初二期中复习最短路径+角平分线+全等三角形综合

初二期中复习最短路径+角平分线+全等三角形综合
初二期中复习最短路径+角平分线+全等三角形综合

(一)最短路径

知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。“饮马问题”,“造桥选址问题”。考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

一、两点在一条直线异侧

例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。

(根据:两点之间线段最短.)

二、两点在一条直线同侧

例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.

三、一点在两相交直线内部

例1:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,

ON上各取一点B,C,组成三角形,使三角形周长最小.

例2:如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造

在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直

线,桥要与河垂直)

B

M

N

E

例3:某班举行晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短?

例4:如图:C为马厩,D为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮他确定这一天的

最短路线。

四、综合应用

例1:如图,荆州古城河在CC′处直角转弯,河宽均为5米,从A处到达B处,须经两座桥:DD′,EE′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,A、B在东西方向上相距65米,南北方向上相距85米,问如何恰当地架桥可使ADD′E′EB的路程最短?

例2:

A O

B

E

N

C

M

A

O

B

D

·C H

F

D

(二)角平分线性质判定

1、角平分线的性质定理:

注意两点:(1)角平分线上的点到角两边的距离相等(2)一对全等三角形

经典例题透析

类型一:角平分线性质的应用

1、如图,△ABC中,∠C=90°,AD平分∠BAC,点D在BC上,且BC=24,CD:DB=3:5

求:D到AB的距离。

思路点拨:点到直线的距离是经过该点作直线的垂线,该点与垂足之间线段的长度。

举一反三:

【变式】如图,∠ACB=90°,BD平分∠ABC交AC于D,DE⊥AB于E,ED的延长线交BC的延长线于F.

求证:AE=CF

类型二:角平分线的判定

2、已知,如图,CE⊥AB,BD⊥AC,∠B=∠C,BF=CF。求证:AF为

∠BAC的平分线。

思路点拨:由已知条件与待求证的结论,应想到角平分线的判定定理。

总结升华:应用角平分线定理及逆定理时不要遗漏了“垂直”的条件。如果遗漏了说明没有认识到“垂直”条件在证明结论的必要性。

举一反三:

【变式】如图,已知AB=AC,AD=AE,DB与CE相交于O

(1) 若DB⊥AC,CE⊥AB,D,E为垂足,试判断点O的位置及OE与OD的大小关系,并证明你的结论。

(2) 若D,E不是垂足,是否有同样的结论?并证明你的结论。

类型三、角平分线的综合应用

一、已知角平分线,构造三角形

例题:如图所示,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F。

求证:

1

()

2

BE AC AB

=-

二、已知一个点到角的一边的距离,过这个点作另一边的垂线段

如图所示,∠1=∠2,P为BN上的一点,并且PD⊥BC于D,AB+BC=2BD。

求证:∠BAP+∠BCP=180°。

N

P

E

D C

B

A

2

1

F

E

D C

B

A

其他的角相等。

例1:图1,已知D O ⊥BC ,O C =O A ,O B =O D ,问CD =AB 吗?

[变形1]:请说明△BCE 是直角三角形。

[变形2]:两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,

B C E ,,在同一条直线上,连结CD . (彩图为提示)

(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:CD ⊥BE

E B

A

O

C

D

E

B

A

O

C D

图1

图2

A

C B

E

D

图1

A

C B

E

D

全等三角形练习题及答案(一)

