深部软岩锚喷支护巷道快速掘进技术

深部软岩锚喷支护巷道快速掘进技术
深部软岩锚喷支护巷道快速掘进技术

深部软岩锚喷支护巷道快速掘进技术

发表时间:2016-03-22T09:21:41.417Z 来源:《基层建设》2015年24期供稿作者:潘永海

[导读] 神华宁夏煤业集团石炭井焦煤分公司:随着经济的快速发展,我国大部分的矿井已经转入了深部开采,尤其对于一些比较小的矿井企业。

神华宁夏煤业集团石炭井焦煤分公司宁夏石嘴山市大武口区 750001

摘要:随着经济的快速发展,我国大部分的矿井已经转入了深部开采,尤其对于一些比较小的矿井企业。由于企业井田的面积比较小,必须经过频繁的延深开采来保证矿井既定的产量,这就造成了矿井发生接替紧张的局面。但是,和浅部矿井相比,深部软岩锚喷支护巷道的掘进技术难度比较高,非常容易形成过大的爆破震动影响,进而影响矿井的安全施工。目前比较普遍使用的巷道快速掘进技术是钻爆法施工,但是对于提高掘进效率的研究仍处于初始阶段,因此,加强对该方面的研究对于企业的可持续发展和员工的生命财产安全都有着积极的意义。本文主要为解决某煤矿深部软岩锚喷支护巷道掘进效率低的难题,提出了以多向聚能高效破岩为关键技术、以支护参数及作业制度优化为重要保障的快速掘进技术。

关键词:深部软岩;锚喷支护巷道;快速掘进技术

根据深部软岩锚喷支护巷道快速掘进的实践表明,只有使用先进的破岩工艺,同时保证巷道支护的质量,对施工制度进行多方面的优化,这样才能保证掘进效率的有效提高。

一、巷道快速掘进过程中的问题

深部软岩锚喷支护巷道快速掘进过程中面对的主要问题就是光面爆破情况。光面爆破是目前比较普遍使用的一种控制爆破方式。光面爆破以后,深部软岩锚喷支护巷道的断面不仅能够保证符合设计的轮廓要求,还能够对围岩的松动范围进行有效的控制,这样就能够改善巷道支护状态,充分发挥巷道自身的抗压能力,对支护效果的显著提高有着积极的作用。所以说,深部软岩巷道施工中,光面爆破是一个非常重要的环节。但是,因为巷道结构中一部分软弱的围岩最小抵抗线非常小,这就给光爆参数的制定造成了很大的难度,使得最终光爆的效果不甚理想,造成支护效果的不完善。针对这种问题,我们在以往经验的基础上对原有的施工工艺进行了优化。

二、实例分析

1.某煤矿全长492m,埋深-567-712m,倾角为14°,穿过的岩层主要为砂岩、泥岩、黏土岩及砂质泥岩,受地质构造影响,岩性软弱,巷道底板涌水量最大0.5m3/h,随巷道深度增加围岩压力有明显增大趋势。煤矿在其-700m水平轨道下山掘进过程中,通过采用多向聚能高效破岩技术、优化锚杆支护参数及作业方式,形成了一套深部软岩巷道快速掘进技术,效果良好。

2.多向聚能高效破岩技术

(1)技术原理。多向高效破岩是深部软岩锚喷支护巷道进行快速掘进施工的

一个重要技术。该种工艺主要根据对炸药能量的高效合理使用,并同时配合特制的爆破装置,从而达到巷道岩石合理爆破的目的,并且能够有效保证巷道的支护质量。本工程使用的爆破装置主要通过将装入的药卷挤压形成聚能穴,使得在爆炸的过程中炸药的能量能够沿聚能穴的方向进行汇聚,从而形成高速的射流,最后在产生的气体作用下快速扩展,对岩石形成的碎块产生切割作用,并能够有效的减少爆破的震动影响。该项技术的优点就是能够保证在掏槽爆破中避免炮孔孔壁形成压碎区,并且有效改善炸药能量的释放形式,能够保证岩石沿着聚能穴方向产生定向的断裂,岩体的成型质量较好,稳定性比较高,支护费用也有很大程度的降低,和传统爆破方式相比,达到相同爆破效果的情况下,能够减少大约

10%的炸药耗量。

(2)爆破方案。一般情况下,在深部巷道掘进之前双楔形的复式掏槽围岩会受到较高的压力,这就导致了爆破夹制力过大,使得无法得到满意的掏槽效果。除此之外,巷道的围岩结构比较软弱,爆破过程中产生的震动会对围岩造成严重的影响。因此,在以往经验的基础上,我们针对原有的爆破设计,通过使用双楔形复式结构的掏槽方式,以弥补垂直的楔形掏槽方式效果不理想的问题。这种掏槽方式对于人工多台钻机进行并行施工的情况非常适合。实践证明,该种工艺在深部软岩锚喷支护巷道的快速掘进过程中能够取得比较好的效果。具体的施工顺序为先内后外,并且逐层加深,同时要求把一段掏槽的药量分为两段,这样就可以有效减少爆破的振动效应,不仅能够显著提高施工的效率,还能够有效保证炮孔利用率的合理高效利用。

3.巷道支护参数优化。

(1)原支护方案。顶、帮部均采用φ18mm×L2000mm 左旋无纵筋螺纹钢锚杆,间排距均为800mm,托盘由150mm×150mm×10mm 的正方碟形钢板制成,金属网规格为2000mm×1200 mm,网格50 mm。梯子梁由φ12mm钢筋焊制,长3400mm,喷厚70mm,混凝土标号不低于150#。采用支护参数时,巷道变形较大,返修率高,对巷道掘进效率影响较大。

(2)支护参数优化。采用数值模拟的方法分析不同支护参数对围岩的控制效果,为巷道支护参数合理设计提供依据。对巷道主要支护参数进行模拟分析,依据数值模拟结果,结合现场施工经验,对原支护参数作如下改进:一是锚杆间排距由800mm 改为700mm,锚杆直径由18mm增大至20mm,确保施工质量,保证锚固力在6-8 t以上。二是锚索补强,锚索支护参数如下:间排距1200mm×1800mm,“三花”布置,直径15.24mm,长8000mm,每孔药卷数5个,托盘尺寸170mm×170mm×10mm;滞后距离不大于20m,预紧力10t以上。

4.施工组织优化。一是合理的人力资源配置。施工企业要组建专业化的矿井掘进小组,并且对于该组要保证装备、技术以及施工条件的需求。保证快速掘进队的优势充分发挥,就能够以点带面推动整个矿井企业的高效运行。另外,对于企业的人员要保证充足。根据集中生产以及快速掘进的需要,对巷道掘进队伍进行有效的整合,保证快速掘进队伍人员的充足,从而满足高强支护平行作业的需要。二是对劳动组织进行合理的配置根据矿井断面大且出矸量较多的特点,可以采用“三掘三喷”制的作业方式,这样对有效提高工时利用率有积极的作用。另外,还可以增加耙矸机到迎头的距离,从而减少移耙矸机的次数,实现打眼、临时支护以及帮部支护等工序之间的平行作业,保证了空间和时间的有效利用。

