深度探讨透视投坐标系

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深度探讨透视投坐标系

————————————————————————————————作者:————————————————————————————————日期:

3d图形程序,就一定会做坐标变换。而谈到坐标变换,就不得不提起投影变换,因为它是所有变换中最不容易弄懂的。但有趣的是,各种关于透视变换的文档却依然是简之又简,甚至还有前后矛盾的地方。看来如此这般光景,想要弄清楚它,非得自己动手不可了。所以在下面的文章里,作者尝试推导一遍这个难缠的透视变换,然后把它套用到DX和PS2lib 的实例中去。

1.一般概念

所谓透视投影变换,就是view 空间到project 空间的带透视性质的坐标变换步骤(这两个空间的定义可以参考其他文档和书籍)。我们首先来考虑它应该具有那些变换性质。很显然,它至少要保证我们在view空间中所有处于可视范围内的点通过变换之后,统统落在project空间的可视区域内。好极了,我们就从这里着手——先来看看两个空间的可视区域。

由于是透视变换,view空间中的可见范围既是常说的视平截体(view frustum)。如图,

(图1)它就是由前后两个截面截成的这个棱台。

从view空间的x正半轴看过去是下图这个样子。

(图2)接下来是project空间的可视范围。这个空间应当是处于你所见到的屏幕上。实际上将屏幕表面视作project空间的xoy平面,再加一条垂直屏幕向里(或向外)的z轴(这取决于你的坐标系是左手系还是右手系),这样就构成了我们想要的坐标系。好了,现在我们可以用视口(view port)的大小来描述这个可视范围了。比如说全屏幕640*480的分辨率,原点在屏幕中心,那我们得到的可视区域为一个长方体,它如下图(a)所示。

(图3)

但是,这样会带来一些设备相关性而分散我们的注意力,所以不妨先向DirectX文档学学,将project空间的可视范围定义为x∈[-1,1], y∈[-1,1], z∈[0,1]的一个立方体(上图b)。这实际

上可看作一个中间坐标系,从这个坐标系到上面我们由视口得出的坐标系,只需要对三个轴向做一些放缩和平移操作即可。另外,这个project坐标系对clip操作来说,也是比较方便的。

2.推导过程

先从project空间的x正半轴看看我们的变换目标。

(图4)这个区域的上下边界为y’=±1, 而图2中的上下边界为y = ±z * tan(fov/2),要实现图2到图4的变换,我们有y’= y * cot(fov/2) / z。这下完了,这是一个非线性变换,怎么用矩阵计算来完成呢?还好我们有w这个分量。注意到我们在做投影变换之前所进行的两次坐标变换——world变换和view变换,他们只是一系列旋转平移和缩放变换的叠加。仔细观察这些变换矩阵,你会发现它们其实不会影响向量的w分量。换句话说,只要不是故意,一个w分量等于1的向量,再来到投影变换之前他的w分量仍旧等于1。好的,接下来我们让w’= w*z, 新的w就记录下了view空间中的z值。同时在y分量上我们退而求其次,只要做到y’= y * cot(fov/2)。那么,在做完线性变换之后,我们再用向量的y除以w,就得到了我们想要的最终的y值。

x分量的变换可以如法炮制,只是fov要换一换。事实上,很多用以生成投影变换矩阵的函数都使用了aspect这个参数。这个参数给出了视平截体截面的纵横比(这个比值应与view port的纵横比相等,否则变换结果会失真)。如果我们按照惯例,定义aspect = size of X / size of Y。那么我们就可以继续使用同一个fov而给出x分量的变换规则:x’= x * cot(fov/2) / aspect。现在只剩下z分量了。我们所渴望的变换应将z = Znear 变换到z = 0,将z = Zfar变换到z = 1。这个很简单,但是等等,x, y最后还要除以w,你z怎能例外。既然也要除,那么z = Zfar 就不能映射到z = 1了。唔,先映射到z = Zfar试试。于是,有z’= Zfar*(z-Znear)/(Zfar –Znear)。接下来,看看z’/z的性质。令f(z) = z’/z = Zfar*(z-Znear)/(z*(Zfar –Znear))。

则f’(z) = Zfar * Znear / ( z^2 * (Zfar –Znear )), 显而易见f’(z) > 0。所以除了z = 0是一个奇点,函数f(z)是一个单调增的函数。因此,当Znear≤z≤Zfar时,f(Znear)≤f(z)≤f(Zfar),即0≤f(z)≤1。

至此,我们可以给出投影变换的表达式了。

x’= x*cot(fov/2)/aspect

y’= y*cot(fov/2)

z’= z*Zfar / ( Zfar –Znear ) –Zfar*Znear / ( Zfar –Znear )

w’= z

以矩阵表示,则得到变换矩阵如下,

cot(fov/2)/aspect 0 0 0

0 cot(fov/2) 0 0

0 0 Zfar/(Zfar-Znear) 1

0 0 -Zfar*Znear/(Zfar-Znear) 0。

做完线性变换之后,再进行所谓的“归一化”,即用w分量去除结果向量。

现在我们考虑一下这个变换对全view空间的点的作用。首先是x和y分量,明了地,当z>0时,一切都如我们所愿;当z<0时,x和y的符号在变换前后发生了变化,从图象上来说,view 空间中处于camera后面的图形经过变换之后上下颠倒,左右交换;当z= 0 时,我们得到的结果是无穷大。这个结果在实际中是没有意义的,以后我们得想办法弄掉它。再来看z,

仍旧拿我们上面定义的f(z)函数来看,我们已经知道当z≥Zfar时,f(z)≥1;同时当z→+∞,f(z)→Zfar/(Zfar-Znear);当z→+0时,f(z)→-∞; z→-0时,f(z)→+∞; z→∞时,f(z)→

Zfar/(Zfar-Znear).由此我们画出f(z)的图像。

(图5)

相关文档
最新文档