能用一次,如果两个大圆上五个圆圈内的数之和为22,那么A、B两个圆圈内不可能填()A.1和7B.4和8C.3和5D.2和6【解析】1234836++++⋯+=,22244⨯=,那么中间两个数的和是:44368-=,178+=,4812+=,358+=,268+=,故选:B .49.下列选项正确的是( )A.趣5=,味6=B.趣4=,味7=C.趣6=,味5=D.趣3=,味8=【解析】根据竖式可知,在个位上,趣+味的末尾数字1,这时有两种情况,一种是不向十位进1,011+=,十位上,2+趣8=,趣826=-=,与个位数字不符,所以,只能是个位数字相加向十位进1,即趣+味11=;十位上,2+趣18+=,趣8125=--=,那么,味1156=-=;根据以上推算可得竖式是:故选:A .。

小学奥数 乘除法数字谜(一) 精选例题练习习题(含知识点拨)

小学奥数  乘除法数字谜(一)  精选例题练习习题(含知识点拨)

数字谜是杯赛中非常重要的一块,特别是迎春杯,数字谜是必考的,一般学生在做数字谜的时候都采用尝试的方式,但是这样会在考试中浪费很多时间.本模块主要讲乘除竖式数字谜的解题方法,学会通过找突破口来解决问题.最后通过例题的学习,总结解数字谜问题的关键是找到合适的解题突破口.在确定各数位上的数字时,首先要对填写的数字进行估算,这样可以缩小取值范围,然后再逐一检验,去掉不符合题意的取值,直到取得正确的解答.1. 数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.2. 数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断.3. 解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意: ⑴ 数字谜中的文字,字母或其它符号,只取0~9中的某个数字; ⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字; ⑷ 数字谜解出之后,最好验算一遍.模块一、乘法数字谜【例 1】 下面是一个乘法算式:问:当乘积最大时,所填的四个数字的和是多少?5×【例 2】 下面两个算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.⨯=美妙数学数数妙,美+妙数学=妙数数。

=美妙数学___________【例 3】 北京有一家餐馆,店号“天然居”,里面有一副著名对联:客上天然居,居然天上客。

巧的很,例题精讲知识点拨教学目标5-1-2-2.乘除法数字谜(一)×客上天然居4居然天上客【例 4】 下面算式(1)是一个残缺的乘法竖式,其中□≠2,那么乘积是多少?【例 5】 下面残缺的算式中,只写出了3个数字1,其余的数字都不是1,那么这个算式的乘积是?【例 6】 右面的算式中,每个汉字代表一个数字(0~9),不同汉字代表不同数字.美+妙+数+学+花+园= .423805⨯美妙数学花园数学真美妙好好好美妙【例 7】 在右边的乘法算式中,字母A 、B 和C 分别代表一个不同的数字,每个空格代表一个非零数字.求A 、B 和C 分别代表什么数字?941A B CA B C⨯【例 8】 在每个方框中填入一个数字,使得乘法竖式成立.已知乘积有两种不同的得数,那么这两个得数的差是 .【例 9】 在图中的每个方框中填入一个适当的数字,使得乘法竖式成立。

(小学奥数)加减法数字谜

(小学奥数)加减法数字谜

5-1-2-1.加減法數字謎教學目標數字謎從形式上可以分為橫式數字謎與豎式數字謎,從運算法則上可以分為加減乘除四種形式的數字謎。

橫式與豎式亦可以互相轉換,本講中將主要介紹數字謎的一般解題技巧。

主要涉及小數、分數、循環小數的數字謎問題,因此,會需要利用數論的知識解決數字謎問題知識點撥一、數字迷加減法1.個位數字分析法2.加減法中的進位與退位3.奇偶性分析法二、數字謎問題解題技巧1.解題的突破口多在於豎式或橫式中的特殊之處,例如首位、個位以及位數的差異;2.要根據不同的情況逐步縮小範圍,並進行適當的估算;3.題目中涉及多個字母或漢字時,要注意用不同符號表示不同數字這一條件來排除若干可能性;4.注意結合進位及退位來考慮;模組一、加法數字謎【例 1】 “華杯賽”是為了紀念和學習我國傑出的數學家華羅庚教授而舉辦的全國性大型少年數學競賽.華羅庚教授生於1910年,現在用“華杯”代表一個兩位數.已知1910與“華杯”之和等於2004,那麼“華杯”代表的兩位數是多少?0191杯华2040+【考點】加法數字謎 【難度】1星 【題型】填空【關鍵字】華杯賽,初賽,第1題【解析】 由0+“杯”=4,知“杯”代表4(不進位加法);再由191+“華”=200,知“華”代表9.因此,“華杯”代表的兩位數是94.【答案】94【例 2】 下麵的算式裏,四個小紙片各蓋住了一個數字。

