数学建模讲座

合集下载

数学建模讲座--预测模型

数学建模讲座--预测模型

年份
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
时序 ( t) 12 13 14 15 16 17 18 19 20 21 22
总额 ( yt ) 604.5 638.2 670.3 732.8 770.5 737.3 801.5 858.0 929.2 1023.3 1106.7
k
(一) 直线趋势外推法
适用条件:时间序列数据(观察值)呈直线 上升或下降的情形。 该预测变量的长期趋势可以用关于时间 的直线描述,通过该直线趋势的向外延伸 (外推),估计其预测值。 两种处理方式:拟合直线方程与加权拟合直线 方程
例 3.1 某家用电器厂 1993~2003 年利润额数据资料如表 3.1 所示。试预测 2004、2005年该企业的利润。
二 、趋势外推法经常选用的数学模型
根据预测变量变动趋势是否为线性,又分为线性趋势外推法 和曲线趋势外推法。
ˆt b0 b (一)线性模型y 1t (二)曲线模型 1.多项式曲线模型 2.简单指数曲线模型 3.修正指数曲线模型 4.生长曲线模型 (龚珀资曲线模型)
2
ˆt b0 b1t b2t bk t y 多项式模型一般形式:
预测模型简介
数学模型按功能大致分三种: 评价、优化、预测 最近几年,在大学生数学建模竞赛常常出 现预测模型或是与预测有关的题目:
1.疾病的传播; 2.雨量的预报; 3.人口的预测。
统计预测的概念和作用
(一)统计预测的概念
概念: 预测就是根据过去和现在估计未来,预测未来。 统计预测属于预测方法研究范畴,即如何利用科学的统计 方法对事物的未来发展进行定量推测.

信阳学院数学学院为第六届数学建模大赛召开知识讲座

信阳学院数学学院为第六届数学建模大赛召开知识讲座

信阳学院数学学院为第六届数学建模大赛召开知识讲座为使第六届数学建模大赛顺利展开,提高同学们参加数学建模的信心,10月27日晚,信阳师院数学建模协会在数学楼104教室召开数学建模知识讲座,该院贾志刚老师应邀为同学们做知识讲座,该校各个院系的百余名同学聆听了此次讲座。

首先,贾老师针对“椅子能否在不平的地面上放平”、“玻璃窗保温”两大实际问题阐述了如何建立数学模型这一桥梁将现实生活中问题转化为数学问题,灵活运用数学知识解决疑难。

随后,他要求同学们要依据经验,合理提出假设,综合分析建立合适的数学模型,从不同的角度剖析问题,寻找解决思路,运用逐一分析,综合讨论的方法,各个击破。

贾老师耐心细致的讲解,缜密的逻辑思维方式,娓娓到来思维模式,为同学们点迷津,解疑惑,树信心。

最后,他鼓励同学们面对难题要学会开阔思维,综合分析,全面考虑,通过数学建模这一平台锻炼自己运用数学模型和计算机编程提高综合能力,提升团队协助能力。

此次讲座激发了同学们学习数学的积极性,增强了同学们对数学建模的了解,为营造良好的学术氛围起到了烘托作用,第四届数学文化节的到来夯实了基础。

(数理信息学院召开校第三届研究生数学建模竞赛动员大会数理信息学院研究生会宣传部黄涛郭丽4月19日晚,浙江师范大学第三届研究生数学建模竞赛动员大会在数理与信息工程学院21幢427教室隆重举行。

出席此次大会的有数理信息学院卜月华老师、周红霞老师、吕新忠老师、姜玉峰老师以及报名参加此次建模竞赛的研究生。

动员会首先由周红霞老师讲话。

周老师首先对数学建模的性质、参加数学建模竞赛的意义进行了阐述,接着周老师说:“学校对数学建模竞赛高度重视,培养了一批又一批优秀的数学建模人才,同时也极大地提高了同学的科研创新能力。

希望此次比赛的参赛同学能秉承重在参与、团队合作的精神,参与比赛、享受比赛,通过此次比赛切实提高自身专业素质。

”吕新忠老师通过自身指导数学建模竞赛的丰富经验对数学建模的基本概念、研究生数学建模竞赛的现状以及参加数学建模的注意事项等几方面进行讲解。

数学建模讲座机理分析方法及例子1

数学建模讲座机理分析方法及例子1
两个不动点x1*, x2* ,一个稳定(吸引),另一个
不稳定,轨道{xn}趋向稳定点
■ 当3<a<1+61/2时, xn 绕着两个数 x3*,x4*振动,
例 a =3.2
x2k-1 →0.799455
x2k →o.513045
这两个数满足
x f 2 ( x), x f ( x)
也称为周期2点,对应轨道称周期2轨道.(原来周期
n = 0,1,2,…
● 数值迭代( a 逐渐增加,迭代会有何结果)
1.倍周期分叉现象
■ 当0<a <1时,由于0<xn<axn+1
xn →0
物种逐渐灭亡
■ 当1<a<3时,任何(0,1)中初始值的轨道趋于
x*=1-1/a 其中x*是方程f(x)=x的解,为映射f 的不动点
(周期1点)例:a =1.5时 xn → 1/3.
~总和生育率
f
(t )
(t) r2 r1
h(r , t )k
(r,
t)
p(r , t )dr
人口发展方程和生育率
f
(t)
(t) r2 r1
h(r , t )k
(r,t)
p(r,
t)dr
(t) ~总和生育率——控制生育的多少
h(r, t ) ~生育模式——控制生育的早晚和疏密
p(r,t)
p0
约35年增加一倍,与1700-1961年世界人 统口计结果一致
与近年统计结果有误差,由a >1,xn趋向无穷, 模型在人口长期预测方面必定是失效的.
● Logistic模型
.
生存资源是重要的因素,修改模型为:
xn+1 - xn= r xn- b xn2 - b xn2为竞争(约束)项,r、b 称生命系数,则

