FM天线设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FM天线设计

调频(FM)收音机在高保真音乐和语音广播中已经被采用好多年了,它能提供极好的声音质量、信号鲁棒性和抗噪声能力。最近,FM收音机开始越来越多地用于移动和个人媒体播放器中。然而,传统FM设计方法需要很长的天线,例如有线耳机,从而限制了许多没带有线耳机的用户。另外,随着无线使用模型在便携式设备中的不断普及,更多用户可以从使用其他类型FM天线的无线FM收音机中受益,且同时可利用无线耳机或扬声器来听声音。

本文将介绍一种FM收音机接收机解决方案,它将天线集成或嵌入在便携式设备内部,使得耳机线成为可选件。我们首先从最大化接收灵敏度讲起,然后介绍取得最大化灵敏度的方法,包括最大化谐振频率的效率,最大化天线尺寸,以及利用可调谐匹配网络最大化整个调频带宽上的效率。最后,本文还将给出可调谐匹配网络的实现方法。

最大化灵敏度

灵敏度可以被定义为调频接收系统可以接收到的、同时能达到一定程度信噪比(SNR)的最小信号。这是调频接收系统性能的一个重要参数,它与信号和噪声都有关系。接收信号强度指示器(RSSI)只是指出了特定调谐频率点的射频信号强度,它并不提供有关噪声或信号质量的任何信息。在比较不同天线下接收机性能时,音频信噪比(SNR)也许是一个更好的参数。因此,想为聆听者带来高质量的音频体验,使SNR最大化非常重要。

天线是连接射频电路与电磁波的桥梁。就调频接收而言,天线就是一个变换器,即将能量从电磁波转换成电子电路(如低噪声放大器(LNA))可以使用的电压。调频接收系统的灵敏度直接与内部LNA接收的电压相关。为了最大化灵敏度,必须尽量提高这个电压。

市场上有各种各样的天线,包括耳机、短鞭、环路和芯片型天线等,但所有天线都可以用等效电路进行分析。图1给出了一种通用的等效天线电路模型:

在图1中,X可以是一个电容或一个电感。X的选择取决于天线拓扑,其电抭(感抗或容抗)值与天线几何形状有关。损耗电阻Rloss与天线中以热能形式散发的功耗有关。幅射电阻Rrad与从电磁波产生的电压有关。为了便于说明,后文将以环路天线模型作为分析对象,同样的计算也可以用于其他类型的天线,如短的单极天线和耳机天线。

图1:天线等效电路模型。

使谐振频率点的效率最大化

为了尽量提高天线转换出来的能量,可以使用一个谐振网络来抵消天线的电抗性阻抗,而这种阻抗会衰减天线传导到内部LNA的电压值。对电感性环路天线来说,电容Cres用来使天线在想要的频率点发生谐振:

谐振频率是指天线将电磁波转换成电压的效率最高的频率点。天线效率是Rrad上的功率与天线收到的总功率的比值,可以表示为Rrad/Zant,其中Zant是带天线谐振网络的天线阻抗。Zant表示为:

当天线处于谐振状态时,效率η可以表示为:

在其他频率点时效率为:

非谐振频率点的天线效率η要低于最大效率ηres,因为此时的天线输入阻抗Zant要么是容性的,要么是感性的。

最大化天线尺寸

为了恢复所传输的射频信号,天线必须从电磁波里收集到尽可能多的能量,并高效地将电磁波能量转换成通过Rrad的电压。收集到的能量多少受制于便携式设备所使用天线的可用空间和大小。对于传统的耳机天线来说,它的长度可达到调频信号的四分之一波长,能收集到足够的能量并转换成内部LNA可用的电压。在这种情况下,最大化天线效率就不那么重要。

不过,由于便携式设备正变得更小更薄,留给嵌入式调频天线的空间已变得非常有限。虽然已尽量增加天线尺寸,但嵌入式天线收集到的能量仍非常小。因此在既不牺牲性能、又要使用较小的天线的情况下,提高天线效率η就变得非常重要。

利用可调匹配网络,使调频频段上的效率最大化

大多数国家的调频广播频段的频率范围是87.5MHz到108.0MHz。日本的调频广播频段是76MHz到90MHz。在一些东欧国家,调频广播频段是65.8MHz到74MHz。为了适应全球所有的调频频段,调频接收系统需要有40MHz的带宽。传统解决方案通常是将天线调谐在调频频段的中心频率。然而就如上述公式表明的那样,天线系统的效率是频率的函数。效率在谐振点达到最大值,当频率偏离谐振频率时,效率将下降。值得注意的是,由于全球调频频段的带宽达40MHz,当频率远离谐振频率点时天线效率将有显著下降。

例如,设定一个固定谐振频率98MHz,那么在该频率点可取得很高的效率,但其他频率点的效率将有显著下降,从而劣化了远离谐振频率点时的调频性能。

图2给出了固定谐振频率在频段中心(98MHz)时两种天线(耳机天线和短天线)的效率曲线。

图2:调频频段内的典型固定谐振天线性能。

从上图可以看出,98MHz点可以取得最佳效率,但频率越接近频带边缘效率下降越多。对耳机天线来说这不是什么大问题,因为这种天线尺寸能够在整个频率内收集到足够的电磁能量,并转换成较高的电压给射频接收器。然而,与较长的耳机天线相比,短天线尺寸小,收

集到的能量也少,因此当频率远离谐振点时效率将迅速降低,也就是说使用固定谐振方案时频带边缘处的接收会产生问题,主要原因是短天线具有比耳机更高的“Q”值,从而在频带边缘时使效率发生陡峭下降。

Q是指品质因数,正比于单位时间内天线网络中存储的能量与损耗或幅射能量的比值。针对带天线谐振网络的上述天线等效电路而言,Q值满足:

与短天线相比,耳机天线尺寸较大,因此本身就具有较高的幅射电阻Rrad,从而导致Q值较低。由于嵌入式应用要求使用高Q值的短天线,效率陡降问题非常突出。

天线的Q值还与天线带宽有关,其关系可以表示为:

其中ƒc是谐振频率ƒc,BW是天线的3dB带宽。与较长的耳机天线相比,高Q值的短天线具有较小的带宽,因此在频带边缘的损耗较大。

为了克服高Q值固定谐振天线的带宽限制问题,可以用自调谐谐振电路将“固定谐振”改为“可调谐振”,使电路永远处于谐振频率点,从而最大化接收灵敏度。采用自调谐谐振天线可以获得较高的信噪比,因为来自谐振天线的增益可降低接收机的系统噪声系数,而嵌入式天线固有的高Q值又有助于滤除可能与本振谐波混合在一起的干扰。

可调匹配网络的实现

图3给出了支持嵌入式短天线的增强型调频接收机架构的概念性框图。“可调谐振”采用片上可调的变容二极管和调谐算法实现。

相关文档
最新文档