煤气脱硫技术方案

煤气脱硫技术方案
煤气脱硫技术方案

煤气脱硫技术方案

目录

一、概论 (3)

二、脱硫工艺方案 (6)

三、设备技术规格及功能描述 (8)

四、电气控制方案 (11)

五、公用工程消耗 (14)

六、运行综合分析 (16)

七、设备明细表 (18)

八、初步报价............................... 错误!未定义书签。

一、概论

SO2是一种酸性气体,在大气中易形成酸雨,威胁生态环境及公众健康。SO2已成为大气环境污染中首要污染物。根据国家“节能减排”方针政策,对大气中首要污染物SO2的排放实行总量控制,曾经在“十一五”期间全国SO2排放量削减10%,随着国家经济发展进入十二五,对于二、三类地区的工业窑炉SO2的排放量将进行严格的限制。

以煤作为燃料,即以煤为原料转换为粗煤气,煤中大部分硫组分同期转换为H2S,煤气燃烧后,硫化物以SO2形式排放,将对大气环境造成污染。

煤气中硫化氢的脱除可分为湿法脱硫与干法脱硫。

湿式氧化法脱硫:以碱性溶液吸收酸性气体硫化氢,生成硫氢酸盐,同时选择适当的氧化催化剂,将溶液中吸收硫化氢后的硫氢酸盐氧化成单体

硫,从而使脱硫溶液得到再生,并获得副产品硫磺。此后,还原态的氧化剂可由空气氧化成氧化态再循环使用。此法采用溶液吸收,且氧化再生是其特点,故将此脱硫方法称为湿式氧化法脱硫,因加入不同的催化剂分为各种方法,当前常见有氨水氧化法、改良ADA法、栲胶法、PDS法、KCA法、MSQ 法、888法、DDS法、ISS法和络合铁法等。实际生产中也可同时加入两种催化剂而达到较好脱硫效率。制成的碱性溶液一般采用碳酸钠(纯碱),也有采用稀氨水,但由于稀氨水对环境有一定的污染,故建议不采用稀氨水。

化学反应:

(1)无机反应

H2S+ Na2CO3= NaHS+ NaHCO3

(2)有机反应

CS 2+ 2Na2CO3+ H2O = Na2COS2+ 2NaHCO3

COS+ 2Na2CO3+ H2O = Na2CO2S+ 2NaHCO3

(3)溶液氧化与再生

2NaHS+O2=2NaOH+2S↓

2Na2CO2S+O2= 2Na2CO3+2S↓

Na2COS2+O2= Na2CO3+2S↓

湿法脱硫的特点:

(1)湿式氧化法脱硫的工艺成熟,技术可靠,操作稳定,但技术复杂,专业性强,处理设施应进行专业化设计和管理。

(2)大部分设备为非标设备,装置可根据不同处理规模进行设计,特别适应于大规模煤气脱硫工程。

(3)设备操作弹性大,对气量波动和H2S浓度变化适应能力强。

(4)脱硫效率一般高于95%以上,并可根据需要,调整溶液配比和控制操作参数,实现不同的脱硫效果,以满足不同的用气要求。

(5)工艺流程长、设备多,工艺技术水平高,装置投资高,设备维修量大,动力消耗量大,但原辅材料消耗低。

干法脱硫:采用固体吸收剂或吸附剂来脱除硫化氢或机硫的方法称为干法脱硫,干法脱硫具有流程短、设备结构简单、气体净化高、操作平稳的优点。但此法一般使用固定层反应器,需要定期更换脱硫剂,不能连续,由于受脱硫剂硫容量(单位质量脱硫剂能脱除硫的最大数量)的限制,干法脱硫一般用于含硫量较低的情况或用于气体的精脱硫;干法脱硫根据固体脱硫剂的种类不同分为多种脱硫方法,发生炉煤气脱硫常采用活性炭法和氧化铁法。

煤气脱硫一般选择氧化铁干法脱硫。气体由上而下经过干法脱硫塔,在脱硫塔中与塔内装填的固体氧化铁脱硫剂接触,硫化氢与脱硫剂中氧化铁(Fe2O3)的α—水合物和γ—水合物发生下列脱硫反应:

Fe2O3.H2O+3H2S= Fe2S3.H2O+3H2O

煤气脱硫技术方案

目录 一、概论 SO2是一种酸性气体,在大气中易形成酸雨,威胁生态环境及公众健康。SO2已成为大气环境污染中首要污染物。根据国家“节能减排”方针政策,对大气中首要污染物SO2的排放实行总量控制,曾经在“十一五”期间全国SO2排放量削减10%,随着国家经济发展进入十二五,对于二、三类地区的工业窑炉SO2的排放量将进行严格的限制。 以煤作为燃料,即以煤为原料转换为粗煤气,煤中大部分硫组分同期转换为H2S,煤气燃烧后,硫化物以SO2形式排放,将对大气环境造成污染。 煤气中硫化氢的脱除可分为湿法脱硫与干法脱硫。 湿式氧化法脱硫:以碱性溶液吸收酸性气体硫化氢,生成硫氢酸盐,同时选择适当的氧化催化剂,将溶液中吸收硫化氢后的硫氢酸盐氧化成单体硫,从而使脱硫溶液得到再生,并获得副产品硫磺。此后,还原态的氧

化剂可由空气氧化成氧化态再循环使用。此法采用溶液吸收,且氧化再生是其特点,故将此脱硫方法称为湿式氧化法脱硫,因加入不同的催化剂分为各种方法,目前常用有氨水氧化法、改良ADA法、栲胶法、PDS法、KCA 法、MSQ法、888法、DDS法、ISS法和络合铁法等。实际生产中也可同时加入两种催化剂而达到较好脱硫效率。制成的碱性溶液一般采用碳酸钠(纯碱),也有采用稀氨水,但由于稀氨水对环境有一定的污染,故建议不采用稀氨水。 化学反应: (1)无机反应 H2S+ Na2CO3= NaHS+ NaHCO3 (2)有机反应 CS 2+ 2Na2CO3+ H2O = Na2COS2+ 2NaHCO3 COS+ 2Na2CO3+ H2O = Na2CO2S+ 2NaHCO3 (3)溶液氧化与再生 2NaHS+O2=2NaOH+2S↓ 2Na2CO2S+O2= 2Na2CO3+2S↓ Na2COS2+O2= Na2CO3+2S↓ 湿法脱硫的特点: (1)湿式氧化法脱硫的工艺成熟,技术可靠,操作稳定,但技术复杂,专业性强,处理设施应进行专业化设计和管理。 (2)大部分设备为非标设备,装置可根据不同处理规模进行设计,尤其适应于大规模煤气脱硫工程。