《数学建模讲座》课件

《数学建模讲座》课件

讲者:李教授,XX大学数学系副教授。
感谢您的聆听!
数学建模的基本步骤
1
研究问题
了解和分析实际问题,明确目标和需求。
2
建立模型
根据实际问题,选择适当的数学模型,并进行建模。
3
求解模型
利用数学工具和方法求解建立的数学模型。
4
模型分析
对求解的结果进行分析和评价,寻找优劣及改进方案。
数学建模中的数学工具及其应用
优化方法
优化方法可以帮助 我们寻找问题的最 优解或最佳决策。
统计学方法
统计学方法可以帮 助我们分析和理解 数据,揭示其中的 规律和趋势。
线性代数
线性代数在数学建 模中有广泛的应用, 如矩阵运算、线性 方程组的求解等。
概率论与数 理统计
概率论与数理统计 可以帮助我们分析 和预测随机现象, 并进行决策和风险 评估。
结论
数学建模的重要性
数学建模是将数学与实践相结合的要途径,对推动科学和社会的发展具有重要意义。
《数学建模讲座》PPT课件
# 数学建模讲座PPT课件 ## 概述 本讲座将介绍以下内容: 1. 什么是数学建模 2. 数学建模的意义 3. 数学建模的基本步骤 4. 数学建模中的数学工具及其应用
什么是数学建模
1 定义
数学建模是指利用数学语言和工具对真实世界中的问题进行化简、抽象和数学描述的过 程。
将知识转化为实践的能力
通过数学建模,我们可以将抽象的数学理论应用于实际问题的求解与分析。
建立对世界的更深理解
数学建模可以帮助我们深入分析问题,寻找最佳解决方案,从而提高对世界的理解。
Q&A
1 时间
讲座时间:2021年6月15日,上午10点至11点。

数学建模论文讲座心得体会

数学建模论文讲座心得体会

一、引言数学建模是近年来备受关注的研究领域,它将数学理论应用于实际问题,为解决实际问题提供了一种有效的方法。

近日,我有幸参加了一场关于数学建模论文写作的讲座,通过此次讲座,我对数学建模论文的写作有了更深入的了解,以下是我对讲座的心得体会。

二、讲座内容回顾1. 数学建模论文的基本结构讲座首先介绍了数学建模论文的基本结构,包括引言、问题背景、模型建立、模型求解、结果分析与讨论、结论等部分。

这些部分构成了一个完整的数学建模论文,有助于读者全面了解论文的研究内容。

2. 数学建模论文的写作技巧讲座重点讲解了数学建模论文的写作技巧,包括以下几个方面:(1)引言部分:应简要介绍研究背景、研究目的、研究意义,以及论文的主要贡献。

(2)问题背景部分:应详细阐述研究问题的来源、研究问题的重要性,以及研究问题的现状。

(3)模型建立部分:应介绍模型的选择、模型的假设、模型的参数等。

(4)模型求解部分:应介绍求解模型的方法、求解过程、求解结果。

(5)结果分析与讨论部分:应分析求解结果的意义、求解结果的局限性,以及与现有研究的比较。

(6)结论部分:应总结论文的主要发现、论文的创新点,以及论文的不足之处。

3. 数学建模论文的写作规范讲座还介绍了数学建模论文的写作规范,包括以下几个方面:(1)格式规范:遵循学术期刊的格式要求,包括字体、字号、行距等。

(2)参考文献规范:按照学术规范引用参考文献,确保论文的学术性。

(3)图表规范:图表应清晰、简洁、规范,便于读者理解。

三、心得体会1. 数学建模论文写作的重要性通过讲座,我深刻认识到数学建模论文写作的重要性。

数学建模论文不仅是对数学理论的应用,更是对实际问题的解决。

一篇优秀的数学建模论文,有助于推动数学理论的发展,为实际问题的解决提供有力支持。

2. 数学建模论文写作的技巧讲座中提到的数学建模论文写作技巧,为我今后的写作提供了宝贵的经验。

在今后的写作过程中,我将遵循这些技巧,提高论文的质量。

数学建模知识讲座精品教案模板精选

数学建模知识讲座精品教案模板精选

数学建模知识讲座精品教案模板精选一、教学内容本节课选自高中数学教材《数学建模》第四章第一节,详细内容主要围绕数学建模的基本概念、建模过程、模型类型及其在现实生活中的应用进行讲解。

通过学习,使学生了解数学建模的重要性,掌握基本的建模方法和技巧。

二、教学目标1. 知识与技能:了解数学建模的基本概念,掌握建模过程,学会运用不同的模型类型解决实际问题。

2. 过程与方法:培养学生运用数学知识解决实际问题的能力,提高学生的团队协作和沟通能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,增强学生运用数学知识为社会服务的意识。