5.实施效果。一是爆破效果改变掏槽方式及采用多向聚能爆破技术后,爆破效果有明显改善,现场统计材料消耗降低1O%以上。二是

锚杆、锚喷巷道支护的安全检查(新版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 锚杆、锚喷巷道支护的安全检查 (新版)

锚杆、锚喷巷道支护的安全检查(新版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 锚杆和锚喷巷道支护的安全检查重点叙述如下: (1)锚杆支护和锚喷支护对巷道断面成型要求严格,在综合掘进机开挖时要严格掌握,在爆破成型时更要认真搞好光面爆,尤其是巷道断面周边眼的布置、眼距、孑L深、角度及装药量,必须严格执行规程设计规定,这是保证成型质量的关键。 (2)锚杆眼的布置、眼距、孔深、角度必须符合规程要求,锚杆角度应垂直于帮壁平面。 (3)锚杆无论是楔缝式,还是树脂药卷式,在装设锚杆时必须按规定要求程序装设,尤其是药卷浸水人孔搅拌,更要在浸水时间上和搅拌力度上按规定操作,以保证锚杆锚固质量。 (4)锚杆入孔固定(凝固)好后,把托板或托梁钢带等戴好上平,与顶帮岩石贴紧,如无法贴紧时要用木板垫好,然后上螺帽,螺帽要戴满丝扣,用力矩扳手拧紧。锚杆外露长度应小于0.05m。 (5)锚杆支护要定期做拉拔(拉力)试验,发现锚固小于规定的要采

煤矿巷道支护技术获重大突破锚注支护成果获国家科技进步二等奖

煤矿巷道支护技术获重大突破锚注支护成果获国家科技进步二等奖 在2月28日召开的国家科学技术奖励大会上,淮北矿业集团等四家单位合作完成的“高应力极软岩工程锚注支护机理及技术研究与应用”成果,荣获国家科学技术进步二等奖。 由淮北矿业集团、山东科技大学、淮南矿业集团、中国矿业大学合作完成的这项成果,标志着我国在煤矿巷道支护技术领域方面取得重大突破。 近年来,随着我国煤矿开采范围和开采深度逐渐加大,矿井开采深度在600米以上的高应力极软岩巷道分布越来越广泛。在应用传统的锚杆、U型钢等支护方式时,围岩和支护数月就遭到破坏,严重影响矿井的安全与生产。 淮北矿业集团是一个拥有10多座矿井、年产原煤2000万吨的国有特大型煤炭企业,大部分矿井的煤炭属于三软煤层,给巷道支护增加了很大难度。从上个世纪90年代开始,淮北矿业集团就组织科研人员对高应力极软岩巷道技术难题进行攻关,率先在临涣煤矿、祁南煤矿等矿井进行锚注支护的工业性研究与应用,并与山东科技大学、淮南矿业集团、中国矿业大学携手合作,开始进行

高应力极软岩工程锚注支护机理及技术研究与应用。 据有关专家介绍,锚注支护是利用锚杆兼做注浆管实现外锚内注的支护方式。经过长达10年的研究、实验、应用,科研人员先后攻克了锚注一体化、锚封一体化、可控压注浆、浆液扩散规律及控制、锚注岩体物理力学性质测试、锚注岩体声波测试等技术难关。其中,在国内外首次研制成功的外锚内注式注浆锚杆、可控压内注浆锚杆,分别获得了国家专利。 该项技术成果先后在全国15个矿区大规模推广应用,锚注支护巷道累计长度为17.5万米,节约资金高达4.9亿元。2001年11月,安徽皖北煤电集团祁东煤矿发生突水淹井事故,排水历时4个月,U型钢支护、锚喷支护等支护方式的巷道均遭破坏,只有锚注支护的680米主大巷完好无损。 据淮北矿业集团副总工程师李明远介绍,目前,我国煤矿井下有高应力极软岩巷道几百万米,水利、矿冶、交通、土建等行业的松岩体高边坡工程治理,深基坑和高坝体的加固,软围岩的大型硐室和隧道支护,都可以应用锚注支护新技术。

浅谈煤矿软岩巷道支护技术

浅谈煤矿软岩巷道支护技术 随着煤矿开采技术的成熟,开采深度的不断深化、开采规模的扩大,巷道损坏程度逐渐的扩大。软岩巷道支护一直是巷道工程的一个疑难点。软岩巷道的支护与使用维护优劣程度,直接影响到煤矿安全高效生产。文章通过对软岩巷道的概念、支护原理、支护原则、支护类型、支护对策等方面进行论述。 标签:软岩巷道;支护;原理;原则 1 软岩的基本概念 软岩是在特定的环境下,塑性变形明显的岩体。这种岩体多是泥岩、粉岩等。软岩的特点可以用软、弱、松、散概括。在煤矿巷道支护施工中,巷道围岩就是需要施工的岩体;工程力是指岩体上的重力、应力、水作用力、膨胀应力等。软岩通常分:低强度高膨胀性软岩、高应力软岩、极破碎软岩、复合型软岩四类。 1.1 低强度高膨胀性软岩,围岩质地破碎、强度偏低、遇水变形,对施工中的震动耐受力差。巷道围岩变形迅速,给支护带来很大困难。由于软岩中的泥质成分和结构面确定了软岩的特征,导致软岩产生塑性变形。软岩通常具有可塑性、膨胀性、崩解性、流变性、扰动性等特性。 1.2 我国煤矿开采深度逐年增加,使得一些矿井重力引起的垂直应力骤增,构造应力场错综复杂;在高应力条件下,扰动影响剧烈,围岩破坏程度加剧,涌现新裂纹致使煤岩体积扩大,扩容膨胀。 1.3 极破碎软岩巷道围岩内节理不同、裂隙等结构面,围岩支体破碎、稳定性差。巷道掘进工作中可能发生冒顶和片帮,给支护作业带来诸多不便。 1.4 复合型软岩指上述3种软岩类型各种组合。 2 软岩巷道支护原理与支护原则 2.1 支护原理 软岩巷道支护的重点在于发掘自承能力。支护原理:依据岩层特性,地压来源,运用科学设计方法,使支护体系和施工过程能够适应围岩变形的种种情况,从而达到控制围岩变形、维护巷道稳定的宗旨。 (1)改变思想,支护结构和强度和围岩自承能力相适应,与围岩变形及强度相结合,实践证明,单纯提高支护刚度的做法是难以达到预期效果;(2)适当卸压、加固与支护相结合的方法相辅相成,运筹帷幄,高应力区,需要卸力合理,对变形大的区域,要让度适量,支离破碎区域,进行整体加固;(3)对于围岩变形量测定,及时掌握围岩变形的活动状态,根据测定结果予以反馈,以确定二次