全等三角形练习 一、填空题: 1.如图,△ABC ≌△DEB ,AB =DE ,∠E =∠ABC ,则∠C 的对应角为 ,BD 的对应边为 . 2.如图,AD =AE ,∠1=∠2,BD =CE ,则有△ABD ≌△ ,理由是 ,△ABE ≌△ , 理由是 . (第1题) (第2题) (第4题) 3.已知△ABC ≌△DEF ,BC =EF =6cm ,△ABC 的面积为18平方厘米,则EF 边上的高是 cm. 4.如图,AD 、A ′D ′分别是锐角△ABC 和△A ′B ′C ′中BC 与B ′C ′边上的高,且AB = A ′B ′, AD = A ′D ′,若使△ABC ≌△A ′B ′C ′,请你补充条件 (只需填写一个你认为适当的条件) 5. 若两个图形全等,则其中一个图形可通过平移、 或 与另一个三角形完全重合. 6. 如图,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的 长度DF 相等,则∠ABC +∠DFE =___________度 (第6题) (第7题) (第8题) 7.已知:如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,则 DN +MN 的最小值为__________. 8.如图,在△ABC 中,∠B =90o ,D 是斜边AC 的垂直平分线与BC 的交点,连结AD ,若 ∠ M N D C B A E D C B A

H E D C B A B ′ C ′ D ′ O ′A ′ O D C B A (第14 DAC :∠DAB =2:5,则∠DAC =___________. 9.如图,等腰直角三角形ABC 中,∠BAC =90o ,BD 平分∠ABC 交AC 于点D ,若AB +AD =8cm , 则底边BC 上的高为___________. 10.如图,锐角三角形ABC 中,高AD 和BE 交于点H ,且BH =AC ,则∠ABC =__________度. (第9题) (第10题) (第13题) 二、选择题: 11.已知在△ABC 中,AB =AC ,∠A =56°,则高BD 与BC 的夹角为( ) A .28° B .34° C .68° D .62° 12.在△ABC 中,AB =3,AC =4,延长BC 至D ,使CD =BC ,连接AD ,则AD 的长的取值范围为 ( ) A .1<AD <7 B .2<AD <14 C .<A D < D .5<AD <11 13.如图,在△ABC 中,∠C =90°,CA =CB ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于点E ,且AB =6, 则△DEB 的周长为( ) A .4 B .6 C .8 D .10 14.用直尺和圆规作一个角等于已知角的示意图如下,则说明 ∠A ′O ′B ′=∠AOB 的依据是 A .(S .S .S .) B .(S .A .S .) C .(A .S .A .) D .(A .A .S . 15. 对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( ) A.∠α=60o,∠α的补角∠β=120o,∠β>∠α B.∠α=90o,∠α的补角∠β=900o,∠β=∠α C.∠α=100o,∠α的补角∠β=80o,∠β<∠α D.两个角互为邻补角 16. △ABC 与△A ′B ′C ′中,条件①AB = A ′B ′,②BC = B ′C ′,③AC =A ′C ′,④∠A=∠A ′,⑤∠B =∠B ′,⑥∠C =∠C ′,则下列各组条件中不能保证△ABC ≌△A ′B ′C ′的是( ) D C B A

全等三角形与角平分线经典题型

全等三角形与角平分线 一、知识概述 1、角的平分线的作法 (1)在∠AOB的两边OA、OB上分别截取OD、OE,使OD=OE. (2)分别以D、E为圆心,以大于1/2DE长为半径画弧,两弧交于∠AOB 内一点C. (3)作射线OC,则OC为∠AOB的平分线(如图) 指出:(1)作角的平分线的依据是三角形全等的条件——“SSS”. (2)角的平分线是一条射线,不能简单地叙述为连接. 2、角平分线的性质 在角的平分线上的点到角的两边的距离相等. 指出:(1)这里的距离是指点到角两边垂线段的长. (2)该结论的证明是通过三角形全等得到的,它可以独立作为证明两条线段相等的依据.即不需再用老方法——全等三角形. (3)使用该结论的前提条件是有角的平分线,关键是图中有“垂直”. 3、角平分线的判定 到角的两边的距离相等的点在角的平分线上. 指出:(1)此结论是角平分线的判定,它与角平分线的性质是互逆的. (2)此结论的条件是指在角的内部有点满足到角的两边的距离相等,那么