三、教学难点与重点教学难点:数学建模过程的理解和运用,不同模型类型的识别和应用。

教学重点:数学建模的基本概念,建模方法和技巧。

四、教具与学具准备1. 教具:黑板、粉笔、教学PPT。

五、教学过程1. 实践情景引入:通过展示现实生活中的实际问题,让学生感受数学建模的重要性,激发学习兴趣。

2. 知识讲解:(1)数学建模的基本概念;(2)数学建模的过程;(3)数学建模的模型类型;(4)数学建模在现实生活中的应用。

3. 例题讲解:讲解经典数学建模案例,引导学生分析问题、建立模型、解决问题。

4. 随堂练习:让学生分组讨论,针对实际问题建立数学模型,并给出解决方案。

六、板书设计1. 数学建模基本概念2. 数学建模过程3. 数学建模模型类型4. 数学建模应用案例七、作业设计1. 作业题目:针对课后习题,选择一道数学建模题目进行解答。

2. 答案要求:详细阐述解题过程,包括问题分析、模型建立、求解方法等。

八、课后反思及拓展延伸1. 反思:本节课学生对于数学建模概念的理解程度,以及在实际问题中的应用能力。

2. 拓展延伸:鼓励学生在课后查找相关资料,了解更多数学建模案例,提高自身建模能力。

同时,组织学生参加数学建模竞赛,提高实践操作能力。

重点和难点解析:1. 教学难点与重点的识别;2. 例题讲解的详细程度;3. 随堂练习的设计与实施;4. 作业设计的深度与广度;5. 课后反思及拓展延伸的实际操作。

2024年数学建模知识讲座教案模板精选

2024年数学建模知识讲座教案模板精选

2024年数学建模知识讲座教案模板精选一、教学内容本节课选自《数学建模》教材第四章:数学建模方法与应用。

具体内容包括:线性规划模型、非线性规划模型、整数规划模型以及应用案例分析。

二、教学目标1. 理解并掌握线性规划、非线性规划和整数规划的基本概念及其求解方法。

2. 能够运用数学建模方法解决实际问题,提高学生分析问题和解决问题的能力。

3. 培养学生的团队合作意识,提高沟通与协作能力。

三、教学难点与重点重点:线性规划、非线性规划和整数规划的基本概念及求解方法。

难点:如何将实际问题抽象成数学模型,并运用合适的算法求解。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

五、教学过程1. 实践情景引入(5分钟)通过展示一个实际案例,引导学生思考如何将现实问题抽象成数学模型。

2. 理论讲解(15分钟)介绍线性规划、非线性规划和整数规划的基本概念,讲解求解方法。

3. 例题讲解(10分钟)以一道典型的数学建模题目为例,讲解如何建立模型并求解。

4. 随堂练习(10分钟)学生分组讨论,完成一个简单的数学建模问题。

5. 答疑解惑(5分钟)针对学生在练习中遇到的问题进行解答。

6. 小组讨论(10分钟)学生分组讨论一个较为复杂的实际问题,尝试建立数学模型并求解。

7. 成果展示(10分钟)各小组展示自己的建模过程和结果,进行交流和评价。

六、板书设计1. 2024年数学建模知识讲座2. 线性规划、非线性规划、整数规划的基本概念3. 案例分析与求解步骤4. 随堂练习题目5. 小组讨论题目七、作业设计1. 作业题目:(1)某工厂生产两种产品,已知生产每种产品所需的材料、人工和设备费用,求利润最大时的生产计划。