煤矿软岩巷道的锚喷支护同新奥法的关系

煤矿软岩巷道的锚喷支护同新奥法的关系 摘要论文总结了人们对地下空间结构及其支护性质认识的发展进程;通过对新奥法的起源、发展及其实质的系统分析,结合煤矿软岩巷道的变形破坏特征,论述了新奥法同巷道锚喷支护间的关系,阐明了用新奥法的基本原理解释软岩巷道的锚喷支护机制所存在的一些问题。 关键词软岩巷道新奥法锚喷支护RELATION BETWEEN BOLTING-SHOTCRETE SUPPORT AND NATM METMOD FOR SOFT ROCK DRIFTS IN COAL MINES Liu Changwu (China University of Mining and Technology) Abstract: In this paper,the course of knowing the underground space structure and its support characters is summarized;relation between bolting-shotcrete support and NATM(New Autrian Tunneling Method)is discussed through systematic analysis of origin,development and essence of the NATM method in combination with deformation failure characters of coal mine s soft rock drifts;some problems in explaining the mechanism of bolting-shortcrete support by NATM basic principle are described. Keywords: Soft rock drift,NA TM method,Bolting-shortcrete support 人类利用地下空间和地下有用矿物的历史可以追溯到遥远的古埃及和古罗马时代。这些早期的地下工程主要用于宗教和引水等方面。为了利用地下空间或开采地下的有用矿物,人们不仅掌握了隧道(巷道)等地下空间的开掘技术,而且还初步掌握了一些简单的隧洞砌衬方法。古埃及修建了许多地下墓穴和教堂,以及开凿于软性石灰岩中的地下水道;而古罗马在隧道兴建方面更有令人称道的成就,他们不仅掌握岩石隧道的开挖方法,而且还掌握了将陶土磨成细粉,掺以石灰制成泥浆来对隧道进行砌衬的手段。我国也是地下空间和地下有用矿物开采利用最早的国家之一。1981年湖北大冶铜绿山发掘出土的东周时期的采矿遗址中,就发掘出架设于古巷道中的木质框形支架。并且我国古人就开挖及开采过程中,这些支护的防塌作用都留有较详细的记载。 1以自然平衡拱学说为代表的早期地压理论对巷道维护的影响 虽然中外古人对地下空间及其支护的性质有了一定程度的认识,但总的说来,人们的认识还较肤浅,认识的发展进程还相当缓慢。在很长的一段时期内,人们都是按地面构筑物的观点来理解地下空间结构的,并按设计地面构筑物的方法和原理来进行地下支护结构的设计。随着矿井开采深度的日益加深及各种巷道(隧洞)开挖条件的复杂多样化,按这种思想设计的地下空间支护结构同实际需要的出入越来越大。这就促使人们不得不按新的思路来考虑地下空间结构及其支护性质的问题。到本世纪初叶,以前苏联普氏(М.М.Протодьяконов)所提出的以散体地压理论为主体的自然平衡拱学说的出现为代表,标志着人类对地下空间结构的认识出现了第一次质的飞跃,如图1所示。该学说的核心是巷道开掘后组成围岩的各单元体在自重的作用下向巷道空间方向移动,在下移过程中,原来占据曲线A 的各个单元体将下移到曲线B上,由于曲线B的长度小于曲线A的长度,因此各单元体被迫相互挤压而出现一个拱,拱以上的岩石重量通过此压紧的拱圈传递到两帮的岩体上,而无需支架承担,支架仅承担拱以下的由于单元体挤压程度不够而松脱的岩石。虽然这一学说还比较简单,同时也不尽完善,但它却使人们从按地面构筑物的思想来考虑地下空间支护结构的传统中解放出来,以一种全新的角度来重新审视和考虑地下空间结构及其支护性质的问题。此后,太沙基(K.Terzaghi)、金尼(Α.Η.Динник)、芬纳尔(Fenner)、卡斯特奈(Kastner)等众多学者,先后发展了平衡拱学说[FS:PAGE],并将弹性力学理论、塑性力学理论等引入

锚喷支护工安全技术措施详细版

文件编号:GD/FS-9187 (解决方案范本系列) 锚喷支护工安全技术措施 详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

锚喷支护工安全技术措施详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 本条措施主要针对+1163水平运输巷道局部地点进行支护安全技术指导工作。 一、锚喷点: 主要针对主平硐。 喷浆地段岩性属硫铁矿。由于风氧化过快导致巷道顶部帮壁随时脱层,防止出现顶部掉渣,危害安全,特制定支护方案。 支护工程量220米左右,支护方式锚喷、喷浆面周长8米,锚喷厚度70mm,锚杆深度2米,锚杆9根,排距0.9米,锚网规格1*2,锚杆外露长度50mm,锚盘规格100*100。 二、技术要求:

1、锚杆深度必须打够,严禁空钻。 2、锚杆必须锚紧,不得有松动现象。 3、锚网连接点必须重网连接。 4、锚杆必须打在巷道凹处。根据现场掌握。 5、锚喷后成形巷道凹凸不得出现50mm. 三、安全技术操作 施工前的安全措施 1、严格执行敲帮问顶,清理危岩。氧化带必须清理完毕,进入原始岩层方可打眼。 2、必须使用3米长长柄铁钎工具处理危岩,每次清理面积必须大于需锚喷面积的三倍。 3、清理时顶部危岩下面严禁行人行车。 4、打锚杆时严禁行人行车。 5、由于巷道高,施工时为了便于操作,用钢管焊制铁板凳,规格长2米,宽1米,高0.6米。便