被蓋住的四個數字的總和是多少?1+49【考點】加法數字謎 【難度】2星 【題型】填空【關鍵字】華杯賽,初賽,第5題【解析】 149的個位數是9,說明兩個個位數相加沒有進位,因此,9是兩個個位數的和,14是兩個十位數的和。

於是,四個數字的總和是14+9=23。

【答案】23【例 3】 在下邊的算式中,被加數的數字和是和數的數字和的三倍。

問:被加數至少是多少?例題精講【考點】加法數字謎 【難度】3星 【題型】填空【關鍵字】第四屆,華杯賽,初賽,第2題【解析】 從“被加數的數字和是和的數字和的三倍”這句話,可以推斷出兩點:①被加數可以被3整除。

【精选】奥数:乘除法数字谜(一).学生版

【精选】奥数:乘除法数字谜(一).学生版

数字谜是杯赛中非常重要的一块,特别是迎春杯,数字谜是必考的,一般学生在做数字谜的时候都采用尝试的方式,但是这样会在考试中浪费很多时间.本模块主要讲乘除竖式数字谜的解题方法,学会通过找突破口来解决问题.最后通过例题的学习,总结解数字谜问题的关键是找到合适的解题突破口.在确定各数位上的数字时,首先要对填写的数字进行估算,这样可以缩小取值范围,然后再逐一检验,去掉不符合题意的取值,直到取得正确的解答.1. 数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.2. 数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断.3. 解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意: ⑴ 数字谜中的文字,字母或其它符号,只取0~9中的某个数字; ⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字; ⑷ 数字谜解出之后,最好验算一遍.模块一、乘法数字谜【例 1】 下面是一个乘法算式:问:当乘积最大时,所填的四个数字的和是多少?例题精讲知识点拨教学目标5-1-2-2.乘除法数字谜(一)5×【例 2】 下面两个算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.⨯=美妙数学数数妙,美+妙数学=妙数数。

=美妙数学___________【例 3】 北京有一家餐馆,店号“天然居”,里面有一副著名对联:客上天然居,居然天上客。

巧的很,这副对联恰好能构成一个乘法算式(见右上式)。

相同的汉字代表相同的数字,不同的汉字代表不同的数字。

“天然居”表示成三位数是_______。

×客上天然居4居然天上客【例 4】 下面算式(1)是一个残缺的乘法竖式,其中□≠2,那么乘积是多少?【例 5】 下面残缺的算式中,只写出了3个数字1,其余的数字都不是1,那么这个算式的乘积是?【例 6】 右面的算式中,每个汉字代表一个数字(0~9),不同汉字代表不同数字.美+妙+数+学+花+园= .423805⨯美妙数学花园数学真美妙好好好美妙【例 7】 在右边的乘法算式中,字母A 、B 和C 分别代表一个不同的数字,每个空格代表一个非零数字.求A 、B 和C 分别代表什么数字?941A B CA B C⨯【例 8】 在每个方框中填入一个数字,使得乘法竖式成立.已知乘积有两种不同的得数,那么这两个得数的差是 .【例 9】 在图中的每个方框中填入一个适当的数字,使得乘法竖式成立。

小学奥数基础教程之数字谜二

小学奥数基础教程之数字谜二

数字谜(二)
例1 把下面算式中缺少的数字补上:
例 2 在下列各加法算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,求出这两个算式:
例 3 下面竖式中每个汉字代表一个数字,不同的汉字代表不同的数字,求被乘数。

例4 在□内填入适当的数字,使左下式的乘法竖式成立。

例5 在□内填入适当数字,使左下方的除法竖式成立。

例 6 把左下方除法算式中的*号换成数字,使之成为一个完整的式子(各*所表示的数字不一定相同)。

练习10
1.在下面各竖式的□内填入合适的数字,使竖式成立:
2.右面的加法算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。