锅炉烟气脱硫技术协议word精品文档18页

烟台巨力异氰酸酯有限公司 4.5万吨TDI/年二期扩建工程 2×75t/h循环流化床锅炉烟气脱硫工程 技 术 协 议 需方:烟台巨力异氰酸酯有限公司 供方:潍坊科达环境工程有限公司 2009年7月16日 1.总则 1.1本技术协议适用于烟台巨力异氰酸酯有限公司4.5万吨TDI/年二期扩建工程(本工程安装2台75t/h中温中压循环流化床锅炉)锅炉烟气脱硫工程的功能设计、结构、性能等方面的技术要求。 1.2 本技术协议提出的是最低限度的技术要求,并未对一切技术细节作出规定,供方应保证提供符合本技术协议和国际国内工业标准的优质产品。 1.3供方对锅炉烟气脱硫工程负有全责,即包括分包(或采购)的产品,分包(或采购)的产品制造商应事先征得需方的认可。 1.4 本技术协议所使用的标准若与供方所执行的标准发生矛盾时,按较高标准或国际有关通用标准执行。 1.5 如果需方有除技术协议书以外的特殊要求,将以书面形式提出,并对每一点作详细说明,载于本技术协议书之后。 1.6 如供方没有对本技术协议提出书面异议,需方则可认为供方提供的产品完全满足本技术协议的要求。 1.7 在合同签订后,需方有权提出因规范、标准、规程发生变化而产生的一些补充要求,

具体项目由供需双方共同商定。 1.8供方应执行国家相应规范和标准,并按较高标准执行。 1.9本协议为合同附件,与合同正文具有同等的法律效力。 1.10.规范性引用文件 本标准内容引用了下列文件中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 a)GB8978 污水综合排放标准 b)GB9078 工业炉窑大气污染物排放标准 c)GB12348 工业企业厂界噪声标准 d)GB13223 火电厂大气污染物排放标准 e)GB13271 锅炉大气污染物排放标准 f)GB18599 一般工业固体废物贮存、处置场污染控制标准 g)GB50016 建筑设计防火规范 h)GB50040 动力机器基础设计规范 i)GB50212 建筑防腐蚀工程施工及验收规范 j)GB50222 建筑内部装修设计防火规范 k)GBJ87 工业企业噪声控制设计规范 l)GB/T16157 固定污染源排气中颗粒物测定与气态污染物采样方法 m)HG23012 厂区设备内作业安全规程 n)HJ/T75 固定污染源烟气排放连续监测技术规范(试行) o)HJ/T76 固定污染源烟气排放连续监测系统技术要求及检测方法(试行) p)HJ/T179 火电厂烟气脱硫工程技术规范石灰石/石灰-石膏法 q)《建设工程质量管理条例》(中华人民共和国国务院第279号) r)《建筑项目(工程)竣工验收办法》(国家计委文件计建设[1990]1215号) s)《建筑项目环境保护竣工验收管理办法》(国家环境保护总局令第13号) t)《污染源自动监控管理办法》(国家环境保护总局令第28号) 2 . 设计要求 2.1本工程锅炉是75t/h循环流化床锅炉,共有2台 烟台巨力异氰酸脂有限公司新建2台75t/h循环流化床锅炉烟气脱硫工程, 原煤含硫量≤2%(应用基) 设计锅炉烟气脱硫效率≥95% 保证锅炉烟气脱硫效率≥95% 锅炉烟气脱硫系统出口烟气二氧化硫排放浓度≤200mg/Nm3

高炉煤气烟气处理

一、烟气除尘——高炉煤气干法布袋除尘 高炉煤气净化分为湿法除尘和干法除尘两类,目前我国500m3级及以下高炉的煤气净化基本上全部采用干式布袋除尘,而1000m3级及以上高炉的煤气净化采用干法布袋除尘技术的较少。 高炉煤气干法布袋除尘技术是钢铁行业重要的综合节能环保技术之一,以其煤气净化质量高、节水、节电、投资省、运行费用低、环境污染小等优点,优于传统的湿法洗涤除尘工艺, 属于环保节能项目,位于国家钢铁行业当前首要推广的“三干一电”(高炉煤气干法除尘、转炉煤气干法除尘、干熄焦和高炉煤气余压发电)之首。是国家大力推广的清洁生产技术。 1、工艺流程与设备 1.1系统组成 1 干法除尘由布袋除尘器、卸、输灰装置(包括大灰仓)、荒净煤气管路、阀门及检修设施、综 合管路、自动化检测与控制系统及辅助部分组成。 2 炉顶温度长期偏高的高炉宜在布袋除尘之前增设降温装置,有热管换热器和管式换热器两类, 应优先选用热管式换热器。 1.2过滤面积 1 根据煤气量(含煤气湿分,以下同)和所确定的滤速计算过滤面积 计算公式: V 60Q F = 其中 F ——有效过滤面积 m 2 Q ——煤气流量m 3/h (工况状态) V ——工况滤速 m/min 2 工况流量。 在一定温度和压力下的实际煤气流量称为工况流量。以标准状态流量乘以工况系数即为工况流量。 3工况系数 工况体积(或流量)和标况体积(或流量)之比称为工况系数,用η表示。 计算公式: ()()0 000P P P T t T Q Q ++==η 其中 η——工况系数 Q 0——标准状态煤气流量m 3/h Q ——工况状态煤气流量m 3/h T 0——标准状态0℃时的绝对温度273K t —— 布袋除尘的煤气温度℃ P —— 煤气压力(表压)MPa P 0——标准状态一个工程大气压,为0.1 MPa

MDEA天然气脱硫工艺流程

《仪陇天然气脱硫》项目书 目录 1总论 (3) 1.1项目名称、建设单位、企业性质 (3) 1.2编制依据 (3) 1.3项目背景和项目建设的必要性 (3) 1、4设计范围 (5) 1、5编制原则 (5) 1.6遵循的主要标准、规范 (8) 1.7 工艺路线 (8) 2 基础数据 (8) 2.1原料气和产品 (8) 2.2 建设规模 (9) 2.3 工艺流程简介 (9) 2.3.1醇胺法脱硫原则工艺流程: (9) 2.3.2直流法硫磺回收工艺流程: (10) 3 脱硫装置 (11) 3.1 脱硫工艺方法选择 (11) 3.1.1 脱硫的方法 (11) 3.1.2醇胺法脱硫的基本原理 (12) 3.2 常用醇胺溶液性能比较 (13) 3.1.2.1几种方法性质比较 (14) 3.2醇胺法脱硫的基本原理 (17) 3.3主要工艺设备 (18) 3.3.1主要设备作用 (18) 3.3.2运行参数 (19) 3.3.3操作要点 (20) 3.4乙醇胺降解产物的生成及其回收 (21) 3.5脱硫的开、停车及正常操作 (22) 3.5.1乙醇胺溶液脱硫的开车 (22) 3.5.2保证乙醇胺溶液脱硫的正常操作 (22) 3.6胺法的一般操作问题 (23) 3.6.1胺法存在的一般操作问题 (23) 3.6.2操作要点 (24) 3.7选择性脱硫工艺的发展 (25) 4 节能 (25) 4.1装置能耗 (25) 装置中主要的能量消耗是在闪蒸罐、换热器和再生塔。 (25)