软岩巷道支护技术发展现状分析

软岩巷道支护技术发展现状分析 耿志光 (河南工程学院安全工程系郑州451109) 摘要:随着我国新生代煤层的大力开发,软岩矿井的数量也在与日俱增。特殊条件下的巷道施工与维护问题已变得日益突出,并成为影响和制约我国煤炭工业发展的重要因素之一。采用常规的支护方法,已不能满足安全生产的需要。研究有效而经济的软岩支护方法, 是当前生产中急需解决的问题。为此查阅了大量相关科技期刊,对多个典型软岩矿井的支护技术进行分析,总结了我国软岩支护的发展现状。这对提高我国软岩支护的技术水平,提高经济效益,都有着十分重要的意义。 关键词:软岩;支护技术;发展现状 1引言 由于深部岩体处于复杂的工程地质环境,使深部岩体表现出的力学特性与浅部开采时往往具有很大的差异,并且,随着开采深度的增加,伴随着硬岩矿井向软岩矿井的转型。在浅部开采基础上发展起来的传统支护理论、设计方法及技术已难以适应深部巷道支护的要求,尤其是深部软岩巷道支护设计及实际的需要[1]。 随着其开采深度不断增加, 受高应力的影响, 软岩问题愈趋严重, 深部围岩处于软岩状态, 施工条件趋于复杂化, 巷道及硐室支护的难度和破坏程度不断增加[2]。底臌是煤矿巷道中经常发生的动力现象, 巷道底臌使断面缩小, 阻碍运输、通风和人员行走, 因底臌而造成巷道报废的现象时有发生, 严重影响生产和威胁安全[3]。软岩巷道支护问题日益突出。研究高效而经济的软岩巷道支护方法,是目前矿井生产急需解决的问题。 2软岩巷道的特征 2.1软岩的概念 软岩是我国煤炭系统的习惯用语, 它的概念已不是狭义的字面上的含义。目前人们普遍认可的软岩的概念包括松散型软岩、破碎型软岩、流变型软岩、膨胀型软岩及高地应力型也称硬岩软化型软岩等五种特点岩石。 2.2软岩的基本特征 1)软岩松散破碎, 结构疏松, 容重低, 孔隙率较高, 强度小, 稳定性差。一般软岩多为泥岩、炭质泥岩、砂质泥岩及粉砂岩组成, 单向抗压强度小于200 Mpa。 2)软岩易吸水崩解, 膨胀性强。软岩膨胀的概念有两个一、专指那些含有膨胀性矿物如高岭石、蒙脱石等的软岩所产生的膨胀变形。二、指软岩岩体向巷道空间的位移变形。 3)软岩巷道自稳性差, 围岩压力大, 来压快, 自稳时间短。多数围岩自稳时间仅几十分钟到几小时。 4)软岩巷道变形量大, 变形持续时间长, 具有流变性能。软岩静压巷道中总变形量超过400-500mm者甚多。变形时 间一般都在1-3个月以上, 甚至半年后仍继续增长。 5)软岩巷道变形速度快, 变形范围广, 底腻明显。 2.3软岩巷道的特征 1)围岩的自稳时间短、来压快所谓的自稳时间, 就是在没有支护的情况下, 围岩从暴露起到开始失稳而冒落的时间。软岩巷道的自稳时间仅为几十分钟到几个小时, 巷道来压快,

软岩巷道掘进支护技术分析

软岩巷道掘进支护技术分析 发表时间:2013-09-16T14:47:26.233Z 来源:《中国科技教育·理论版》2013年第5期供稿作者:贺海军[导读] 巷道开挖工程中会破坏岩体的原岩应力,工程围岩中的应力分布会出现一定的变化。 贺海军汾西矿业紫金煤业公司 031304 摘要基于我国煤矿资源分布的较为广泛,由于各储藏位置的地质结构的差异导致巷道围岩的地质环境也变得更为复杂化,其中涉及软岩巷道掘进支护施工工程占有较大的比例。因而对于软岩巷道掘进支护技术的探讨与研究具有重要的价值作用。本文将对软岩的地质特点以及影响软岩巷道稳定性的因素进行系统的分析,再进一步探讨软岩巷道掘进支护技术。关键词软岩巷道支护巷道掘进 随着国内煤矿开采步伐的不断深入,部分硬岩在开采应力的作用下开始软化,同时一些软岩区域的煤储层也成为的开发的重点,因而对于软岩巷道支护的研究已经成为了煤矿产业可持续发展规划的重点内容,此外,基于软岩本身的地质特点,软岩巷道掘进效率较低且容易出现变形,或受到其他地质环境的影响而遭到破坏,因而严重制约着煤矿产业的经济效益。 一、软岩地质特点以及工程力学特性 一般来说,地质软岩指的是单轴抗压强度小于25Mpa,具有松散、破碎、风化等一系列特征,该定义并非适用于工程实践中,它是在一定的施工环境下才能够成立的,如对于部分浅开挖巷道来说,即便抗压强度较低,但是地应力的水平也较低,因而“地质软岩”并非会呈现出软岩的特性。工程软岩指的是在一定量的工程力的作用下,产生较大塑性变形的工程岩体,在煤矿巷道掘进中,工程围岩是巷道施工中研究的重点,工程岩体往往承受着重力、构造残余应力、水的作用力、工程扰动及膨胀应力等工程力共同的作用,在工程力学的影响下,软岩的地质特征会得到充分的体现,在部分煤矿巷道开挖的场地中,如果选择的支护方式不够科学完善,就会出现坍塌、变形。由于软岩承受工程力的能力较差,因而在设计支护方式时,存在着一定的难度。 二、软岩巷道的支护原理以及支护措施 巷道开挖工程中会破坏岩体的原岩应力,工程围岩中的应力分布会出现一定的变化。巷道开挖工程的不断进行,切向应力力增大而径向应力不断缩小,到达硐壁处时应力达到极限,在两种应力的共同作用下,由于围岩本身的地质特性,其会向巷道的空区发生变形,同时可能会存在一定裂纹,进而对巷道形成一定的破坏能力,而继续掘进,工程围岩的性质将会变得更为恶劣。在围岩应力的基础上,切向应力在硐壁处对达到最大值,进而造成这个区域的岩石迫力屈服发生塑性变形。对于硬岩巷道的支护工程来说,因其强度较高,在巷道掘进中需要控制塑性区与松动去的出现,促使围岩处于弹性状态,进而具有抵御工程应力的极限水平。但是对于软岩掘进工程来说,其要求工程围岩中的岩体达到塑性状态,且需要达到最大的塑性变形。塑性区的出现使应力集中区从硐壁向围岩深部发展,当应力强度超过围岩的屈服强度时,又会出现新的塑性区,如此不断发展。该变化对支护来讲将产生以下两个力学效应:围岩中切向应力和径向应力降低,减小了作用于支护体上的荷载。这种变化能够在巷道支护体上出现两种力学效应:1)工程围岩上应力的减小会有效的减弱支护体的荷载力;2)围岩深部是应力集中的主要方向。由于深部岩石承受着三种不同的应力,因而能够减弱岩体受到工程力的总和。通过对图1与图2的分析可知,在软岩的稳定塑性变形区域内,尽可能以变形的方式释放围岩所积蓄的应力荷载,可以游戏哦啊的保证支护体的稳定,也有利于软岩巷道工程的开展与深入。 图1巷道开挖后围岩中应力分布的曲线 1—未出现塑性区时,切向应力与径向应力的分布曲线,可见,二者平衡;2—塑性区域为半径为R2的圆形区域内的应力分布;3—塑性区域为半径为R3的圆形区域内的应力分布