过角的顶点和该点的射线必平分这个角. 4、三角形的角平分线的性质 三角形的三条角平分线相交于一点,且这点到三角形三边的距离相等. 指出:(1)该结论的证明揭示了证明三线共点的证明思路:先设其中的两线交于一点,再证明该交点在第三线上. (2)该结论多应用于几何作图,特别是涉及到实际问题的作图题. 二、典型例题剖析 例1、如图所示,四边形ABCD中,AB=AD,AC平分∠BCD,AE⊥BC,AF⊥CD.求证:△ABE≌△ADF. 例2、如图所示,BE、CF是△ABC的高,BE、CF相交于O,且OA平分∠BAC.求证:OB=OC. 例3、如图,D为BC的中点,DE⊥DF,E、F分别在AB、AC边上,则BE+CF ()

角平分线和全等三角形证明分类

精锐教育学科教师辅导讲义 学员编号:年级:初二课时数:3 学员姓名:辅导科目:数学学科教师: 授课类型T 角平分线C专题精讲 授课日期时段 教学内容 1. 角平分线的作法(尺规作图) ①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点; ②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P; ③过点P作射线OP,射线OP即为所求. 2. 角平分线的性质及判定 (1)角平分线的性质:角的平分线上的点到角的两边的距离相等. 几何表达:(角的平分线上的点到角的两边的距离相等) 如图所示,∵OP平分∠MON(∠1=∠2),PA⊥OM,PB⊥ON,∴PA=PB。 (2)角平分线的判定:到角的两边的距离相等的点在角的平分线上. 几何表达:(到角的两边的距离相等的点在角的平分线上.) 如图所示,∵PA⊥OM,PB⊥ON,PA=PB,∴∠1=∠2(OP平分∠MON) (3)三角形三个内角平分线的性质:三角形三条内角平分线交于一点,且这一点到三角形三边的距离相等。 3. 角平分线性质及判定的应用

①为推导线段相等、角相等提供依据和思路; ②实际生活中的应用. 例:一个工厂,在公路西侧,到公路的距离与到河岸的距离相等,并且到河上公路桥头的距离为300米.在下图中标出工厂的位置,并说明理由. 【例题讲解】 1.在△ABC 中,AC ⊥BC ,AD 为∠BAC 的平分线,DE ⊥AB ,AB =7㎝,AC =3㎝,求BE 的长。 2.如图:在△ABC 中,∠C=90° AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,BD=DF ; 求证:CF=EB 3.如图,P 为∠AOB 内一点,OA=OB ,且△OPA 与△OPB 面积相等,求证∠AOP=∠BOP . 4.如图,AB=AC ,AD=AE ,BD 、CE 交于O ,求证AO 平分∠BAC. E D C B A E A B C D F

初二全等三角形难题及答案

1、如图,在等边ABC ?中,点D 、E 分别在 边BC 、AB 上,且AE BD =,AD 与CE 交 于点F (1)求证:CE AD = (2)求DFC ∠的度数 2、如图,ABC ?中,?=∠90ACB ,AB CD ⊥, 垂足为D ,AE 是角平分线交CD 于F ,AB FM // 且交BC 于M ,则CE 与MB 的大小关系怎样? 证明你的结论 3、在平行四边形ABCD 中,E 为DC 边的中点,AE 交BD 于O , 212cm S ODE =?,则AOB S ?等于 4、如图,在平行四边形ABCD 中,E 是BC 的中点, DE 、AB 的延长线交于点F 求证:EFC ABE S S ??= 5、如图,已知D 为BC 中点,点A 在DE 上, 且CE AB =,求证:21∠=∠ 6、如图,ABC ?中,D 为BC 边的中点, AC BE ⊥于点E ,若?=∠30DAC , 求证:BE AD = 7、如图,BD 、CE 分别是ABC ?的 边AC 、AB 上的高,F 、G 分别是 线段DE 、BC 的中点 求证:DE FG ⊥