问:“小”代表什么数字?
3.在下列各算式中,不同的汉字代表不同的数字相同的汉字代表相同的数字。

求出下列各式:
4.在下列各算式中,相同的字母代表相同的数字,不同的字母代表不同的数字。

这些算式中各字母分别代表什么数字?。

小学奥数-数字谜

小学奥数-数字谜

小学奥数-数字谜例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。

分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。

当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。

(5÷13-7)×(17+9)。

当“÷”在第二或第四个○内时,运算结果不可能是整数。

当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。

例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。

解:将5568质因数分解为5568=26×3×29。

由此容易知道,将5568分解为两个两位数的乘积有两种:58×96和64×87,分解为一个两位数与一个三位数的乘积有六种:12×464, 16×348, 24×232,29×192, 32×174, 48×116。

显然,符合题意的只有下面一种填法:174×32=58×96=5568。

例3 在443后面添上一个三位数,使得到的六位数能被573整除。

分析与解:先用443000除以573,通过所得的余数,可以求出应添的三位数。

由443000÷573=773 (71)推知, 443000+(573-71)=443502一定能被573整除,所以应添502。

例4 已知六位数33□□44是89的倍数,求这个六位数。

分析与解:因为未知的数码在中间,所以我们采用两边做除法的方法求解。

先从右边做除法。

由被除数的个位是4,推知商的个位是6;由左下式知,十位相减后的差是1,所以商的十位是9。

一年级奥数算式谜题目

一年级奥数算式谜题目

一年级奥数算式谜题目一、小卫家里养了20只兔子,其中大兔只数是小兔的4倍,问小卫家养的小兔和大兔各有多少只?二、2、被除数、除数、商三个数的和是212,已知商是2,被除数和除数各是多少?三、3、学校四、五年级共有学生218人,五年级学生人数比四年级的2倍少22人。

问四、五年级各有学生多少人?四、4、两数相除,商3余4,如果被除数、除数、商及余数相加,和是43,求被除数和除数。

五、5、姐姐有连环画38本,妹妹有连环画52本,姐姐要给妹妹多少本连环画,才能使妹妹的本数是姐姐的2倍?六、6、两箱茶叶共176千克,从甲箱取出30千克放乙箱,乙箱的千克数就是甲箱的3倍。

两箱原有茶叶多少千克?七、7、甲数是乙数的3倍,丙数是乙数的4倍,丁数是丙数的一半,四个数的和是1040,丁数是多少?八、8、四个数的和是408,这四个数分别能被2、3、5、7整除,而且商相同。

这四个数分别是多少?九、9、两个数相除商9,无余数,被除数、除数与商的和是89,除数是多少?十、有三堆煤,甲堆比乙堆的3倍多30千克,丙堆比乙堆少15千克,三堆煤共240千克,那么,甲堆有煤多少千克?十一、分子、分母之和是23,分母增加19以后,得到一个新的分数,把这个分数化为最简分数是1、5,原来分数是几分之几?十二、甲、乙两数的和是16,甲数的3倍等于乙数的5倍,较大的数是多少?十三、商店运来桔子、苹果、香蕉共53千克,桔子的重量是苹果的3倍少3千克,香蕉的重量是苹果的2倍多2千克,桔子重量是多少千克?十四、两个数的和是682,其中一个加数的个位是0,若把0去掉,则与另一个数相同,这两个数各是多少?十五、甲、乙两人共有150张画片,甲的张数比乙的2倍多30张,两人各有几张画片?十六、在一个减法算式里,被减数、减数与差的和等于120,而差是减数的3倍,那么差等于多少?十七、体育室买来75个球,其中篮球是足球的2倍,排球比足球多3个,这三种球各多少个?十八、甲、乙两人共有钱10000元,甲用去2000元,乙用去500元,乙剩下的钱比甲剩下的钱的2倍多300元。