深部软岩巷道使用锚索梁支护工艺探索

深部软岩巷道使用锚索梁支护工艺探索 发表时间:2019-01-15T15:40:13.503Z 来源:《基层建设》2018年第34期作者:白垣平 [导读] 摘要:5202工作面为我矿第一个首采面,在三四角门顶板加固中,由原来单体配合使用长锚索密集加固方法改为长锚索配合工字钢梁加固顶板,有效的控制了顶板下沉,保证了三四角门顶板安全,工序简单,效果明显,在实践中得到了很好的应用于推广。 徐矿平凉新安煤业有限责任公司甘肃平凉 744201 摘要:5202工作面为我矿第一个首采面,在三四角门顶板加固中,由原来单体配合使用长锚索密集加固方法改为长锚索配合工字钢梁加固顶板,有效的控制了顶板下沉,保证了三四角门顶板安全,工序简单,效果明显,在实践中得到了很好的应用于推广。 关键词:首采;三四角门;密集;控制;明显;推广 1 5202工作面概况 1.1 5202工作面位置 5202工作面为新安煤矿首采工作面,工作面位于我矿+535m水平采区,工作面煤层侏罗纪延安组5煤,地面标高:+1300m~+1450m,工作面标高:+440m~+650m,工作面位置:位于+535m回风石门以北,地面为山地,无建筑、河流及其它设施。井下位置及四邻情况:该工作面位于矿井北翼5煤采区,西为设计5204工作面,东为我矿设计5煤采区边界,北为矿井北边界,南为我矿+535m回风石门及运输石门。 1.2 5202工作面顶底板情况 煤5厚度平均为10m,煤层特征:节理发育,密度较大。直接顶厚度4m为碳质泥岩,泥质胶结,平行层理发育,饱和抗压强度2.0- 10Mpa;老顶厚度2.5m为4煤层,层理发育,结构复杂,整体性差,强度低;底板分别为泥岩厚度2.6m、粉砂质泥岩厚度4.7m,共同点:强度低,易破碎,饱和抗压强度为10MPa。 1.3 5202工作面长度 5202工作面总工程量为2518m,5202运输斜巷265m(岩巷),5202回风斜巷247m(岩巷),5202运输道851m,5202材料道821m,5202外联络巷175m。 1.4 5202工作面巷道支护方式 5202两道巷道支护断面为:毛宽5m,毛高3.2m,拱高0.7m,直墙高2.5m。全断面采用锚索+钢带+金属网联合支护方式,顶板锚索采用φ18.9mm×4300mm,每排9根,帮部锚索采用φ18.9mm×2700mm,每排6根;顶帮锚索间排距为800×800mm布置,加强锚索采用 φ18.9mm×6300mm,按照“3-2-3”布置,间排距为1600×800mm;钢筋梯子梁采用φ12圆钢,长度为1700、2500mm两种;托盘采用18#槽钢,b200、b300两种;金属网采用6000×1000mm;树脂锚固剂为K2350、Z2350型。 1.5 5202工作面下出口三角门支护形式 5202工作面下出口三角门采用长锚索配合工字钢梁支护,原巷道支护锚索不变,三角门10m范围区域采用φ18.9mm,L=8300mm加强锚索配合4.0m工字钢梁支护,工字钢梁规格、型号分别为:11#工字钢,长度为4.0m,由中间向两边均匀布置3个孔,每个孔之间距离为 1.2m,钻孔直径为22mm,施工三角门时,沿煤层倾向布置锚索梁,具体施工步骤:沿巷道中线打第一个锚索眼——然后装树脂锚固剂——安装8.3m锚索——把工字钢梁放上去,用锁具锁紧,在向两边施工另外两个锚索眼,步骤相同,最后使用张拉机把锚索预紧,预紧力达到160KN为宜。 1.6 采用锚索梁支护顶板矿压显现情况 结论:使用锚索梁支护三、四角门等特殊地段,顶板下沉得到有效的控制,根据十字布点法和顶板离层仪观测数据可得,三角门处顶板下沉量为零,底板底鼓较明显,顶板得到了有效的控制,保证了三四角门安全。 该方法实质是桁架锚杆支护的简易形式,锚索的锚固力承担了钢梁重力以及围岩应力,使围岩与钢梁成为整体。钢性结构的屈服极限远大于围岩,极大的增加了顶板岩层的抗弯能力,减小了顶板内部及其表面的张应力;钢梁使原围岩应力变为均布载荷,有效缓解了原锚索支护形成的应力集中,钢梁提供的水平向压力增大了围岩裂隙的摩擦因数,阻止围岩中裂隙的进一步生长;钢梁与锚索结构将已破碎围岩转化为离层顶板的载体,减小了围岩破裂趋势。通过上述分析与井下巷道的实际应用可得出事实,钢梁与锚索结合的支护方式能有效阻止围岩形变,提高围岩抗弯性能,增强巷道成型能力。 2 原巷道三四角门支护形式 原巷道三四角门采用φ18.9mm×6300mm加强锚索支护,在三四角门5m范围,加强锚索每排3根支护,间排距为800×800mm。后期由于顶板下沉,采用DZ3.15m单体进行支护。修护次数达到1~2次。使用全锚索支护巷道,顶板离层较明显,底鼓量大。 3 支护效果 原巷道支护参数,未有效的控制住三四角门等特殊地段顶板离层,并增加了修护难度,耗时耗力,阻碍了矿井长期有效的安全生产。使用长锚索配合11#工字钢梁联合支护,增加了支护强度,使其锚索与工字钢形成一个整体,起到了及时、主动支护效果。顶板几乎未发生离层,有效控制了巷道变形,减少了后期巷道修护成本,为以后在三四角门支护上提供了可靠的依据。有效的解决了三四角门支护难度大、顶板下沉快等问题。 4 结束语 软岩巷道的支护难度大,不稳定因素多,目前并没有通用的支护方式,因此在选择支护方式时结合井下巷道实际情况不断优化研究和