(2)某城市公交线路优化问题,已知各站点间的距离和客流量,求最短的公交线路。

2. 答案:(1)根据线性规划求解方法,列出目标函数和约束条件,使用单纯形法求解。

(2)根据整数规划求解方法,列出目标函数和约束条件,使用分支定界法或割平面法求解。

数学建模讲座心得体会

数学建模讲座心得体会

数学建模讲座心得体会我非常荣幸参加了这场数学建模讲座,并在此分享一下我的心得体会。

讲座主题涉及数学建模的基本原理、实际应用以及解决实际问题的方法。

首先,我认为数学建模是一种综合运用数学知识、思维和技巧解决实际问题的方法。

通过数学建模,我们可以将复杂的现实问题转化为数学问题,然后运用数学方法分析和解决这些问题。

这是一种很有挑战性和创造性的过程,需要我们充分理解问题的背景和要求,合理选择模型和方法,以及使用适当的工具和软件来进行计算和验证。

其次,在数学建模中,模型的构建是关键。

一个好的模型需要符合实际问题的特征和要求,能够准确地描述问题的本质和关系。

在构建模型的过程中,我们需要考虑问题的各个方面和因素,比如变量的选择、数学表达式的建立、参数的确定等。

同时,我们还需要不断地优化和调整模型,使其更符合实际情况,并能够得到可靠和有效的结果。

第三,数学建模的解决过程需要有合理的步骤和方法。

在解决实际问题时,我们可以采用数学分析、模拟实验、数据处理和统计分析等方法。

这些方法可以帮助我们理清问题的关键点和步骤,找到问题的规律和模式,从而得到可行的解决方案。

同时,我们还需要注意解决问题的时机和顺序,尽可能地提高解决问题的效率和精度。

最后,数学建模不仅仅是一门科学,更是一种思维方式和能力的培养。

通过数学建模,我们可以锻炼我们的逻辑思维、创造性思维和团队合作能力。

在解决实际问题的过程中,我们需要思考和分析问题的各个方面,提出合理的假设和解决方案,并与他人进行有效的沟通和合作。

这样的能力不仅对于我们的学习和工作有很大的帮助,也是我们提高自己综合素质的重要手段。

综上所述,数学建模是一种综合运用数学知识、思维和技巧解决实际问题的方法,通过构建合理的模型和采用有效的解决步骤和方法,我们可以得到可靠和有效的解决方案。

同时,数学建模还可以帮助我们锻炼我们的思维能力和团队合作能力,提高我们的综合素质。

因此,我非常感谢这场数学建模讲座,它给我带来了重要的启发和帮助,让我对数学建模有了更深入的理解和认识。

数学建模讲座PPT课件

数学建模讲座PPT课件

决策~ 每一步(此岸到彼岸或彼岸到此岸)船上的人员 要求~在安全的前提下(两岸的随从数不比商人多),经有 限步使全体人员过河
模型构成
xk~第k次渡河前此岸的商人数 xk, yk=0,1,2,3; yk~第k次渡河前此岸的随从数 k=1,2, sk=(xk , yk)~过程的状态 S ~ 允许状态集合
航行问题建立数学模型的基本步骤
• 作出简化假设(船速、水速为常数); • 用符号表示有关量(x, y表示船速和水速); • 用物理定律(匀速运动的距离等于速度乘以
时间)列出数学式子(二元一次方程); • 求解得到数学解答(x=20, y=5);
• 回答原问题(船速每小时20公里)。
数学模型 (Mathematical Model) 和 数学建模(Mathematical Modeling)
3
法 允许状态S ~ 10个 点
允许决策D ~ 移动1或2格; 2
k奇,左下移; k偶,右上移.
d1, d11给出安全渡河方案
1 d11
s1
d1
评注和思考
0sn+1 1
2
3x
规格化方法, 易于推广 考虑4名商人各带一随从的情况
习题
• 模仿这一案例,作下面一题: 人带着猫、鸡、米过河,船除需要
人划之外,至多能载猫、鸡、米三者之 一,而当人不在场时猫要吃鸡、鸡要吃 米。试设计一安全过河方案,并使渡河 次数尽量地少。
越来越受到人们的重视。
数学建模
如虎添翼
计算机技术
知识经济
建模示例 椅子能在不平的地面上放稳吗?
问题 椅子能在不平的地面上放稳吗?
模 1.椅子四条腿一样长,椅脚与地面接触处可视为一人点,四
型 假

数学建模入门省公开课获奖课件说课比赛一等奖课件

数学建模入门省公开课获奖课件说课比赛一等奖课件

取k1/k2 =16
Q 8h 1
d
2
模型应用 Q1 1 , h l
Q2 8h 1
d
取 h=l/d=4, 则 Q1/Q2=0.03
Q1/Q2
即双层玻璃窗与一样多材
料旳单层玻璃窗相比,可
0.06
降低97%旳热量损失。
成果分析
0.03 0.02
0 2 4 6h
Q1/Q2所以如此小,是因为层间空气极低旳热传 导系数 k2, 而这要求空气非常干燥、不流通。
3)模型建立: •分清变量类型,恰当使用数学工具; •抓住问题旳本质,简化变量之间旳关系; •要有严密旳数学推理,模型本身要正确; •要有足够旳精确度。 4)模型求解:能够涉及解方程、画图形、证明定理 以及逻辑运算等。会用到老式旳和近代旳数学方 法,计算机技术(编程或软件包)。尤其地近似计 算措施(泰勒级数,三角级数,二项式展开、代数 近似、有效数字等)。
什么问题,有何特色等;
2、问题提出和假设旳合理性
①简朴地阐明问题旳情景,即要说清事情 旳来龙去脉。
②列出必要数据,提出要处理旳问题,并 给出研究对象旳关键信息旳内容。
③历届数学建模竞赛旳试题能够看作是情 景阐明旳范例。
模型假设
①论文中旳假设要以严格、确切旳数学语言体现。 ②所提出旳假设为建立数学模型所必需旳,而不是
4 4)椅子旳中心不动。
2 建模分析
g( ) 表达A,C与地面距离之和
y
f ( ) 表达B,D与地面距离之和 B B
则由三点着地,有
A
f ( )g( ) 0 0
2
C
O
A
x
C
不失一般性,设初始时: 0, g(0) 0, f (0) 0

数学建模讲座ppt课件

数学建模讲座ppt课件
1. 多项式的创建法 poly([b0 , b1, , bn1, bn ]) 创建 (x b0 )(x b1) (x bn ) 生 成的多项式的系数向量 poly(A) 创建矩阵 A 的特征多项式。
2.多项式的常用函数
roots(p) %返回多项式的根向量 注1:多项式p是一个行向量,而poly(p)是一个
例1 求x,使 Ax b 其中:
1 0 1 1
A


2
1
0

b


2

3 2 5 1
解1 用逆阵法 >> A=[1,0,1 2,1,0 -3,2,-5]; >> b=[1,2,-1]'; >> x=inv(A)*b
解2 用左/2
1/3
1/3
1/4
c=
335/113
>> format compact
>> A,c
A=
1
1/2
1/2
1/3
1/3
1/4
c=
335/113
%要空行
1/3 1/4 1/5
%不要空行
1/3 1/4 1/5
二、矩阵运算与数组运算
1、矩阵运算
>> A(:,1:3) ans = 123 678 11 12 13 >> A([1,2],[1,3,5]) ans = 135 6 8 10
例2 将向量中满足不超过0.5的元素提取出来 先编写一个M-文件 rand('seed',0); x=rand(1,10); L=x<=0.5; x x=x(L) 用tiquyuansu.m为名存盘,然后回到MATLAB环