8、如图,BN AM //,MAB ∠和NBA ∠ 的角平分线相交于点P ,过点P 作直线EF 分别交AM 、BN 于F 、E (1)求证:BE AF AB += (2)若EF 绕点P 旋转,F 在MA 的延长线上滑动,如图,请你测量,猜想AB 、AF 、BE 之间的关系,写出这个关系式,并加以证明 9、如图,在锐角ABC ?中,已知C ABC ∠=∠2, ABC ∠的平分线BE 与AD 垂直,垂足为D , 若cm BD 4=,求AC 的长 10、已知在△ABC 中,∠A =90°,AB =AC ,AE ⊥BD 于E , ∠ADB =∠CDF,延长AE 交BC 于F ,求证:D 为AC 的中点 11、已知三角形ABC 中,AD 为BC 边的中线,E 为AC 上一点,BE 与AD 交于F ,若AE=EF ,求证:AC=BF ③ ④ 12.如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE . A B C D E F 图9

全等三角形章末重难点题型分类练习

专题 01 全等三角形章末重难点题型汇编【举一反三】 变式 1-1】( 2018秋?绍兴期末)如图,△ ABC ≌△EDC ,BC ⊥CD ,点 A ,D ,E 在同一条直线上,∠ ACB = 20°,则∠ ADC 的度数是( ) A .55° B .60° C . 65° D . 70° 变式 1-2】(2018秋?厦门期末)如图,点 F ,C 在 BE 上,△ ABC ≌△ DEF ,AB 和 DE ,AC 和 DF 是对 应边, AC ,DF 交于点 M ,则∠ AMF 等于( ) A .2∠ B B .2∠ACB C .∠ A+∠ D D .∠ B+∠ ACB 变式 1-3】( 2018秋?桐梓县校级期中)如图,△ ABC ≌△ A ′ B ′ C ,∠ ACB = 90°,∠ B = 50°,点 B ′ 在线段 AB 上, AC , A ′ B ′交于点 O ,则∠ COA ′的度数是( ) A .50° B .60° C . 70° D . 80 ° 考点 1 利用全等三角形的性质求角】 例 1】(2019 春?临安区期中) 如图, △ACB ≌△A ′CB ′,∠ACB =70°,∠ACB ′=100°,则∠ BCA 的度数为( ) 40°

变式 2-1 】(2019 秋?潘集区期中)在△ ABC 与△ DEF 中,给出下列四组条件: 变式 2-2】( 2018春?渝中区校级期中)如图,点 B 、F 、C 、E 在一条直线上,∠ A =∠D ,∠B =∠E ,再 添一个条件仍不能证明△ ABC ≌△ DEF 的是( ) A .A B =DE B .B C =EF C .∠ ACB =∠ DFE D . AC = DF 变式 2-3】(2018 秋?鄂尔多斯期中)如图,已知 AB =AC ,AD =AE ,若要得到“△ ABD ≌△ ACE ”,必 须添加一个条件,则下列所添条件不恰当的是( ) A .BD =CE B .∠ ABD =∠ ACE C .∠ BA D =∠ CA E D .∠ BAC =∠ DAE 考点 3 全等三角形判定的应用】 例 3】(2019春?郓城县期末)如图所示,要测量河两岸相对的两点 A 、B 的距离,因无法直接量出 A 、B 两点的距离,请你设计一种方案,求出 A 、B 的距离,并说明理由. 变式 3-1】(2019春?峄城区期末)如图,点 C 、 E 分别在直线 AB 、DF 上,小华想知道∠ ACE 和∠DEC 是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先 添加一个 (1)AB =DE ,AC =DF , BC =EF (3)∠ B =∠ E , BC = EF ,∠ C =∠F 其中能使△ ABC ≌△ DEF 的 条件共有( A .1 组 B .2 组 (2)AB =DE ,∠ B =∠ E , BC = EF (4)AB = DE ,∠ B =∠E ,AC =DF , ) 考点 2 全等三角形的判定条 C .∠ C =∠ D .∠ B =∠ B .B C =E D A . AB =