软岩巷道支护

煤矿软岩巷道支护技术 摘要:煤矿软岩巷道工程支护,尤其是深部高应力软岩巷道支护,一直是矿业工程难点问题之一。随着矿井开采规模的增大和开采深度的不断加大,软岩巷道的支护与维护问题显得越来越突出,软岩问题愈趋严重,直接影响煤矿安全高效生产。本文分析了软岩的概念及分类,提出了软岩巷道支护对策与主要支护形式,并指出了以后软岩巷道支护新的发展趋势。 关键字:软岩巷道;高应力;支护对策 1 引言 由于煤层赋存条件的复杂、多变,煤层开采条件的不可选择性,多数矿井的生产和建设都将面临不同程度、不同数量的软岩巷道开掘及维护难题。特别是服务年限较长的准备巷道、开拓巷道施工、维护,需解决一系列软岩巷道问题,比如巷道自稳时间短、变形大、难维护、返修率高等。加之多数软岩巷道断面较大,巷道变形破坏的影响因素复杂[1],在支护设计中,要考虑多方面的影响因素。软岩巷道的变形主要体现在顶板下沉量较大,两帮收缩、偏帮、底鼓严重。巷道的变形严重影响到运输、通风、行人的问题,因此寻找合理的支护方式已经迫在眉睫。 2 软岩的概念及分类 工程软岩是指在工程力的作用下,能够产生显著塑性变形的工程岩体[2]。在煤矿巷道支护工程中,巷道围岩就是所研究的工程岩体;工程力则是指作用在工程岩体上的力的总和,它包括重力、构造残余应力、水的作用力、工程扰动及膨胀应力等。该定义揭示了软岩的相对性,实质即工程力与岩体的相互关系。当工程力一定时,不同岩体可能表现为硬岩特性,也可能表现为软岩的特性。而对于同一种岩石,在较低工程力的作用下可表现为硬岩的变形特性,在较高的工程力作用下可能表现为软岩的大变形特性。按其上述特性,大体上可分为4大类:低强度高膨胀性软岩、高应力软岩、极破碎软岩、复合型软岩。 1)低强度高膨胀性软岩巷道,围岩不仅松软、强度低,而目_遇水软化、膨胀,对风、水、扰动十分敏感。巷道围岩变形速度快、变形量大、持续时间长,给支护带来极大困难。软岩之所以能产生显著的塑性变形,主要是因为软岩中的泥质成分和结构面控制了软岩的工程力学特性。软岩一般具有可塑性、膨胀性、崩解性、流变性以及工程扰动性等工程力学特性。 2)我国煤矿开采深度以每年8~12m的速度增加,开采深度超过1000m的煤矿已有数十处,部分矿井重力引起的垂直应力明显增大,构造应力场复杂,地应力高;在高地应力作用下,开采扰动影响强烈,围岩破坏严重,煤岩体的扩容现象突出,表现为大偏应力下的煤岩体内部节理、裂隙、裂纹张开,出现新裂纹导致煤岩体积增大,扩容膨胀。

拱形巷道断面锚喷支护设计示例

拱形巷道断面锚喷支护设计示例 某矿年设计能力为30万吨,主要运输石门采用ZK7-6/250架线式电机车、一吨固定式矿车运输。石门穿过岩层坚固性系数为f=4~6,通过的最大风量38m 3/s ,井下最大涌水量为100m 3/h ,正常涌水量为60m 3/h ,石门中布置一趟直径为φ100mm 的压风管(法兰盘φ160mm );一趟直径为φ50mm 的洒水管,两条动力电缆,三条通讯及照明电缆,石门服务年限28年。试设计其双轨直线段的巷道断面。 (一)石门断面选型 根据石门的岩石性质、服务期较长,而且是全矿主要运输巷道,确定采用半圆拱锚喷支护。 (二)石门净断面尺寸的确定 1.巷道净宽B 1) 运输设备尺寸:查表知电机车尺寸比矿车大。其宽度A 1=1060mm ;高度h =l550mm 。机车架线高h 4=2000mm 。 2) 按《煤矿安全规程》规定:非人行侧设备至壁的宽度a ≥250mm ,取400mm ;人行侧设备至壁的宽度c ≥800mm ,取840mm 。 3) 双轨轨道中心距b :查表8-3得b =1300mm 。故电机车之间的间隙为1300-A 1=1300-1060=240>200mm ,符合安全要求。 根据以上各项,巷道净宽B =a 1+b+c 1= (400+1060/2)+1300+(1060/2+840) =930+1300+1370=3600mm 。 2.巷道壁高h 3 1) 确定道床参数 查表8-10,轨型为18kg /m ,根据轨型查表8-8得道床总高度h c =320mm ,道碴高h b =180mm ,道碴面至轨面高h a =140mm 。 2) 按各种要求计算壁高h 3 (1) 按导电弓要求:h 3=h 4+h c -22)()(z k n R +-- 式中 R ——半圆拱半径,R =B/2=3600/2=1800mm ; n ——导电弓距拱距离,取300mm ; K ——导电弓宽度之半为为360mm ; z ——轨道中心至巷道中心距离,z=B/2-a 1=3600/2-930=870mm ;h 4、h c 见前。故 h 3=2000+320-22)870360()3001800(+--=1462mm (2)按行人要求:h 3=h 5+h b -22)(r R R -- 式中 h 5——自碴面起管子高度,h 5=1800mm ; r ——行人与壁间安全距离,取200mm ;h b 及R 见前,则 h 3=1800+180-22)2001800(1800--=l155mm (3)按管道布置要求:必须满足机车与导电弓距管道的安全间隙。 h 3=h 5+h 7+h b -222)2(b D m k R +++- h 3=h 5+h 7+h b -22112)2 2(b D m A R +++- 式中 D ——压风管法兰盘直径160mm ;

关于软岩支护技术

关于软岩支护技术 前言 巷道支护是井工开采工程的核心,是一切安全生产和效益的基础,随着开采条件的日益恶化,采深的迅速增加,支护对井工开采的制约作用日趋明显,先进采矿方法能否实现,在很大程度上取决于巷道支护状况和有效断面能否得到保证。 第一节,深井巷道围岩强化支护技术体系及实践 一,深部高应力巷道:常规支护不能满足要求的一类巷道。 1,采用传统的架棚支护、锚杆支护都不能有效维护巷道。 2,以德国为代表采用U型钢可缩性支架、壁后充填、预留变形量架棚支护的方式,也不能有效维护巷道。 3,常常在掘进时就需要多次卧底、返修。 为此:出路在于发展新型锚杆类支护综合治理比较乐观,目前遇到的大部分问题可以得到解决或改善。 如:德国向我国输入U型钢可缩性支架、壁后充填技术,在德国使用范围400-600米深,可是在我国达到400米深度就解决不了我国的问题。 二,深部支护问题: 1,相当一部分埋深达到800-1000米的深井巷道支护难度不大,可以采用常规的支护技术解决,因此深井巷道支护并不都属于复杂困难支护巷道,我们关心的焦点是深部难支护巷道称为深部