数学建模讲座

数学建模讲座
数学建模讲座
讲座内容
数学建模 讲座内容
1、数学建模的含义与意义 2、数学建模能力的培养与提升 3、数学建模竞赛的相关介绍
4、 数学建模论文的设计与排版艺术
10/16/2020
2
数学建模的含义和意义
1 什么是数学建模
问题:树上有十只鸟,开枪打死一只, 还剩几只?
9只? 还是 0只?
分析:这是一道数学应用题(应该是小学生 的)。但他一样是数学建模问题,不过答案 就不重要了,重要的是过程。
2 数学建模的意义
1)体现了数学的应用价值 2)有利于学生理论联系实际能力的培养 3)有利于培养学生的科研素养 4)有利于增加同学参加课外学术活动的 经验并在评优时更有竞争力。
3 江西师大的数学建模
肯定:从我校学生参加数学建模竞赛的成绩来看,是相当值得 肯定的,每年的高教杯和国际赛都会有很多优秀的参赛队获得 很好的奖项。
杨玉花 夏成 周志刚 吴姗 付晓 高海龙 管莉莉 张丽 魏莎 袁海霞 吕琦 蒋漓 张一帆
袁定欢 宗志英 廖智霖 康悦 刘庆龙 刘涛 杜晨 阳春燕 李鹏飞 鄢婷芳 黄过伟 汪茵芸 王晴
指导 教师
教练组
获奖 等级
国2
教练组 1
教练组 2
教练组 2
教练组 2
教练组 3
教练组 3
教练组 国 1
教练组 国 2
10
2. 如何培养和提升建模能力
1)培养对数学建模的兴趣 2)学会自学学会研究 3)增强数学理论知识 4)平时多领悟建模过程 5)多参加比赛,在实践中体会平时学到的理论 知识从而得到领悟和进步 6)研读优秀论文
数学建模竞赛的相关介绍
1. Mcm/Icm国际数学建模竞赛
政府

数学建模公开课一等奖优质课大赛微课获奖课件

数学建模公开课一等奖优质课大赛微课获奖课件
火势以失火点为中心,
均匀向四周呈圆形蔓延,
假设1) 解释
半径 r与 t 成正比
r
B
面积 B与 t2成正比, dB/dt与 t成正比.
第21页
模型建立
假设1) 假设2)
dB
b t , 1
t2
t1
b
x
dt
b
t
t2
t1
x
1
0
t1
x t2 t
B(t2 )
t2 B (t)dt bt2 t12 2t12
销售收入 R=pw 资金投入 C=4t
利润 Q=R-C=pw -C Q(t) (8 gt)(80 rt) 4t
求 t 使Q(t)最大 t 4r 40g 2 =10 rg
Q(10)=660 > 640 10天后发售,可多得利润20元
第15页
敏感性分析
t 4r 40g 2 rg
研究 r, g改变时对模型结果影响 预计r=2, g=0.1
分析B(t)比较困难, 转而讨论森林烧毁 速度dB/dt.
B B(t2)
0
t1
t2
t
第20页
模型假设
1)0tt1, dB/dt 与 t成正比,系数 (火势蔓延速度)
2)t1tt2, 降为-x (为队员平均灭火速度)
3)f1(x)与B(t2)成正比,系数c1 (烧毁单位面积损失费) 4)每个队员单位时间灭火费用c2, 一次性费用c3
• 设g=0.1不变
t 40r 60 , r 1.5 r
t 对r (相对)敏感度
20
t
15
S (t ,
r)
Δt Δr
/ /
t r
dt dr

数学建模讲座之三-用MATLAB求解线性规划linprog函数

数学建模讲座之三-用MATLAB求解线性规划linprog函数
约束条件是限制决策变量取值的条件, 通常表示为g1(x1, x2, ..., xn) <= 0, g2(x1, x2, ..., xn) <= 0, ..., gn(x1, x2, ..., xn) <= 0。
线性规划的求解方法
01
线性规划的求解方法有 多种,包括图解法、单 纯形法、对偶法等。
02
运输问题
总结词
运输问题是一个经典的线性规划应用案例,旨在通过合理安排运输路线和车辆配 置,降低运输成本并提高运输效率。
详细描述
在运输问题中,企业需要考虑货物的运输路线、车辆配置、运输时间等多个因素 ,以最小化运输成本并最大化运输效率。通过建立线性规划模型,可以找到最优 的运输方案,使得企业在满足客户需求的同时获得最大的利润。
02
fval
目标函数的最小值
03
04
exitflag
退出标志,表示求解是否成功 ,0表示成功,其他值表示失

output
输出信息,包括迭代次数、最 优解等信息
03
使用linprog函数求解线 性规划问题
建立线性规划问题
确定决策变量
首先需要确定问题的决策 变量,即需要优化的变量。
确定目标函数
根据问题需求,确定目标 函数,即需要最大化或最 小化的函数。
05
总结与展望
线性规划的重要性和应用领域
线性规划是一种优化技术,通 过合理分配有限资源达到最优 目标。它在生产计划、物流管 理、金融投资等领域有广泛应
用。
在生产计划中,线性规划可用 于确定最优的生产组合,以最
小化成本或最大化利润。
在物流管理中,线性规划可用 于货物运输和配送路线优化, 降低运输成本和提高效率。