4.2节能措施 (25) 5 环境保护 (26) 5.1建设地区的环境现状 (26) 5.2、主要污染源和污染物 (26) 5.3、污染控制 (26) 6 物料衡算与热量衡算 (28) 6.1天然气的处理量 (28) 7.天然气脱硫工艺主要设备的计算 (33) 7.1MDEA吸收塔的工艺设计 (33) 7.1.1选型 (33) 7.1.2塔板数 (33) 7.1.3塔径 (34) 7.1.4堰及降液管 (36) 7.1.5浮阀计算 (37) 7.1.6 塔板压降 (37) 7.1.7塔附件设计 (39) 7.1.8塔体总高度的设计 (40) 7.2解吸塔 (41) 7.2.1 计算依据 (41) 7.2.2塔板数的确定 (41) 7.2.3解吸塔的工艺条件及有关物性的计算 (42) 7.2.4解吸塔的塔体工艺尺寸计算 (43) 8参数校核 (44) 8.1浮阀塔的流体力学校核 (44) 8.1.1溢流液泛的校核 (44) 8.1.2液泛校核 (44) 8.1.3液沫夹带校核 (45) 8.2塔板负荷性能计算 (45) 8.2.1漏液线(气相负荷下限线) (45) 8.2.2 过量雾沫夹带线 (45) 8.2.3 液相负荷下限 (46) 8.2.4 液相负荷上限 (46) 8.2.5 液泛线 (46) 9 附属设备及主要附件的选型和计算 (47) 10.心得体会 (49) 11.参考文献 (50)

荒煤气脱硫系统审批稿

荒煤气脱硫系统 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

荒煤气脱硫系统 作者:来源:发表时间:2014-8-3 点击:14 工程概述 本项目为新疆金盛镁业镁合金循环经济工业园兰炭项目兰炭尾气(低温干馏煤气) 脱硫工程,工艺技术方案的选择是本着保证产品质量的前提下力求技术水平适度先进合理、稳妥可靠,降低劳动强度,节约投资,合理布局,减少工程造价,实现环境污染 总量控制,做好洁净生产,以减少对环境污染。本工程设备的选型及设计遵照技术先进、稳妥可靠、操作方便节能降耗的原则。 脱硫及硫回收 工艺技术方案的选择 脱硫分干法脱硫和湿法脱硫两种,干法脱硫主要以氧化铁、活性炭为主。湿法脱硫主要以栲胶法、改良ADA法、PDS法、HPF法、KCA法及几种催化剂复合法。 干法脱硫的工艺简单,脱硫精度高,当要求煤气净化度较高或煤气处理量较小时采用,但设备笨重,脱硫效率不稳定,随着催化剂使用时间的延长,脱硫能力不断降低,脱硫剂用量大,二次处理困难,对于失效(硫饱和)的脱硫剂,再生成本高,操作难度大,废弃处理,会造成二次污染;脱硫剂更换频繁,劳动强度大,并且容易造成煤气中毒;占地面积大。湿法脱硫具有处理能力大,操作弹性大,脱硫与再生都能连续化,劳动强度小,能回收硫膏(硫磺)等优点,但工艺较复杂,操作费用较高,由于本工程处理煤气量较大,故选用湿法脱硫工艺。 本方案选用以碱源脱除兰炭尾气中的硫化氢的湿式氧化喷射再生脱硫工艺。湿式氧化喷射再生脱硫工艺,是焦化工业目前推行的焦化煤气脱硫新工艺,具有节约能源、工艺顺畅、脱硫效率高、操作平稳等特点。湿法脱硫的催化剂多种多样,各有优缺点,本方案选用我公司研发生产的ISS-J焦炉煤气专用脱硫剂,与我公司的脱硫装置相配套,该催化剂不但能脱除H2S,还能脱除HCN和部分有机硫,具有脱硫效率高、副盐生成少,硫磺回收率高、废液排放量小,不堵塔、脱硫液对设备腐蚀小等优点,得到了广大用户的认可。

焦化煤气PDS法脱硫

煤气中的硫绝大部分以H2S的形式存在,而H2S随煤气燃烧后转化成SO2,空气中SO2含量超标会形成局域性酸雨,危害人们的生存环境,我国对燃烧发生炉煤气炉窑规定其SO2的最高排放浓度为900mg/m3;另一方面,SO2对诸如陶瓷、高岭土等行业的最终产品质量影响较大,鉴于以上因素,发生炉煤气中H2S的脱除程度业已成为其洁净度的一个重要指标。 1、煤气脱硫方法 发生炉煤气中的硫来源于气化用煤,主要以H2S形式存在,气化用煤中的硫约有80%转化成H2S进入煤气,假如,气化用煤的含硫量为1%,气化后转入煤气中形成H2S大约2-3g/Nm3左右,而陶瓷、高岭土等行业对煤气含硫量要求为20-50mg/Nm3;假如煤气中的H2S燃烧后全部转化成SO2为2.6g/m3左右,比国家规定的SO2的最高排放浓度指标高出许多。所以,无论从环保达标排放,还是从保证企业最终产品质量而言,煤气中这部分 H2S都是必须要脱除的。 煤气的脱硫方法从总体上来分有两种:热煤气脱硫和冷煤气脱硫。在我国,热煤气脱硫现在仍处于试验研究阶段,还有待于进一步完善,而冷煤气脱硫是比较成熟的技术,其脱硫方法也很多。 冷煤气脱硫大体上可分为干法脱硫和湿法脱硫两种方法,干法脱硫以氧化铁法和活性炭法应用较广,而湿法脱硫以砷碱法、ADA、改良ADA和栲胶法颇具代表性。 2、干法脱硫技术 煤气干法脱硫技术应用较早,最早应用于煤气的干法脱硫技术是以沼铁矿为脱硫剂的氧化铁脱硫技术,之后,随着煤气脱硫活性炭的研究成功及其生产成本的相对降低,活性炭脱硫技术也开始被广泛应用。 2.1氧化铁脱硫技术 最早使用的氧化铁脱硫剂为沼铁矿和人工氧化铁,为增加其孔隙率,脱硫剂以木屑为填充料,再喷洒适量的水和少量熟石灰,反复翻晒制成,其PH值一般为8-9左右,该种脱硫剂脱硫效率较低,必须塔外再生,再生困难,不久便被其他脱硫剂所取代。现在TF型脱硫剂应用较广,该种脱硫剂脱硫效率较高,并可以进行塔内再生。 氧化铁脱硫和再生反应过程如下: (1)脱硫过程 2Fe(OH)3+3H2SFe2S3+6H2O Fe(OH)3+H2S2Fe(OH)2+S+2H2O Fe(OH)2+H2SFeS+2H2O (2)再生过程 2Fe2S2+3O2+6H2O4Fe(OH)3+6S 4FeS+3O2+6H2O4Fe(OH)2+4S