支护问题。 2,它通常是指主要由于巷道埋藏深度导致的围岩较高的水平应力,使相对软弱的岩体发生大范围破坏,并产生大变型的一类工程支护问题。 三,复杂困难条件: 1,由于地层运动和成岩过程产生的强构造应力集中区,水平应力通常较大;这类构造区域内巷道变形有自身规律,其中顶板支护的安全可靠性要求较高。 2,膨胀性岩体、泥质岩体遇水泥化等条件,由于物理化学原因导致的岩体力学承载性能的衰减、岩体的变形等。 3,由于开采造成的次生应力集中区产生的巷道支护问题。 四,深井软岩成为支护重点: 1,深部高应力巷道的两个显著特点: (1),原始应力水平相对围岩强度高。 (2),采动附加应力更趋强烈、围岩破碎区范围进一步加大,不易形成结构效应。 2,时间效应强烈、变形速度快,不易长期维护: (1),第一类,围岩软弱型、即软岩巷道; (2),第二类,采动影响型、即动压巷道; (3),第三类,深井高应力型、即深井巷道; 五,巷道大变形、难以支护原因: 1,围岩松软破碎:单轴抗压强度﹤10-20MPa;

锚杆、锚喷巷道支护的安全检查(最新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 锚杆、锚喷巷道支护的安全检查 (最新版) Safety management is an important part of production management. Safety and production are in the implementation process

锚杆、锚喷巷道支护的安全检查(最新版) 锚杆和锚喷巷道支护的安全检查重点叙述如下: (1)锚杆支护和锚喷支护对巷道断面成型要求严格,在综合掘进机开挖时要严格掌握,在爆破成型时更要认真搞好光面爆,尤其是巷道断面周边眼的布置、眼距、孑L深、角度及装药量,必须严格执行规程设计规定,这是保证成型质量的关键。 (2)锚杆眼的布置、眼距、孔深、角度必须符合规程要求,锚杆角度应垂直于帮壁平面。 (3)锚杆无论是楔缝式,还是树脂药卷式,在装设锚杆时必须按规定要求程序装设,尤其是药卷浸水人孔搅拌,更要在浸水时间上和搅拌力度上按规定操作,以保证锚杆锚固质量。 (4)锚杆入孔固定(凝固)好后,把托板或托梁钢带等戴好上平,与顶帮岩石贴紧,如无法贴紧时要用木板垫好,然后上螺帽,螺帽要戴满丝扣,用力矩扳手拧紧。锚杆外露长度应小于0.05m。

(5)锚杆支护要定期做拉拔(拉力)试验,发现锚固小于规定的要采取补打锚杆或加架棚子等措施。 (6)采用锚喷支护时,要按规定布置锚杆眼并及时保质的支设锚杆,要求同上不再重复。 (7)无论是锚杆支护还是锚喷支护,最大空顶距、最小空顶距、初喷与复喷的间距都要在规程中明确规定并严格执行。 (8)喷浆的配比必须符合要求,水泥标号符合要求,喷体强度要定期取样检验。 (9)要保证初喷和复喷质量,尤其是巷道顶部和腮部喷层厚度必须达到要求。喷浆前要用清水冲洗巷道帮壁,喷后巷道帮壁平整,断面规格和中线符合要求,不准出现吊脚穿裙现象。帮壁凹进部分要逐次补喷,必要时要挂网喷浆,每次补喷厚度不大于0.1m。 (10)做好喷浆时防尘工作,操作者要带好个体防尘口罩。喷浆时要撤出设备,不能撤出的要遮盖保护。喷浆作业时要停止 (11)用风钻、电钻钻孑L必须湿式凿岩钻孔,不准干打眼。 (12)水泥、石子、速凝剂等材料要加强管理,堆放整齐,巷道

锚喷支护工安全技术措施

锚喷支护工安全技术措施 本条措施主要针对+1163水平运输巷道局部地点进行支护安全技术指导工作。 一、锚喷点: 主要针对主平硐。 喷浆地段岩性属硫铁矿。由于风氧化过快导致巷道顶部帮壁随时脱层,防止出现顶部掉渣,危害安全,特制定支护方案。 支护工程量220米左右,支护方式锚喷、喷浆面周长8米,锚喷厚度70mm,锚杆深度2米,锚杆9根,排距0.9米,锚网规格1*2,锚杆外露长度50mm,锚盘规格100*100。

二、技术要求: 1、锚杆深度必须打够,严禁空钻。 2、锚杆必须锚紧,不得有松动现象。 3、锚网连接点必须重网连接。 4、锚杆必须打在巷道凹处。根据现场掌握。 5、锚喷后成形巷道凹凸不得出现50mm. 三、安全技术操作 施工前的安全措施

1、严格执行敲帮问顶,清理危岩。氧化带必须清理完毕,进入原始岩层方可打眼。 2、必须使用3米长长柄铁钎工具处理危岩,每次清理面积必须大于需锚喷面积的三倍。 3、清理时顶部危岩下面严禁行人行车。 4、打锚杆时严禁行人行车。 5、由于巷道高,施工时为了便于操作,用钢管焊制铁板凳,规格长2米,宽1米,高0.6米。便于施工使用。 6、施工地段有行人或行车禁止打眼作业。 7、超宽或超高部分用石块充填。

2不得使用凝结、失效的水泥及速凝剂,以及含泥量超过规定的砂子和石子。3支护过程中必须对支护地点的电缆、风水管线、风筒及机电设备进行保护。4喷射混凝土前,必须对锚杆、金属网质量进行检查,确保达到规程要求。5巷道过断层、破碎带及过老空等特殊地段时,必须加强临时支护,并派专人负责观察顶板。6喷浆机运转时,严禁手或工具进入喷浆机内。7喷射混凝土注意事项。一次喷射混凝土厚度达不到设计要求时,应分次喷射,粗复喷间隔时间不得超过 小时。否则应用高压水冲洗受喷面。遇有超挖或裂缝低凹处,应先 喷补平整,然后再正常喷射。 8严禁将喷头对准人员。喷射过程中,如发生堵塞、停风或停电等故障时,应立即关闭水门,将喷头向下放置,以防水流入输料管内; 处理堵管时。采用敲击法疏通料管。喷枪口前方及其附近严禁有人。在喷射过程中,喷浆机压力表突然上升或下降,摆动异常时,应立 即停机检查。喷浆时严格执行除尘及降尘措施,喷射人员要佩戴防 尘口罩、乳胶手套和眼镜。喷射工作结束后,喷层在天以内,每班 洒水一次,天以后,每天洒水一次,持续养护天。9喷射混凝土的骨料应在地面拌匀。10金属网联网扣距、联网铁丝规格符合作业规程 规定。11定期进行混凝土强度检测,对不合格的地段必须进行补强 支护。