八年级数学全等三角形练习题含答案

全等三角形复习练习题 一、选择题 1.如图,给出下列四组条件: ①AB DE BC EF AC DF === ,,;②AB DE B E BC EF =∠=∠= ,,; ③B E BC EF C F ∠=∠=∠=∠ ,,;④AB DE AC DF B E ==∠=∠ ,,.其中,能使ABC DEF △≌△的条件共有() A.1组B.2组C.3组D.4组 2.如图,D E ,分别为ABC △的AC,BC边的中点,将此三 角形沿DE折叠,使点C落在AB边上的点P处.若48 CDE ∠=°, 则APD ∠等于() A.42° B.48° C .52° D.58° 3.如图(四),点P是AB上任意一点,ABC ABD ∠=∠,还应补 充一个条件,才能推出APC APD △≌△.从下列条件中补充 一个条件,不一定能 ....推出APC APD △≌△的是() A.BC BD = B.AC AD = C.ACB ADB ∠=∠ D.CAB DAB ∠=∠ 4.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两 个条件才能使△ABC≌△DEF,不能添加的一组条件是( ) (A)∠B=∠E,BC=EF (B)BC=EF,AC=DF (C)∠A=∠D,∠B=∠E (D)∠A=∠D,BC=EF C A D P B 图(四)

5.如图,△ABC 中,∠C = 90°,AC = BC ,AD 是∠BAC 的平分线, DE⊥AB 于E ,若AC = 10cm ,则△DBE 的周长约等于( ) A .14cm B .10cm C .6cm D .9cm 6. 如图所示,表示三条相互交叉的公路,现要建一个货物中 转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A.1处 B.2处 C.3处 D.4处 7.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配 一块完全一样的玻璃,那么最省事的方法是( ) A .带①去 B .带②去 C .带③去 D .带①②③去 8.如图,在Rt ABC △中,ο 90=∠B ,ED 是AC 的垂直平分线,交AC 于 点D ,交BC 于点E .已知ο 10=∠BAE ,则C ∠的度数为( ) A .ο 30 B .ο 40 C .ο 50 D .ο 60 9.如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20° B .30° C .35° D .40° 10.如图,AC =AD ,BC =BD ,则有( ) A .A B 垂直平分CD B .CD 垂直平分AB C .AB 与C D 互相垂直平分 D .CD 平分∠ACB 11.如图, ∠C=90°,AD 平分∠BAC 交BC 于D,若BC=5cm,BD=3cm,则点D 到AB 的距离为( ) A D C E B E D C B A ④ ①② ③ A B C D C A B B ' A '

用角平分线构造全等三角形

善于构造 活用性质 几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题. 1.显“距离”, 用性质 很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段) 例1 三角形的三条角平分线交于一点,你知道这是为什么吗 分析:我们知道两条直线是交于一点的,因此可以想办法证明第三条角平分线通过前两条角平分线的交点. 已知:如图,△ABC 的角平分线AD 与BE 交于点I ,求证:点I 在∠ACB 的平分线上. 证明:过点I 作IH ⊥AB ,IG ⊥AC ,IF ⊥BC ,垂足分别是点H 、G 、F . ∵点I 在∠BAC 的角平分线AD 上,且IH ⊥AB 、IG ⊥AC ∴IH =IG (角平分线上的点到角的两边距离相等) 同理 IH =IF ∴IG =IF (等量代换) 又IG ⊥AC 、IF ⊥BC ∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点. 例2 已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,?它们交于点P , PD ⊥BM 于D ,PF ⊥BN 于F . 求证:BP 为∠MBN 的平分线. D C B A E H I F G