脱硝技术协议

1、技术规范 1.1 总则 本脱硝工程设计为3台循环流化床锅炉SNCR脱硝工艺,本工程为包工包料,固定总价的承包方式,含脱硝系统的设计、制造、土建设计、施工、设备安装、质量管理、环保验收及技术培训等,供应商对设计、制造、施工、安装的质量全权负责。 1.2 技术要求 1.2.1 设计范围 本项目为新汶热电有限公司3×75T/H循环流化床锅炉烟气脱硝(SNCR)总承包项目,本项目含3台的脱硝系统公共区域,脱硝装置含氨水溶液循环输送模块1个(3炉共用);工艺(稀释)水输送模块1个(3炉共用);稀释模块、计量模块、分配模块每台炉1个;喷射(喷枪)单元每台炉设置4个;控制系统模块1套(3炉共用);电气供配电模块(配电柜)1套(3炉共用)。 供方设计范围包括脱硝装置及相关系统的定义、设备和组件选型、电气、热控、设备设施的布置和保温、油漆、结构及与脱硝装置外部的机械、热控和电气设备的接口。 供方设计如下: (1)还原剂站构筑物、设备基础及建筑(含检修平台、栏杆等)。 (2)还原剂站内的照明等设计。 (3)还原剂站内所有设备及管道布置。 (4)还原剂站至炉区的厂区管道的布置,管道及管件、支吊架、连接件等。 (5)雾化风及相应管道布置。 (6)锅炉上的开孔及套管及密封箱等。 1.2.2设计原则 本脱硝工程采用SNCR工艺,在锅炉旋风分离器位置加装氨水喷射装置,向烟气中喷入氨水,在无催化剂的条件下,氨水与烟气充分混合,选择性的将烟气中的NOx还原成N2和H2O,从而去除烟气中的NOx。烟气脱硝后无二次污染产生。 脱硝效率达到50%。烟气处理装置的出力在锅炉额定工况110%的基础上设计,最小可调能力40%额定工况,与燃用设计煤种的烟气流量相适应;烟气处理装置应能在锅炉额定工况下进烟温度加20℃裕量条件下安全连续运行。 1.2.2.1本项目包括脱硝系统,且能满足锅炉脱硝系统正常运行所必需具备的工艺系统

关于焦化厂HPF法脱硫工艺方案

关于焦化厂HPF法脱硫工艺方案 1

关于焦化厂HPF法脱硫工艺方案 近年来,各焦化厂的煤气净化系统中普遍采用了流程短、投资省的HPF法脱硫工艺,但熔硫装置普遍运行不正常,甚至被迫改用板框压滤机生产硫膏。经过对各厂生产实际的分析,在沙钢的设计中作了许多改进,经过1年的生产实践,成功地实现了连续熔硫。 1.HPF法煤气脱硫的现状 已投产的4×55孔6m焦炉,年产焦炭220万t,煤气处理量10万m3/h,由2套5万m3/h的HPF法脱硫装置并联操作,备用设备共用。第1套设备投产已1年,生产正常,能够连续熔硫,脱硫塔前煤气含硫量为 8g/m3,脱硫塔后煤气含硫量<300mg/m3,硫磺纯度>80%,销路很好。第2套设备已生产近半年,也很正常。。 2.工艺改进及效果 (1)初冷器分上下两段喷洒,以除煤气中的焦油和萘,有效避免了预冷塔的堵塞。 (2)增设了剩余氨水除焦油器,保证了蒸氨塔的正常运行,确保氨汽能连续进入预冷塔,使脱硫液碱度适宜。 (3)增加了预冷塔,保证脱硫塔入口温度在30~40℃,系统温度稳定。 (4)增加清液回送冷却器,避免了由熔硫釜排出的温度较高的清液进入脱硫液系统。 (5)终冷塔上段加碱,进一步净化煤气,使塔后煤气含硫量<200mg/m3。 (6)增加泡沫槽回流管,有效防止了泡沫至熔硫釜的管道堵塞。 (7)熔硫釜硫磺出口管改为直管段,避免了堵塞,且易操作。 (8)脱硫塔底加1个直径133mm的清扫排液口,防止塔底沉积。 (9)脱硫液泵出口加1个直径50mm的管道至废液槽底部,一则防止废液槽堵塞,二则可冷却和稀释熔硫釜排出的清液。 3.注意事项 (1)液气比(脱硫液与压缩空气的比例)对脱硫效率的影响。增加液气比可使传质面迅速更新,同时可降低脱硫液中硫化氢的分压差,有利于提高吸收推动力。但液气比不宜过大,否则,脱硫效率的增加不明显,还有可能造成脱硫液进入煤气管道。 (2)再生空气量。氧化lkg硫化氢理论上需要的空气量虽不足2m3,但在实际生产中,考虑到浮选硫泡沫的需要,再生塔的鼓风强度比理论计算要高。我厂的单塔空气量控制在1500m3/h左右,风量对硫泡沫及脱硫液的质量影响很大。我们的经验是一定要保持稳定的风量和压力,及时将脱硫液中的悬浮硫吹出。 2