《数学建模经验交流》课件

《数学建模经验交流》课件

如何处理数据和参数的调整
数据清洗和预处理
01
在建模之前,需要对数据进行清洗和预处理,去除异常值、缺
失值和重复数据,确保数据的质量和准确性。
参数调整和优化
02
根据模型的参数要求,对数据进行适当的调整和优化,以满足
模型的输入要求。
数据可视化和分析
03
通过数据可视化和分析,了解数据的分布和特征,为参数调整
03
数学建模是解决复杂问题的 重要手段,广泛应用于科学 研究、工程设计、经济分析
等领域。
数学建模的应用领域
自然科学
物理、化学、生物等学科中的问题可以 通过数学建模进行深入研究。
工程领域
机械、电子、航空航天等工程问题需要 数学建模来优化设计。
社会科学
经济学、心理学、社会学等领域的研究 可以通过数学建模来揭示规律。
04
数学建模挑战与展望
数学建模面临的挑战
模型复杂度增加
随着实际问题的复杂化,数学建模的难度也在不断加 大,需要更高的数学理论和技术支持。
数据量与维度增加
大数据时代的来临使得数据量急剧增加,处理和分析 这些高维度数据需要更高级的数学建模方法。
模型验证与评估难度
由于现实世界的复杂性和不确定性,数学模型的验证 和评估变得更为困难。
心得2
数学建模不仅仅是建立模型,更重要的是对实际问题的深入理解 和分析。
经验3
要不断学习和掌握新的数学方法和工具,提高自己的建模能力和 水平。
THANKS
分组讨论
01
讨论1
针对环境污染问题,如何建立 数学模型来预测污染趋势和制
定治理方案?
02
讨论2
在金融领域,如何利用数学建 模来评估投资风险和预测市场

数学建模知识讲座教案模板精选

数学建模知识讲座教案模板精选

数学建模知识讲座教案模板精选一、教学内容本讲座依据《数学建模》教材第四章“数学模型的建立与求解”,具体内容包括:线性规划模型、非线性规划模型、整数规划模型及其应用案例分析。

二、教学目标1. 理解数学建模的基本概念,掌握数学建模的基本方法。

2. 学会运用线性规划、非线性规划和整数规划等方法解决实际问题。

3. 培养学生的团队合作意识和创新思维能力。

三、教学难点与重点教学难点:非线性规划模型的建立与求解。

教学重点:线性规划、非线性规划和整数规划模型的建立及其在实际问题中的应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:教材、《数学建模》学习指导书、计算器、草稿纸。

五、教学过程1. 实践情景引入(10分钟)利用多媒体展示实际生活中的数学建模案例,引导学生思考数学建模在实际问题中的应用。

2. 理论讲解(40分钟)(1)线性规划模型:讲解线性规划的基本概念、数学模型及其求解方法。

(2)非线性规划模型:讲解非线性规划的基本概念、数学模型及其求解方法。

(3)整数规划模型:讲解整数规划的基本概念、数学模型及其求解方法。

3. 例题讲解(40分钟)选择典型例题,分别讲解线性规划、非线性规划和整数规划模型的建立与求解过程。

4. 随堂练习(20分钟)学生独立完成练习题,教师巡回指导,解答学生疑问。

5. 小组讨论(20分钟)学生分组讨论,共同解决实际问题,培养团队合作意识。

六、板书设计1. 黑板左侧:列出线性规划、非线性规划和整数规划的基本概念、数学模型。

2. 黑板右侧:展示例题的解题步骤及关键公式。

七、作业设计1. 作业题目:(1)求下列线性规划问题的最优解:maximize z = 2x + 3ysubject to x + y ≤ 42x + y ≤ 5x, y ≥ 0(2)求解下列非线性规划问题:maximize z = x^2 + y^2subject to x + y = 1x, y ≥ 0(3)将实际问题转化为整数规划模型,并求解。

数学建模竞赛经验交流优秀PPT省名师优质课赛课获奖课件市赛课一等奖课件

数学建模竞赛经验交流优秀PPT省名师优质课赛课获奖课件市赛课一等奖课件

机会只给有准备旳人!
努力不一定成功 放弃一定是失败
数学建模经验交流会
理学院 xxx
Contents

参加数学建模旳意义

怎样坚持究竟

动手建模
一 参加数学建模旳意义
并 非
一 参加数学建模旳意义
“做了什么”:
1 • 提高运用软件的能力 2 • 提高论文写作的能力 3 • 提高逻辑思维的能力
一 参加数学建模旳意义
1.提升利用软件旳能力(MATLAB、Word、Excel等)

动手建模

动手建模
建模环节:
1.模型准备(背景、目旳、现象、数据、特征) 2.模型假设(合理性、简化性.但过份简朴、过份详细都不对,或反应不
了原问题或无法体现模型,要充分发挥想象力、洞察力、判断力,不断 修改或补充假设) 3.模型构成(建立数学构造) 4.模型求解(涉及推理、证明、数学地或数值地求解) 5.模型分析(数学意义分析、合理性分析、误差分析、敏捷性分析) 6.模型检验(接受实际检验、往往在假设上) 7.模型应用(取决于建模旳目旳)
一 参加数学建模旳意义
一 参加数学建模旳意义
2.提升论文写作旳能力
论文规 范化
论文整 体思路 的把握
抓住撰写摘 要的要领
一 参加数学建模旳意义
3.提升逻辑思维能力
走出学习生活中 感性思维误区 养成理性思维习惯
一 参加数学建模旳意义
“能做什么”:

