数学建模-最优化模型共48页
合集下载
数学建模~最优化模型(课件)

投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法
数学建模~最优化模型(课件ppt)

用MATLAB解无约束优化问题 解无约束优化问题
1. 一元函数无约束优化问题 一元函数无约束优化问题: min f ( x )
x1 ≤ x ≤ x 2
常用格式如下: 常用格式如下: (1)x= fminbnd (fun,x1,x2) ) (2)x= fminbnd (fun,x1,x2 ,options) ) (3)[x,fval]= fminbnd(…) ) , ( (4)[x,fval,exitflag]= fminbnd(…) ) , , ( (5)[x,fval,exitflag,output]= fminbnd(…) ) , , , ( 其中等式( )、( )、(5)的右边可选用( ) )、(4)、( 其中等式(3)、( )、( )的右边可选用(1)或(2) ) 的等式右边. 的等式右边 函数fminbnd的算法基于黄金分割法和二次插值法,它要求 函数 的算法基于黄金分割法和二次插值法, 的算法基于黄金分割法和二次插值法 目标函数必须是连续函数,并可能只给出局部最优解. 目标函数必须是连续函数,并可能只给出局部最优解
有约束最优化问题的数学建模
有约束最优化模型一般具有以下形式: 有约束最优化模型一般具有以下形式:
min
x
f (x)
或
max
x
f (x)
st. ...... .
st. ...... .
其中f(x)为目标函数,省略号表示约束式子,可以是 为目标函数,省略号表示约束式子, 其中 为目标函数 等式约束,也可以是不等式约束。 等式约束,也可以是不等式约束。
标准型为: 标准型为:min F ( X ) 命令格式为: 命令格式为 );或 (1)x= fminunc(fun,X0 );或x=fminsearch(fun,X0 ) ) ( ( (2)x= fminunc(fun,X0 ,options); ) ( ); 或x=fminsearch(fun,X0 ,options) ( ) (3)[x,fval]= fminunc(...); ) , ( ); 或[x,fval]= fminsearch(...) , ( ) (4)[x,fval,exitflag]= fminunc(...); ) , , ( ); 或[x,fval,exitflag]= fminsearch , , (5)[x,fval,exitflag,output]= fminunc(...); ) , , , ( ); 或[x,fval,exitflag,output]= fminsearch(...) , , , ( )
数学建模最优化模型省公开课获奖课件市赛课比赛一等奖课件