我国焦炉煤气脱硫技术现状

我国焦炉煤气脱硫技术现状 1、概述 焦炉煤气是重要的中高热值气体燃料,既可用于钢铁生产,也可供城市居民使用,还可作为原料气用于生产合成氨、甲醇等产品,不论采用何种方式利用焦炉煤气,其硫含量都必须降低到一定程度。炼焦煤料中含有0.5%~l.2%的硫,其中有20%~45%的硫以硫化物形式进入荒煤气中形成硫化氢气体,另外还有相当数量的氰化氢。焦炉产生的粗煤气中含有多种杂质,需要进行净化。焦炉煤气中一般含硫化氢4~8g/m3,含氨4~9g/m3,含氰化氢0.5~1.5g/m3。硫化氢(H2S)及其燃烧产物二氧化硫(SO2)对人体均有毒性,氰化氢的毒性更强。氰化氢和氨在燃烧时生成氮氧化物(NOX),二氧化硫与氮氧化物都是形成酸雨的主要物质,煤气的脱硫脱氰洗氨主要是基于环境保护的需要。此外,对轧制高质量钢材所用燃气的含硫量也有较高的要求,煤气中H2S的存在,不仅会腐蚀粗苯系统设备,而且还会使吸收粗苯的洗油和水形成乳化物,影响油水分离。因此,脱除硫化氢对减轻大气和水质的污染、加强环境保护以及减轻设备腐蚀均有重要意义。 2、焦炉煤气脱硫方法 近几年,钢铁企业的快速发展带动了焦化行业的发展,其中随着世界环保意识的加强,国内外焦炉煤气脱硫脱氰技术得以迅速开发和改良,先后出现了干式氢氧化铁法、湿式碱法、改良ADA法等脱硫方法。总的来说,煤气的脱硫方法按吸收剂的形态,可分为干法和湿法两大类。 2.1 焦炉煤气干法脱硫技术 干法脱硫工艺是利用固体吸收剂脱除煤气中的硫化氢,多采用固定床原理,操作简单可靠,脱硫精度高,但处理量小,适用于低含硫气体的处理,一般多用于二次精脱硫。但是由于气固吸附反应速度较慢,因此该工艺运行的设备一般比较庞大,再者由于吸附剂硫容的限制,脱硫剂更换频繁,消耗量大,而且脱硫剂不易再生,致使运行费用增高,劳动强度大,同时不能回收成品硫,废脱硫剂、废气、废水严重污染环境,因此,在大型焦化和钢铁行业,如果焦炉煤气不进行深加工(如焦炉煤气制甲醇),一般不考虑干法脱硫;中小型焦化厂主要采用干法工艺。 目前,干法使用的脱硫剂为氧化铁、氧化锌、氧化铜、氧化钙、氧化锰、活性炭、分子筛以及复合氧化物,甚至还有近年来出现的第二代脱硫剂氧化铈等,其中最常用的是铁系和锌系脱硫剂。 2.1.1铁系脱硫剂 铁系脱硫剂主要是以氧化铁为主的脱硫剂统称,因为氧化铁具有价廉易得、资源丰富、脱硫速率高、硫容高等特点,成为开发最早、应用最广泛的煤气脱硫剂。国内常用的铁系脱硫剂主要有天然沼铁矿、合成氧化铁、颜料厂及硫酸厂下脚铁泥、硫铁矿灰成型剂、炼钢转炉赤泥及其成型剂等。 近年来,很多机构将铁氧化物与其它金属化合物复合,研究新的铁基复合氧化物脱硫剂。其中湖北化学研究所的铁系脱硫剂:EF型多功能氧化铁精脱硫剂(CN1174810),由氧化铁载体和负载的金属化合物组成。该脱硫剂在有氧和无氧条件下均能精脱H2S、COS、CS2、RSH、RSR、RSSR、噻吩等硫化物;耐缺氧复合型金属水合氧化物精脱硫剂(CN1287875),用水合氧化铁Fe2O3?H2O与其它金属元素Ti、Co、Ni、Mo、Zn、Cd、Cr、Hg、Cu、Ag、Sn、Pb、Bi中任一种或一种以上的化合物和/或碱土金属元素Ca、Mg的化合物组成;由酸性废液制备的脱硫剂(CN1060226),该脱硫剂先用含铁或不含铁废酸液制成所需浓度的含铁溶液,再用碱性物质除酸,经氧化、分离、混合成型、干燥而制成;复合型精脱硫剂(CN1127555C)由Fe2O3、ZnO、CaO、MnO2等组成。 煤炭科学研究总院研制的一种无定形脱硫剂(CN1616139),以一种天然富含铁、锰、

HPF脱硫工艺流程图

粗焦炉煤气脱硫工艺有干法和湿法脱硫两大类。干法脱硫多用于精脱硫,对无机硫和有机硫都有较高的净化度。不同的干法脱硫剂,在不同的温区工作,由此可划分低温(常温和低于100 ℃) 、中温(100 ℃~400 ℃) 和高温(> 400 ℃)脱硫剂。 干法脱硫由于脱硫催化剂硫容小,设备庞大,一般用于小规模的煤气厂脱硫或用于湿法脱硫后的精脱硫。 湿法脱硫又分为“湿式氧化法”和“胺法”。湿式氧化法是溶液吸收H2S后,将H2S直接转化为单质硫,分离后溶液循环使用。目前我国已经建成(包括引进)采用的具有代表性的湿式氧化脱硫工艺主要有TH法、FRC法、ADA法和HPF法。胺法是将吸收的H2S 经再生系统释放出来送到克劳斯装置,再转化为单质硫,溶液循环使用,主要有索尔菲班法、单乙醇胺法、AS法和氨硫联合洗涤法。湿法脱硫多用于合成氨原料气、焦炉气、天然气中大量硫化物的脱除。当煤气量标准状态下大于3000m3/h 时,主要采用湿法脱硫。 HPF法脱硫工艺流程: 来自煤气鼓风机后的煤气首先进入预冷塔,与塔顶喷洒的循环冷却液逆向接触,被冷却至25℃~30℃;循环冷却液从塔下部用泵抽出送至循环液冷却器,用低温水冷却至2 3℃~28℃后进入塔顶循环喷洒。来自冷凝工段的部分剩余氨水进行补充更新循环液。多余的循环液返回冷凝工段。

预冷塔后煤气并联进入脱硫塔A、脱硫塔B,与塔顶喷淋下来的脱硫液逆流接触,以吸收煤气中的硫化氢(同时吸收煤气中的氨,以补充脱硫液中的碱源)。脱硫后煤气进入下道工序进行脱氨脱苯。 脱硫基本反应如下: H2S+NH4OH→NH4HS+H2O 2NH4OH+H2S→(NH4)2S+2H2O NH4OH+HCN→NH4CN+H2O NH4OH+CO2→NH4HCO3 NH4OH+NH4HCO3→(NH4)2CO3+ H2O 吸收了H2S、HCN的脱硫液从脱硫塔A、B下部自流至反应槽,然后用脱硫液循环泵抽送进入再生塔再生。来自空压机站压缩空气与脱硫富液由再生塔下部并流进入再生塔A、B,对脱硫液进行氧化再生,再生后的溶液从塔顶经液位调节器自流回脱硫塔循环使用。 再生塔内的基本反应如下: NH4HS+1/2O2→NH4OH+S (NH4)2S+1/2O2+ H2O→ 2NH4OH+S (NH4)2Sx+1/2O2+ H2O→2NH4OH+Sx 除上述反应外,还进行以下副反应: 2NH4HS+2O2→(NH4)2S2O3+ H2O 2(NH4)2S2O3+O2→2(NH4)2SO4+2S 从再生塔A、B顶部浮选出的硫泡沫,自流入硫泡沫槽,在此经搅拌,沉降分离,排出清液返回反应槽,硫泡沫经泡