小学奥数解题技巧 第57讲 算式谜

小学奥数解题技巧 第57讲  算式谜
字总和是多少?
分析:任意两个数字之和最多为18,且最多只向前一位进一,所以百 位上的两个数字和十位上的两个数字都是9,而个位上的两位数可能 为:(2,9),(3,8),(4,7),(5,6)之一种,故6个□内 的数字总和为9×4+11=47。
6
小升初数学解题技巧 第57讲 算式谜
【数字谜】如图5.10的算式中,不同的汉字代表不同的数字,相同的汉
3
小升初数学解题技巧 第57讲 算式谜 【横式填数】如果10+9-8×7÷□+6-5×4=3,那么,“□”中所表示
的数是______。 分析:等式左边能计算的,可先计算出来,得5—56÷□=3,∴□=28。
4
小升初数学解题技巧 第57讲 算式谜 【横式填数】
分析:
5
小升初数学解题技巧 第57讲 算式谜 【数字谜】图5.8的算式里,每个□代表一个数字。问:这6个□中的数
字代表相同的数字,求使算式成立的汉字所表示的数字(数+学+喜)× 爱=______。
分析:可从个位上开始思考。(学+学+学+学)的个位为2,则“学” 只能是3或8。当“学”=8时,“数”=2。这时十位上的数相加之后, 没有向百位上进一,从而使(“爱”+“爱”)不可能个位上是9。
所以,“学’不等于8。 当“学”=3时,容易推出“数”=6,“爱”=4,“喜”=1。所以, (数+学+喜)×爱=(6+3+1)×4=40。
同步教材视频
7
而1+2+……+9=45,是奇数。所以无论在□中, 怎样填“+”、“-”符号,都不能使结果为偶数。
2
【添运算符号】在下列□中分别填上适当的运
算符号,使等式成立。 12□34□5□6□7□8=1990 分析:首先凑足与1990接近的数。 12×34×5=2040,然后调整为:12×34×56×7-8=1990。

小学奥数:算式谜(二).专项练习及答案解析

小学奥数:算式谜(二).专项练习及答案解析

5-1-1-2.算式谜(二)教学目标数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。

横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。

主要横式数字谜问题,因此,会需要利用数论的简单奇偶性等知识解决数字谜问题知识点拨一、基本概念填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。

算符:指 +、-、×、÷、()、[]、{}。

二、解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。

(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。

三、奇数和偶数的简单性质(一)定义:整数可以分为奇数和偶数两类(1)我们把1,3,5,7,9和个位数字是1,3,5,7,9的数叫奇数.(2)把0,2,4,6,8和个位数是0,2,4,6,8的数叫偶数.(二)性质:①奇数≠偶数.②整数的加法有以下性质:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数.③整数的减法有以下性质:奇数-奇数=偶数;奇数-偶数=奇数;偶数-奇数=奇数;偶数-偶数=偶数.④整数的乘法有以下性质:奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数.例题精讲模块一、填横式数字谜【例 1】 将数字1~9填入下面方框,每个数字恰用一次,使得下列等式成立;()200724=+÷+-★□□□□□□□现在“2”、“4”已经填入,当把其它数字都填入后,算式中唯一的减数(★处)是 .【考点】填横式数字谜之复杂的横式数字谜 【难度】4星 【题型】填空 【关键词】迎春杯,高年级,初赛,3试题 【解析】 方法一:首先可以估算四位数的取值范围:四位数不大于()2007913428010+-⨯-=,不小于()2007198427638+-⨯-=.显然四位数的千位数字只能是7.再由四位数与2的和能被4整除,可以确定四位数的个位数字一定是偶数,只能是6或8.若为6,由个位是8而能被4整除的数其十位数字是偶数,可知四位数只能为7986,而()7986241997+÷=,故只需利用剩下的数凑出10即可.剩下的数字是1,3,5,不能凑出10.所以四位数的个位数字不是6.四位数的个位数字是8时,由个位是0而能被4整除的数其十位数字是偶数,故四位数的十位数字是1、3、7或9.当四位数的十位数字是1时,四位数只可能是7918,而()7918241980+÷=,故只需利用剩下的数凑出27即可.剩下的数字是3,5,6,不能凑出27;当四位数的十位数字是3时,四位数只可能是7938,而()7938241985+÷=,故只需利用用剩下的数凑出22即可.剩下的数字是1,5,6,不能凑出22;当四位数的十位数字是5时,四位数只可能是7658或7958,若为7958,则由()7958241990+÷=,需利用剩下的数凑出17即可.剩下的数字是1,3,6,不能凑出17;若为7658,有()7658249312007+÷+-=;当四位数的十位数字是9时,四位数只可能是7698,而()7968241925+÷=,故只需利用剩下的数凑出82即可.剩下的数字是3,5,6,不能凑出82;故此题只有惟一答案:()7658249312007+÷+-=.算式中唯一的减数是1.方法二:根据弃九法,7□□□+2+4+□□+★被9整除,而(7□□□+2)÷4+□□-★也被9整除。