谢 谢!!!
➢ 最优化措施旳应用
许多生产计划与管理分配问题都能够归纳为 最优化问题, 最优化模型是数学建模中应用最广泛 旳模型之一,其内容涉及线性规划、非线性规划、 整数线性规划、动态规划、多目旳规划、决策规 划等.
一般在实际生活中,我们总是利用 最优化措 施处理两方面旳问题:成本最小化和利润最大化
例:森林救火费用最小问题
x* a v
c1vh2 2c2ah 2c3v 2
➢ 一般优化模型旳总结
➢ 阐明:
拟定目旳
建立目旳函数;
分析原因
对影响目旳函数变化旳各个原因
进行定性或定量分析,而对那些随机性大、影响度很小旳 原因能够假设掉。
拟定决定性原因
拟定影响问题变化旳主要原因
分析各原因之间旳作用 分析各原因之间旳相互作 用,从而能够拟定各原因是相互独立旳、或是有关旳。 (统计回归中旳交互项旳引入)
把影响化为体现式
即模型旳建立,即文字数字化。
改善成果,找最优解
不断根据事实,改善模型,
从而实现真正意义上旳优化。
常用模型:线性规划、非线性规划、整数规划、动态规 划、多目旳规划等。
模型旳建立和求解
• 首先作图分析:
由图和前述旳假设可知:森林烧毁面积 b(t2 )等于图中三角形
旳积,即
b(t2 )
1 2
ht2,而t2
t1
h vx
a ,所以b(t2 )
1 2
ht1
1 2
h2 vx
a
,而火灾旳损失费 w1 c1b(t2 ) 与救火费用w2 之和为:
w
1 2
c1ht1
c1h 2 2(vx
火被t1 扑灭旳时刻为 。 时t刻2 森t 林烧毁旳面
矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、无约束极值问题的求解
例1:求函数y=2x3+3x2-12x+14在区间[-3,4]上的最 大值与最小值。
解:令f(x)=y=2x3+3x2-12x+14
f’(x)=6x2+6x-12=6(x+2)(x-1) 解方程f’(x)=0,得到x1= -2,x2=1,又 由于f(-3)=23,f(-2)=34,f(1)=7,f(4)=142, 综上得, 函数f(x)在x=4取得在[-3,4]上得最大值f(4)=142,在 x=1处取得在[-3,4]上取得最小值f(1)=7
xmax=x fmax=-fval
MATLAB(wliti2)
运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边 长为0.5m时水槽的容积最大,最大容积为2m3.
2.多元函数无约束优化问题
标准型为:min F ( X )
命令格式为: (1)x= fminunc(fun,X0 );或x=fminsearch(fun,X0 ) (2)x= fminunc(fun,X0 ,options);
或x=fminsearch(fun,X0 ,options) (3)[x,fval]= fminunc(...);
或[x,fval]= fminsearch(...) (4)[x,fval,exitflag]= fminunc(...);
或[x,fval,exitflag]= fminsearch (5)[x,fval,exitflag,output]= fminunc(...);
解 设剪去的正方形的边长为 x ,则水槽的容积为: (3 2x)2 x
建立无约束优化模型为:min y =- (3 2x)2 x , 0< x <1.5
先编写M文件fun0.m如下:
function f=fun0(x)
f=-(3-2*x).^2*x; 主程序为wliti2.m:
[x,fval]=fminbnd('fun0',0,1.5);
其中等式(3)、(4)、(5)的右边可选用(1)或(2) 的等式右边.
函数fminbnd的算法基于黄金分割法和二次插值法,它要求 目标函数必须是连续函数,并可能只给出局部最优解.
MATLAB(wliti1)
例 1 求 x = 2ex sin x 在 0< x <8 中的最小值与最大值.
主程序为wliti1.m: f='2*exp(-x).*sin(x)'; fplot(f,[0,8]); %作图语句 [xmin,ymin]=fminbnd (f, 0,8)
计算机技术的出现,使得数学家研究出了许 多最优化方法和算法用以解决以前难以解决的问 题。
几个概念
• 最优化是从所有可能方案中选择最合理的一种 以达到最优目标的学科。
• 最优方案是达到最优目标的方案。 • 最优化方法是搜寻最优方案的方法。 • 最优化理论就是最优化方法的理论。
经典极值问题
包括: ①无约束极值问题 ②约束条件下的极值问题
f1='-2*exp(-x).*sin (x)';
[xmax,ymax]=fminbnd (f1, 0,8)
运行结果: xmin = 3.9270 xmax = 0.7854
ymin = -0.0279 ymax = 0.6448
例2 有边长为3m的正方形铁板,在四个角剪去相等的正方形以 制成方形无盖水槽,问如何剪法使水槽的容积最大?
x =1.0000 1.0000 fval =1.9151e-010 exitflag = 1
output= iterations: 108 funcCount: 202
algorthm: 'Nelder-Mead simplex direct search '
有约束最优化
最优化方法分类
(一)线性最优化:目标函数和约束条件都是线 性的则称为线性最优化。
用MATLAB解无约束优化问题
1. 一元函数无约束优化问题: min f (x) x1 x x2
常用格式如下: (1)x= fminbnd (fun,x1,x2) (2)x= fminbnd (fun,x1,x2 ,options)
(3)[x,fval]= fminbnd(…) (4)[x,fval,exitflag]= fminbnd(…) (5)[x,fval,exitflag,output]= fminbnd(…)
1、无约束极值问题的数学模型
min f (x) x
2、约束条件下极值问题的数学模型
min f (x) x
s.t. gi(x)0, i1,2,...,m hi(x)0, i1,2,...,n
其中,极大值问题可以转化为极小值问题来
进行求解。如求: max f ( x) x 可以转化为:min f (x) x
或[x,fval,exitflag,output]= fminsearch(...)
例 用fminsearch函数求解 输入命令:
f='100*(x(2)-x(1)^2)^2+(1-xminsearch(f,[-1.2 2])
运行结果:
• 在各种科学问题、工程问题、生产管理、社会 经济问题中,人们总是希望在有限的资源条件 下,用尽可能小的代价,获得最大的收获。
(比如保险)
数学家对最优化问题的研究已经有很多年的 历史。
以前解决最优化问题的数学方法只限于古典 求导方法和变分法(求无约束极值问题),拉格 朗日(Lagrange)乘数法解决等式约束下的条件 极值问题。
最优化方法概述
1、最优化理论和方法是近二十多年来发展十分迅 速的一个数学分支。
2、在数学上,最优化是一种求极值的方法。 3、最优化已经广泛的渗透到工程、经济、电子技
术等领域。
• 在实际生活当中,人们做任何事情,不管是分 析问题,还是进行决策,都要用一种标准衡量
一下是否达到了最优。 (比如基金人投资)
非线性最优化:目标函数和约束条件如果含 有非线性的,则称为非线性最优化。
(二)静态最优化:如果可能的方案与时间无关, 则是静态最优化问题。
动态最优化:如果可能的方案与时间有关, 则是动态最优化问题
有约束最优化问题的数学建模