煤气脱硫的几种方法

煤气脱硫的几种方法 2006-07-06 前言:能源是人类赖以生存和发展的基础,随着人们环境保护和保证企业最终产品质量意识的提高,人们对能源的洁净利用开始日趋重视。发生炉煤气作为我国主要能源之一煤炭的一种洁净利用方式,在我国的玻璃、建材、化工、机械、耐火材料等行业被广泛的应用,近年,人们对煤气净化程度的认识已经不止是煤气中的含尘量、含焦油量和含水量等的概念,人们开始更加重视煤气中的含硫量。 煤气中的硫绝大部分以H2S的形式存在,而H2S随煤气燃烧后转化成SO2,空气中SO2含量超标会形成局域性酸雨,危害人们的生存环境,我国对燃烧发生炉煤气炉窑规定其SO2的最高排放浓度为900mg/m3;另一方面,SO2对诸如陶瓷、高岭土等行业的最终产品质量影响较大,鉴于以上因素,发生炉煤气中H2S的脱除程度业已成为其洁净度的一个重要指标。 1、煤气脱硫方法 发生炉煤气中的硫来源于气化用煤,主要以H2S形式存在,气化用煤中的硫约有80%转化成H2S进入煤气,假如,气化用煤的含硫量为1%,气化后转入煤气中形成H2S大约2-3g/Nm3左右,而陶瓷、高岭土等行业对煤气含硫量要求为20-50 mg/Nm3;假如煤气中的H2S燃烧后全部转化成SO2为2.6g/m3左右,比国家规定的SO2的最高排放浓度指标高出许多。所以,无论从环保达标排放,还是从保证企业最终产品质量而言,煤气中这部分H2S都是必须要脱除的。 煤气的脱硫方法从总体上来分有两种:热煤气脱硫和冷煤气脱硫。在我国,热煤气脱硫现在仍处于试验研究阶段,还有待于进一步完善,而冷煤气脱硫是比较成熟的技术,其脱硫方法也很多。 冷煤气脱硫大体上可分为干法脱硫和湿法脱硫两种方法,干法脱硫以氧化铁法和活性炭法应用较广,而湿法脱硫以砷碱法、ADA、改良ADA和栲胶法颇具代表性。 2、干法脱硫技术 煤气干法脱硫技术应用较早,最早应用于煤气的干法脱硫技术是以沼铁矿为脱硫剂的氧化铁脱硫技术,之后,随着煤气脱硫活性炭的研究成功及其生产成本的相对降低,活性炭脱硫技术也开始被广泛应用。 2.1氧化铁脱硫技术 最早使用的氧化铁脱硫剂为沼铁矿和人工氧化铁,为增加其孔隙率,脱硫剂以木屑为填充料,再喷洒适量的水和少量熟石灰,反复翻晒制成,其PH值一般为8-9左右,该种脱硫剂脱硫效率较低,必须塔外再生,再生困难,不久便被其他脱硫剂所取代。现在TF型脱硫剂应用较广,该种脱硫剂脱硫效率较高,并可以进行塔内再生。 氧化铁脱硫和再生反应过程如下: (1)脱硫过程 2Fe(OH)3+3H2S Fe2S3+6H2O Fe(OH)3 + H2S 2Fe(OH)2+S+2H2O Fe(OH)2 + H2S FeS+2H2O (2)再生过程 2Fe2S2+3O2+6H2O 4Fe(OH)3+6S 4FeS+3O2+6H2O 4Fe(OH)2+4S 氧化铁脱硫剂再生是一个放热过程,如果再生过快,放热剧烈,脱硫剂容易起火燃烧,这种火灾现象曾在多个企业发生。 活性氧化铁脱硫工艺流程如图1 2.2活性炭脱硫技术 活性炭脱硫主要是利用活性炭的催化和吸附作用,活性炭的催化活性很强,煤气中的H2S在活性炭的催化作用下,

氨水法焦炉煤气脱硫地基本原理

范守谦(鞍山立信焦耐工程技术有限公司) 1 气体在液体中的溶解度——亨利定律 任何气体在一定温度和压力下与液体接触时,气体会逐渐溶解于液体中。经过相当长的时间,气相和液相的表观浓度不再发生变化,即处于平衡状态。这时,对于不同气体,如果组分在气相中的分压(对单组分气体即为总压)保持定值,则不同气体在液体中的浓度称为气体在液体中的溶解度。该组分在气相中的分压称为气相平衡分压,表示了气相的平衡浓度。 很多气体的液相平衡浓度X与气体的平衡分压P*有定量关系。如:二氧化碳为直线关系,硫化氢和氨只有在较大浓度范围时不呈直线关系,在浓度较小时,可视为直线关系。因此,在一定温度下,对于接近于理想溶液的稀溶液,在气相压力不大时,气液平衡后气体组分在液相中的浓度与它在气相中的分压成正比,即亨利定律。 P* = EX 式中的 P* 为气体组分在气相中的分压,大气压; X为气体组分在液相中的浓度,分子分数; E 为亨利系数(与温度有关)。 上式经浓度单位换算后可改写为: C =HP* 式中的P*为气体组分在气相中的分压,mmHg;C 为气体组分在液相中的浓度,gmol;H为亨利系数, gmol/mmHg。 注:①亨利定律是一个稀溶液定律,它只适用于微溶气体;

②只适用于气相和液相中分子状态相同的组分。如: NH3(气态)? NH3(溶解态) NH3(溶解态)+H2O ? NH4OH ? NH+4+ OH- 用亨利定律时,应把NH+4的量减去,才能得到水溶液中氨的浓度C氨 C氨= H0P*氨 式中的 H0为氨在纯水中的亨利系数,kgmol/(m3·mmHg)。 温 度,℃ H0 20 0.099 40 0.0395 60 0.017 80 0.0079 90 0.0058 在氨水脱硫过程中