怎样坚持究竟

怎样坚持究竟ห้องสมุดไป่ตู้

怎样坚持究竟
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我叫虎玲,是2012级数应1班的学生。

今天很荣幸能够和大家一起交流。

首先恭喜大家在第一阶段取得好成绩。

这次认证杯数学建模成绩比上一年的成绩好,能取得这样的成果是挺不容易的。

说起数学建模,会想到三天三夜,做论文。

但是没有想到其实数学建模是一场博弈,是在合作上的博弈。

有一个电影<美丽心灵>,不知道大家有没有看过,在一个大学的宿舍里,4个男孩正在商量着怎么去追求一个漂亮女孩。

他们想“假如这四个男孩都去追求那个漂亮女孩,那个女孩肯定会摆起架子来,不会理睬他们中的任何一个。

当这几个男孩再去追求别的女孩时,其他女孩也不会接受他们了,因为谁都不想当当次品。

可是假如他们愿意先追其他女孩,那么那个漂亮的女孩就不会有很强的优越感,那时追她就很容易了”这个小故事,反应的是生活在无处不在的博弈。

博弈论的英文是game theory,从字面意思来看,就是竞赛论或者游戏论。

数学建模就是一种博弈,也可以说,身边的很多行为和现象都可以用博弈论来描述。

数学建模中的合作过程也是一种博弈。

甚至去菜市场买菜,当我们对某种菜的口味和质量有疑问的时候,买菜的大婶也常这样说:“放心吧,我一直是在这儿买东西的”。

这句话看似朴实的话里其实也包含了“博弈论”中的思想,这次交易是一种次数无限的的重复博弈,假如我今天骗了你,下次甚至连你的朋友都不会再来我这儿买东西,所以我是不可能骗你的,而且因为我的菜质量和口味好,所以我才得以长期在这儿买菜,也就是说我的菜是没有问题的,你买回去亏不了。

而我们往往在听了大婶的一句话后,也会顿时消除疑虑,把菜买回家。

由此可见,博弈并非要不可及,它就在我们身边。

在现实生活中,“协作”“团队精神”这样的名词频频出现。

人们也认识到协作的重要性。

事实证明,1+1>2并不是伪命题。

最优化组合的相互协作,不仅能够创造更大的收益,同时,还能彼此双赢。

在建模中咱不说知识本身,咋说团队合作的重要性。

数学建模是3个人组队参加,因此,如何找到合适的队友也非常重要。

需要一个数学思维灵活,具有扎实的数学功底的人;编程的,编程能力要强,最好是计算机系的;写论文的,文字功底要好,表达要清晰明要。

这三个人最还是不同专业的组合,有利益不同专业间的思维碰撞,爆发最理想的能量!之前,我对数学建模并不怎么了解,总觉得它是一门很神奇的学科。

但是,参加过数学建模后,我觉得它并不是想象中的那么神奇,它跟我们现实生活是很接近的一门学科。

作为一个数学系的学生,一直都有一个疑问,数学的应用在那里。

不知道大家有没有这个感觉。

对了,就在这里,在这里,我看到了很多,也学到了很多,关于各个学科,各个领域,都少不了数学,都是用建模的思想,来解决实际问题,很神奇。

今天你要出去,有好几个路径可以走,我们综合各个因素考虑肯定会选出一条最佳的路径。

气象工作者为了得到准确的天气预报,就要根据气象站、气象卫星汇集的气压、雨量、风速等资料建立数学模型进行分析;城市规划者需要建立一个关于人口、经济、交通、环境等系统的模型来建设城市;厂长经理们要根据产品情况建立数学模型以便获得更大的经济效益……所以说很多实际问题都是运用建模的思想,再利用数学软件求解问题。

给大家举一个大家感兴趣的例子,男生追女生。

大家是否常有这样的感觉,我说的是男生啊:随着追女同学事情的顺利发展,最终成功的希望越来越大,但下一步就会失败的危险也在逐渐增加。

其实你的直觉并没有错。

随着事情的顺利发展,下一步失败的概率真的会变得越来越高……建立一个恋爱模型。

我们可以根据广大男同学的心态,把追女同学的过程简化成五个步骤:1. 得到联系方式;2. 聊得很投机;3. 一起吃饭,郊游;4. 一起逛商场,看电影; 5. 表白。