奥数讲座(2)算式谜

奥数讲座(2)算式谜

算式谜:内容提要在数学竞赛中,我们会遇到这样一类题目,题中只给出一些类似谜面的已知信息,而要求找出谜底一样的未知信息,这样的题目被称为“算式谜”。

“算式谜”是一种猜数的游戏,我国古代称它为“虫食算”,好像是小虫把“算式”咬了几个小窟窿。

解“算式谜”就是把这些被“小虫咬掉”的数字补充完整,并使算式成立。

解答“算式谜”必须依据题中残留的一些数字,有的则是根据题目中指代的字母和汉字,做细致而全面的分析、推理和判断,把所缺的部分或全部数字填出来。

算式谜:例题1——在下面的加法算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,求这个算式。

【技巧点拨】同一数位上,加数与和中有相同字母时表面其余加数的和为整十(包括和为0),这是确定字母数值的重要依据。

【分析】因为千位上A+A+A+百位进位<10,所以A=1,2,3。

试验:(1)若A=1,则个位上C=7,且个位向十位进2;十位上,B+B+B+2的个位仍是B,可知B+B+2的和是整十,于是B=4或9,此时十位向百位进1或2;在百位上,若B+B+1的和是整十数,B无解,所以只能十位向百位进2,B=9;推出D =5。

(2)若A=2,则个位上C=4,且个位向十位进1,此时十位上B无解。

(3)若A=3,则个位上C=1,此时十位、百位上的B=0,最后推出D=9。

所以本题有两个解:1997×3=5991,3001×3=9003例2:下面式中,已知D=5,0~9每个数字都有对应的字母,不同的字母对应不同的数字,请将算式翻译成数字算式。

【分析】从个位上看,D=5,得T=0,且个位要向十位进1。

从万位上看,F+E=F,这只有当E=9且千位进1,还知道万位要向十万位进1,百位上两个相同的数相加得偶数,但现在是奇数,可见十位上进1,推出A=4。

从十万位上看,5+C=R,C 可能是1,2,3,4,R可能是6,7,8,9。

因为十位上两个相同的数相加应为偶数,但个位进1,可以知道R是奇数,即R=7,十位上L=8,十万位上C=1。

小学一年级奥数(全)---第6讲 算式猜谜 - 教师版

小学一年级奥数(全)---第6讲  算式猜谜 - 教师版

第6讲 算式猜谜【专题导引】小朋友,你一定喜欢猜谜吧!算式谜通常是给出一个运算的式子,但式子中却用一些汉字、字母、符号、图形等来表示特定的数字,要求小朋友动脑筋、想办法,找到要填的数字。

解算式谜要统观全局,掌握特点,根据一定的法则和逻辑推理的方法,找到要填的数字。

【典型例题】【B1】根据所给竖式,填一填。

5【试一试】填一填。

1、 2、 1 34+ 9 2+ 5 6+ 7【B2】根据所给竖式,填一填。

6【试一试】填一填。

1、 2、 85【B3】在“□”填上合适的数。

解答:2、39-3 7- 2 7- 1 1+ 3 5 2【试一试】在“□”填上合适的数。

1、 2、解答:2、6 解答:3、1 【A1】在“□”填上合适的数。

解答:3、5【试一试】在“□”填上合适的数 1、 2、2+ 4 7 1 4+ 7 985 -3 212- 1 3 8 6- 2 34解答:2、3 解答:8、1 【A2】请你猜一猜,每个算式中的图形各表示几?解答:1、7【试一试】猜一猜,竖式中的图形各代表的数字是几?1、 2、解答:1、6 解答:3、5课 外 作 业1+30 32 + 4 26 1+5 05家长签名: 1、根据所给竖式,填一填。

解答:3 2、填一填。

解答:63、在□填上合适的数5+ 8 8-21+ 2 42解答:1、24、在□填上合适的数解答:5、45、每个算式中的图形各表示几?解答:3、1我的学习收获:4- 1 3 72+6 09。

我来编题:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档