新金山众泰烟气及脱硫在线监测技术协议

新金山特钢有限公司 烟粉尘及脱硫烟粉尘、二氧化硫、氮氧化物连续在线监测系统 技 术 协 议 甲方:襄汾县新金山特钢有限公司 乙方: 合同编号: 签订日期:2017年 10 月 10 日

甲方(全称):襄汾县新金山特钢有限公司 乙方(全称):山西圣弗兰环保科技有限公司 依照《中华人民共和国合同法》、《中华人民共和国建筑法》及其他有关法律、行政法规、遵循平等、自愿、公平和诚实信用的原则,双方就本建设工程施工项协商一致,订立本协议。 一、工程名称: 襄汾县新金山特钢有限公司除尘烟粉尘及脱硫烟粉尘、二氧化硫、氮氧 化物连续在线监测系统工程 二、工程承包形式: 乙方负责设计、施工、安装调试、售后服务等全部工程。 三、工程范围: 众泰高炉矿槽除尘、出铁厂除尘、烧结机尾除尘增加烟粉尘连续在线监测系统共计3套,众泰脱硫进、出口增加烟粉尘、氮氧化物、二氧化硫连续在线监测系统各1套,并负责安装调试、及售后服务。 四、现场工况条件 1、高炉矿槽除尘烟囱出口直径:Φ2000高度:25m,风机风量:150000m3/ h 2、出铁厂除尘烟囱出口直径:Φ2500高度:28m风机风量:280000m3/h 3、烧结机尾除尘烟囱出口直径:Φ2500高度:28m风机风量:280000m3/h 4、脱硫烟囱进口;2000×2000(矩形) 5、脱硫烟囱出口直径;Φ2800脱硫塔总高度:38m 五、烟尘监测设备技术参数: 5.1颗粒物监测子系统 尺寸、重量: 160×160×205mm;5Kg 环境要求: 温度:(-20~50)℃;相对湿度:(0~100)%R.H. 示值误差: ±2%FS 介质条件: 温度最高300℃ 信号输出: (4~20)mA或RS485 响应时间: ≤10S 测量范围: (0~50,500,1000)mg/m3 (可设定) 温度测量范围:(0~300℃) 可以测量烟囱大小: (0.7~20)m 供电: DC 24V±10%/0.3A

煤气脱硫塔施工方案样本

脱硫塔施工方案 1、安装方案 1.1制造安装工艺流程 施工准备——会审图纸、备料——技术交底——筒体卷弧胎具、胀圈、组装平台等技术措施准备——划线、号料套裁——筒体壁板分片制作——塔内件、人孔、接管附件制作——塔体单节筒体组对——于基础上组对安装塔底及相关内件——分段预组对塔体——筒节焊接质量检测——安装塔内填料支撑、液体再分布器、附件等——塔体分段吊装立式正装组对——液体分布器及喷喷淋试验——焊缝无损检测、塔器安装压力、致密性试验。 1.2 施工准备 ( 1) 仔细了解图纸中有关塔器结构、细节尺寸及各技术样图之间的衔接和要求有无矛盾; ( 2) 会审图纸, 明确工艺、材料要求及特别的制作要求, 并据此提供材料采购计划( 塔体尽量采用原平板以提高塔体的强度和韧性) 。 ( 3) 施工技术负责人组织人员进行技术交底和安全文明教育; 详细明确塔器的具体制作步骤、图样、技术法规、标准规范, 现场条件、质量标准、必要的技术措施等。 ( 4) 根据施工现场平面布置图清理、规划制作场地, 预留吊装机械等车辆行走路线, 与建设单位沟通架设施工用用电线路、电焊机棚等临时设施; ( 5) 铺设9×15.6 m钢板平台用以制作单塔节及分段组对塔体; 配置相应的施工设备、工具、准备工卡具、样板和检测量具、胎具、胀圈等; 并将设

备机具按施工现场平面布置图规定的位置就位; 卷板机放置于规定场地, 若放置处有电缆沟需铺设钢板垫板并找平; ( 6) 现场的安全设施配置齐全, 按施工现场平面布置图布置做好隔离防护措施; 充分与建设单位协调沟通做好安全工作; 保护好现有生产设施。 1.3 基础的检查 ( 1) 校验基础是否符合设计要求( 位置、几何尺寸) , 提请建设单位及土建基础施工单位提供的地耐力试验及预压和沉降方面的资料, 确保具备施工条件; ( 2) 验证基础的水平度以及中心线、标高、地脚螺栓孔的数量间距等是否符合设计及施工要求; 1.4 材料的存放与保管 ( 1) 购进的钢板、型材和附件, 应符合设计要求, 并有质量证明书; 板材规格尽量考虑长宽尺寸符合筒体展开尺寸, 以减少焊缝并增加塔体强度; ( 2) 塔体用钢板逐张进行外观检查, 钢板表面不得有气孔、结疤、拉裂、折叠, 特别不得有分层; ( 3) 对于设计要求的特种钢材或屈服强度较高的板材, 应由建设单位会同供料单位进行要的检测; ( 4) 钢板做标记, 并按材质、规格、厚度等分类存放; 存放过程中, 应防止钢板变形, 严禁用带棱角的物件垫底; 1.5筒体壁板的预制与组对(因塔体直径较大, 故筒体壁板采用分片制作、分段组对) ( 1) 放样划线: 依设计尺寸合理的套裁下料以节约钢板,预留加工余量;

焦炉煤气净化技术现状

焦炉煤气净化技术现状 在2004年国家公布的《焦化准入条件》中,明确规定新建或改造焦炉要同步配套建设煤气净化设施。至2006年底,经国家发改委核准的厂家仅108家,这些家的产能之合仅占当年焦炭总产能的30%左右。还有大量企业未被核准,其主要原因之一就是煤气净化设施配套不完善。煤气净化设施主要包括冷凝鼓风装置、脱硫脱氰装置、氨回收装置及苯回收装置。所谓配套不完善,是指缺某个或某些装置,特别是缺脱硫脱氰装置。 主流工艺技术 我国焦炉煤气净化工艺通过不断引进国外先进技术和创新发展,已经步入世界先进行列;煤气净化工艺已基本涵盖了当今世界上较为先进的各种工艺流程。目前,年产焦炭100万t以上的大型焦化厂全部设有煤气净化系统,对来自炼焦炉的荒煤气进行净化处理,脱除其中的硫化氢、氰化氢、氨、焦油及萘等各种杂质,使之达到国家或行业标准,供给工业或民用用户使用;同时,对化工副产品进行回收利用。 煤气净化工艺采用的主要技术包括:焦炉煤气的冷凝冷却及排送、焦油氨水分离、焦油、萘、硫化氢、氰化氢、氨等杂质的脱除以及粗苯的回收等。 焦炉煤气的冷凝冷却 焦炉煤气的冷凝冷却,即初步冷却,普遍采用了高效横管间冷工艺。其特点是:煤气冷却效率高,除萘效果好;当煤气温度冷却至20~22℃,煤气出口含萘可降至0.5g/m3,不需另设脱萘装置即可满足后续工艺操作需要。