煤矿软岩巷道支护技术

煤矿软岩巷道支护技术 发表时间:2018-02-26T10:42:14.743Z 来源:《基层建设》2017年第33期作者:张晓赟 [导读] 摘要:一般而言,在煤矿巷道形成后,岩层受力均衡状况被打破,特别是岩层的应力会重组从而达到新的平衡,但一旦切向力作用过大,而反作用力不断减小,则会导致岩壁受力处于极端状态,而这种受力不均衡的情况也会逐步朝着巷道周围进行蔓延,最后导致岩壁异常拓展及变形,受力条件也在不断恶化。 太原理工大学山西太原 030000 摘要:一般而言,在煤矿巷道形成后,岩层受力均衡状况被打破,特别是岩层的应力会重组从而达到新的平衡,但一旦切向力作用过大,而反作用力不断减小,则会导致岩壁受力处于极端状态,而这种受力不均衡的情况也会逐步朝着巷道周围进行蔓延,最后导致岩壁异常拓展及变形,受力条件也在不断恶化。要避免严重事故发生,则需对巷道岩层进行支护,特别是一些质地较软的岩层,更需要采用科学的支护方案。要让软岩巷道支护保持能达到预期效果,则需采用科学有效的支护技术与方法。就此将从煤矿软岩巷道支护技术应用方面入手,进行具体分析与探讨。 关键词:煤矿软岩;巷道;支护技术 引言 煤矿是十分重要的能源,煤矿消耗量巨大,而煤炭的储量却在逐年下降,煤矿层的深度也越来越大。煤矿井下作业环境恶劣,如果地质条件比较差,则会造成煤矿井下作业危险度增加,需要结合实际情况选用巷道施工支护技术。基于此,对煤矿井下软岩巷道施工支护技术进行深入研究意义重大。 1 巷道支护理论概述 煤矿巷道支护理论是煤矿支护理论的一个基础性内容,从古至今,人们始终没有停止过对能源的开采和应用,而煤矿巷道支护技术也已经有了十几种理论形式,其中较为常见的就是悬吊理论、加固理论、最大水平应力理论等,其中悬吊理论主要就是应用于软围岩巷道顶板锚杆技术,在实际的煤矿开采中,虽然这种巷道技术较为少见,应用也不多,但是这种悬吊理论却能够更加直观地为煤矿开采给予帮助。而加固理论则从宏观的角度分析了煤矿巷道的内部结构,加固理论也具有自身的特点和结构特征,一般情况下都是在被纵横交错的弱面切割的岩层中安装锚杆,这样可以提升煤矿内部巷道的稳定性。除此之外,最为常见的就是澳大利亚锚杆支护技术,该种技术在某种程度上可以克服水平应力,避免巷道内部出现变形、破裂等问题。但是澳大利亚锚杆支护技术也有着一定的应用范围,通常情况下更适用于巷道平行于最大水平应用力,而其并不适用于垂直水平应用力。 2 软岩巷道支护特点 从科学的角度上来看,软岩巷道主要就是指容易风化、土质黏结性差、土质松软、稳定性差的岩石等,由于软岩石巷道硬度较差,很容易受到外界环境和因素的影响,所以在对这类煤矿进行巷道支护设计的时候应该格外注意。如果需要用数据来判断的话,通常就是松动圈厚度达到1.5m以上的被称之为软岩。从我国目前的地形上来看,软岩的分布并没有规律,很多地区都有软岩分布,通常情况下成岩土层较为深厚并且年代久远,其岩层无论强度大小都被称之为软岩。软岩的自身性质也将会决定巷道的实际特点。不同程度的软岩也应该有着具体的划分,并不是所有的软岩都符合同一情况的巷道设置。可见软岩巷道支护具有一定的要求和特点,只有站在正确的角度去分析和理解问题,才会更好地设置巷道内部的结构,为实现巷道支护体系的完善性奠定坚实的基础。 2 目前国内软岩巷道主要支护方法 2.1 全部刚性类 全部刚性类主要是指闭合钢架、完整预制模板、现场浇筑混凝土等方面的支护。当然,由于支护刚性增加,围岩受到的压力也会更多,所以即便是支护可靠性增强,岩层负载未曾减少,且支架改变与损坏问题未能解决。因此,这类支护并不能很好地协调围岩和支架的受力关系,且无法将刚性及强度配合巷道受到严重形变与压力的围岩进行配合,也会导致更多新问题产生,即如岩层断层增加、工作效率减少、资金投入过大等。 2.2 科学设计巷道位置 (1)在设计巷道前需要对矿井下水文地质情况、工程地质特点、应力场分布、岩层岩性等进行真实而完整的调查,以保障巷道设计的科学性。(2)在进行大巷道布设时,走向的选择应该尽可能地与应力的方向相平行。同时,还需要避免不同节理发育带、断层等情况。(3)在设计巷道的过程中应该尽量保持简单明了,避免空间的交错重叠。同时,矿井下峒室的施工过程需要按照巷道的实际情况来调整顺序。 2.3 U型钢伸缩类 按照软岩体积可变的特征进行设定支架,而这种支护主要是针对已出现体积形变的岩层或断层破裂位置的支撑。而且其优势在于具有较强的可变性,此外本身也具备更多的承受与支撑能力;从而保证支架受到的力与围岩应力完全相反,也就是说在特定情况中支架本身可进行伸缩,而对应的负荷量也会出现增大减小等调整,从而保证支护效果的有效改进。不过,在现实运用时,考虑到U型钢伸缩类支架的最大承重力往往无法体现。导致问题的主要因素是,巷道挖掘及支护技术都无法解决支架背面出现各类规格的空洞,从而导致支架附和围岩接触面十分不均匀。一旦围岩形变,支架由于综合负载的总体作用而出现崩塌形变,而且受力条件较差,往往会因为弯曲、扭转等形变情况而无法进行支撑;此外,由于对支护阻力有更加严苛的要求,对于钢制架的质量也要求越大,这也间接加大了钢材用量,提升支护资金投入。 2.4 综合类 综合支护就是不同的支护方式进行组合,如:锚喷组合注浆加固、U 型钢伸缩配合注浆等。无论哪种综合支护方式,都需按照软岩巷道围岩特征及具体情况进行挑选和运用,且需明确科学的支护方案及数据。此外,锚喷支护应作为优先选择,因为其具有更强的适用性与功能性,能满足一些复杂条件下的支护。此外软岩属于难以找到支点的岩体,因而支护存在难度性,而针对软岩巷道,综合类支护技术的运用需注意以下几方面的问题:a)尽量向外岩层给予抗拒力从而调整岩体的整体受力情况,避免出现碎裂、形变问题,也能保证围岩的稳固性,当然,在岩体内部入手,则需强化其强度,从而保证具有更强的负荷承受力;b)U 型钢伸缩类支架的泛用性较强,但考虑支护成本的问题,可局部采用;且设置支护后,无论在填补还是施工方面,最终效果往往会对支护情况造成一定作用;c)锚喷支护是目前较为先进

相关文档
最新文档