追女同学的过程中隐藏着一个典型的信息不对称现象——你不知道女生的底线在哪里。

她究竟是只想聊聊天,还是想一起吃吃饭,逛逛街,还是真的想和你在一起呢?要想摸清女生的想法,只能按照计划清单,一步一步往下试探了。

追女生就像挖地雷一样,女生的残酷拒绝有可能出现在任意一步,概率都是相同的。

我们不妨假设,经历重重险阻,最终追到女生的概率是50% 吧。

剩下50% 的情况中,你一定会在某一步被拒,概率各占10%。

不过,在追一个女生之前,你并不知道她是不是想要发展到那一步。

直觉告诉我们,追女生进行得越深入,你会越来越确信,她真的想要和你在一起。

可是,悲剧的男生们往往会因此就想当然地以为,他们在进行下一步的计划时会更顺利,或者即使不顺利,也会和以前一样顺利。

然而,事实却是:在你和女生越来越亲密的过程中,总的成功概率会越来越高,但同时,你在下一步面临失败的可能却也更大了。

悲催的单身哥们啊,你以前还以为是老天的捉弄,其实这本身就是事情自然发生的规律!为了解释这一现象,我们引入另一个悲剧男。

他对“追到女生”的定义不一样,除了表白成功之外,后面还有拥抱抱什么的。

因此,在他的恋爱模型中,追女生的步骤扩展到了10 步。

同样,女生的拒绝有可能出现在任意一步,概率都是相同的。

我们假设,在扩展的追女生模型中,这个悲剧男追到女生的概率为0,也就是说女生必然会在10 步之中的某一步拒掉他。

这样一来,女生在前五步拒绝他的概率也是50%。

假设他前四步都很顺利,第五步悲剧的概率是多少呢?不妨这样来想:因为前四步都成功了,但他注定会悲剧,那么他将会等可能地在剩余的六步中悲剧。

这样一来,他已经闯过了前四关,偏偏在第五步悲剧的概率就是1/6。

而一开始,他在第一步就悲剧的概率只是1/10。

你也许已经发现了,单单看前五步,前后两个模型本质上完全一样!因此上一段所说的概率也符合之前的恋爱五步曲模型。

也就是说,在五步恋爱中,第一步失败的概率是1/10,但最后一步失败的概率上升到了1/6!。

这就解释了为什么大多数失败男生都在感叹功败垂成,因为眼看着计划的顺利进行,他们过于乐观,没有意识到越往后失败的概率越大。

为什么会出现这样违反直觉的情况呢?其实这是条件概率在作祟。

注意到,总的失败概率是50%,其中女生可能在任意一步拒绝你,概率各占10%。

对于第二步来说,失败概率等于第一步成功的概率乘上第一步成功下第二步失败概率;反过来,第一步成功但第二步失败的概率,就等于第二步失败的概率除以第一步成功的概率,即0.1 / 0.9 = 1/9。

以此类推可以得到,前两步均成功但在第三步失败的概率就是1/8,接下来则分别是1/7 和1/6,这和引入悲剧男时得到的结果一样。

最后,有一个有意思的现象。

假设有一个细心男,追到女生的概率也是50%,不过他的计划很长,有10 步之多。

这样一来,他在每一步悲剧的概率只有5%,而在前九步成功的前提下最后一步悲剧的概率也只有1/11。

这样一来,在各个步骤失败的概率从1/20 增加到1/11,只增加了不到5 个百分点,适应起来也相对容易一些。

总而言之:奉劝各位屡战屡败的情场失意男神们,当你春风得意的时候切莫自负,因为接下来的挑战会更大。

如果难以适应,不妨细水长流。

参加数学建模,建立你追女神的数学模型。

开个玩笑。

我们说参加了数学建模竞赛,它可以培养大家的竞赛能力、抗压能力、问题设计能力、搜索资料的能力、计算机运用能力、论文写作与修改完善能力、语言表达能力、创新能力等科学综合素养,它让大家从传统的知识培养转变到能力的培养,让我们的思想追求有了质的变化!这种创新也可以应用在创业上。

当然了,学习数学可以提升我的逻辑思维能力和运算等抽象能力,但好多人觉得数学和实际遥不可及,可是呢,数学建模则成为了解决这种现象的杀手锏,因为数学建模就是为了培养大家的分析问题和分解决问题的能力。

它所教给我们的不单是一些数学方面的知识,比如说一些数学计算软件,学习建模的同时,借用各种建模软件解决问题是必不可少的Matlab,Lingo,等都是非常方便的。

数学模型是数学学习的新的方式,他为我们提供了自主学习的空间,有助于我们体验数学在解决实际问题中的价值和作用,体验数学与日常生化和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;而且数学模型还对我们有综合能力的培养、锻炼与提高。

它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好地锻炼和提高。

而且我认为数学模型带给我的是发散性思维,各种研究方法和手段。

教会我凡事要有自己的创新,自己的严密思维,不能局限于俗套。

同时,他还锻炼了我们的耐心和意志力。

在数学建模中,我们因为数学建模而开始查论文,学知识,学软件,到自己和数模队友一起合作paper,数模让我们开始了解科研。

我很庆幸,庆幸我大二就参加了数学建模,利用这个思想和方法,我也申报了科技创新项目,从立项到论文的发表,尤其是在写论文的过程中,和数学建模是一模一样的。

所以说参加了建模的学生,做大学生科技创新项目非常的有优势,而大学生科技创新项目给我们提供了创新创业的平台。

有同学会问,到低弄个什么课题好呢。

In fact, 只要你的想法符合客观事实,不违法,都是可以的。

比如说有同学想办一个辅导班,也可以呀,可以申报这个项目,既有老师的指导,又有项目资金的支持,何乐而不为呢。

还比如说,你在学习统计的时候,学习了独立检验,那我想检验一下,咋数计系数学学得好坏是否与性别有关呢,统计数据,做出这个结果,其实它就一篇小的论文了。

所以说,创新并不难,而是看我们愿不愿意动手去做这件事情,是不是有求知欲。

我们这些人都是凡人,水平本来就有限,如果连求知的欲望都没有了,连坚持的毅力都没有了,连拼搏的勇气有没有了,我们还剩下什么?什么都没有,学习了极限我们知道,生活中的事情只能在任意小的 下,趋于真理。

但永远达不到真理。

到底多么小,谁知道呢,天也不知道。

只有更小,没有最小。

所以今天我说的仅仅只是我的观点,不一定正确,仅供参考。

相关文档
最新文档