高效横管间冷工艺通常分为二段式或三段式初冷工艺。当上段采用循环冷却水,下段采用低温冷却水对煤气进行冷却时,称为二段式初冷工艺。为回收利用荒煤气的余热,通常在初冷器上部设置余热回收段,即构成三段初冷工艺。采用三段初冷工艺,回收的热量用作冬季采暖或其它工艺装置所需的热源,不仅可以回收利用荒煤气的余热,同时也可节省大量循环冷却水,节能效果显著,应大力倡导采用。 除上述普遍采用的横管间冷工艺外,焦炉煤气的冷凝冷却也可采取先间冷,后直冷的“间直冷工艺”对焦炉煤气进行冷却。间直冷工艺的优点在于煤气在通过直冷塔冷却的同时,可对煤气中夹带的煤粉进行洗涤、净化,使去后续装置的煤气更加洁净;缺点是工艺流程较长,运行费用高,脱萘效果差,一般需单独设置后续脱萘装置。 焦炉煤气的排送 焦炉煤气的排送由煤气鼓风机完成。从焦炉来的荒煤气经初冷工艺冷凝冷却后,通常经电捕焦油器(当电捕设在负压侧)进入煤气鼓风机,由煤气鼓风机加压后,送至后续装置。 目前,国内焦化厂煤气鼓风机较多采用电动离心式煤气鼓风机,其流量调节通常采用液力偶合器调速、电机变频调速或鼓风机前导向技术完成上述三种煤气鼓风机流量调节技术均可根据煤气输送负荷的变化,对煤气流量进行自动调节、降低鼓风机的电能消耗、降低运行费用;其中,变频技术由于技术成熟,节能效果显著,在工业生产中应用广泛,因此值得广泛采用。 除电动煤气鼓风机外,蒸汽透平驱动的煤气鼓风机在国内外煤气排送工艺中也常采用。由于同电动鼓风机相比,汽动鼓风机具有能源利用率更高,更加节能

煤气脱硫技术方案

目录 一、概论 (2) 二、脱硫工艺方案 (5) 三、设备技术规格及功能描述 (6) 四、电气控制方案 (9) 五、公用工程消耗 (11) 六、运行综合分析 (12) 七、设备明细表 (13) 八、初步报价 (16)

一、概论 SO2是一种酸性气体,在大气中易形成酸雨,威胁生态环境及公众健康。SO2已成为大气环境污染中首要污染物。根据国家“节能减排”方针政策,对大气中首要污染物SO2的排放实行总量控制,曾经在“十一五”期间全国SO2排放量削减10%,随着国家经济发展进入十二五,对于二、三类地区的工业窑炉SO2的排放量将进行严格的限制。 以煤作为燃料,即以煤为原料转换为粗煤气,煤中大部分硫组分同期转换为H2S,煤气燃烧后,硫化物以SO2形式排放,将对大气环境造成污染。 煤气中硫化氢的脱除可分为湿法脱硫与干法脱硫。 湿式氧化法脱硫:以碱性溶液吸收酸性气体硫化氢,生成硫氢酸盐,同时选

择适当的氧化催化剂,将溶液中吸收硫化氢后的硫氢酸盐氧化成单体硫,从而使脱硫溶液得到再生,并获得副产品硫磺。此后,还原态的氧化剂可由空气氧化成氧化态再循环使用。此法采用溶液吸收,且氧化再生是其特点,故将此脱硫方法称为湿式氧化法脱硫,因加入不同的催化剂分为各种方法,目前常用有氨水氧化法、改良ADA法、栲胶法、PDS法、KCA法、MSQ法、888法、DDS法、ISS法和络合铁法等。实际生产中也可同时加入两种催化剂而达到较好脱硫效率。制成的碱性溶液一般采用碳酸钠(纯碱),也有采用稀氨水,但由于稀氨水对环境有一定的污染,故建议不采用稀氨水。 化学反应: (1)无机反应 H2S+ Na2CO3= NaHS+ NaHCO3 (2)有机反应 CS 2+ 2Na2CO3+ H2O = Na2COS2+ 2NaHCO3 COS+ 2Na2CO3+ H2O = Na2CO2S+ 2NaHCO3 (3)溶液氧化与再生 2NaHS+O2=2NaOH+2S↓ 2Na2CO2S+O2= 2Na2CO3+2S↓ Na2COS2+O2= Na2CO3+2S↓

电厂BOT脱硫项目电磁流量计技术协议

华能XX电厂一期(2×362.5)MW 烟气脱硫特许经营工程 电磁流量计技术协议 买方:XXXX机电工程有限公司 卖方:XXXX工程有限公司 XXXX年10月杭州

目录 一、技术规范 ------------------------------------------------------------------------------------------------------ 1 二、供货范围 ------------------------------------------------------------------------------------------------------- 7 三、技术资料及交付进度--------------------------------------------------------------------------------------- 8 四、交货进度 ------------------------------------------------------------------------------------------------------ 9 五、性能验收试验 ------------------------------------------------------------------------------------------------- 9 六、技术服务 ---------------------------------------------------------------------------------------------------- 10

焦炉煤气湿法脱硫工艺设计(初稿)

河南城建学院 毕业设计 题目:焦炉煤气湿法脱硫工艺设计学生姓名:张炳麒 年级: 101209127 专业:化学工程与工艺 申报学位:学士学位 院系:化学与化学工程系 指导教师:李霞 完成日期:2011-05-15 2011年05月15日

摘要

目录 1﹒绪论 (1) 1.1概述 (1) 1.2焦炉煤气净化的现状 (1) 1.3栲胶的认识 (2) 1.4栲胶法脱硫的缺点 (3) 1.5设计任务的依据 (8) 2.生产流程及方案的确定·················································· 3.生产流程说明··························································3.1反应机理·························································· 3.2主要操作条件··························································3.3工艺流程·························································· 3.4主要设备介绍·························································· 4.工艺计算·························································· 4.1原始数据·························································· 4.2物料衡算·························································· 4.3热量衡算·························································· 5.主要设备的工艺计算和设备选型····································· 5.1主要设备的工艺尺寸··················································· 5.2辅助设备的选型··················································· 6 设备稳定性及机械强度校核计算············································6.1壁厚的计算··················································· 6.2 机械强度的校核···················································

相关文档
最新文档