【分析】要证BP为∠MBN的平分线,只需证PD=PF,而PA、PC为外角平分线,?故可过P作PE⊥AC于E.根据角平分线性质定理有PD=PE,PF=PE,则有PD=PF,故问题得证.【证明】过P作PE⊥AC于E. ∵PA,PC分别为∠MAC与∠NCA的平分线.且PD⊥BM,PF⊥BN ∴PD=PE,PF=PE,∴PD=PF 又∵PD⊥BM,PF⊥BN,∴点P在∠MBN的平分线上, 即BP是∠MBN的平分线. 2.构距离,造全等 有角平分线时常过角平分线上的点向角两边引垂线,根据角平分线上的点到角两边距离相等,可构造处相应的全等三角形而巧妙解决问题. 例3 △ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D点,问能否在AB?上确定一点E使△BDE的周长等于AB的长.请说明理由. 解:过D作DE⊥AB,交AB于E点,则E点即可满足要求. 因为∠C=90°,AC=BC,又DE⊥AB,∴DE=EB. ∵AD平分∠CAB且CD⊥AC、ED⊥AB,∴CD=DE. 由“H L”可证Rt△ACD≌Rt△AED.∴AC=AE. ∴L△BDE=BD+DE+EB =BD+DC+EB =BC+EB=AC+EB =AE+EB =AB. 例4 如图,∠B=∠C=90°,M是BC上一点,且DM平分∠ADC,AM平分∠DAB. 求证:AD=CD+AB.

(完整版)全等三角形难题题型归类及解析

全等三角形难题题型归类及解析 一、角平分线型角平分线是轴对称图形,所以我们要充分的利用它的轴 对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是 经过平分线上一点作两边的垂线。另外掌握两个常用的结论:角平分 线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。 1. 如图,在Δ ABC中,D是边BC上一点,AD平分∠BAC,在AB上截取 AE=AC, 连结DE,已知DE=2cm,BD=3cm,求线段BC的长。 已知:如图所示,BD为∠ ABC的平 分线,?PN⊥CD于N,判断PM与 PN的关系. AB=BC,点P在BD上,PM⊥AD于 M, 3. 如图所示,P为∠ AOB的平分线上一 点,若OC=4cm,求AO+BO的值. BD 2. PC⊥OA于C,?∠OAP+∠OBP=18°0 ,

4. 已知: 如 图 E 在△ ABC 的边 AC 上,且∠ AEB=∠ABC 。 ABE=∠C ; (2) 若∠BAE 的平分线 AF 交 BE 于 F ,FD ∥BC 交 AC 于 D ,设 AB=5, AC=8,求 DC 的长。 5、如图所示,已知∠ 1=∠2,EF ⊥AD 于 P ,交 BC 延长线于 M ,求证: 2∠M= (∠ ACB- ∠B ) 6、如图,已知在△ ABC 中,∠ BAC 为直角, AB=AC ,D 为 AC 上一点, CE ⊥BD 于 E . 1 (1) 若 BD 平分∠ ABC ,求证 CE=2BD ; (2) 若 D 为 AC 上一动点,∠AED 如何变化, 若变化,求它的变化范 围; 若不变,求出它的度数,并说明理由。

(完整版)利用角平分线构造全等三角形

善于构造 活用性质 安徽 张雷 几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题. 1.显“距离”, 用性质 很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段) 例:三角形的三条角平分线交于一点,你知道这是为什么吗? 分析:我们知道两条直线是交于一点的,因此可以想办法证 明第三条角平分线通过前两条角平分线的交点. 已知:如图,△ABC 的角平分线AD 与BE 交于点I ,求证:点I 在∠ACB 的平分线上. 证明:过点I 作IH ⊥AB 、IG ⊥AC 、IF ⊥BC ,垂足分别是点 H 、G 、F . ∵点I 在∠BAC 的角平分线AD 上,且IH ⊥AB 、IG ⊥AC ∴IH=IG (角平分线上的点到角的两边距离相等) 同理 IH=IF ∴IG=IF (等量代换) 又IG ⊥AC 、IF ⊥BC ∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点. 【例2】已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,?它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F . 求证:BP 为∠MBN 的平分线. 【分析】要证BP 为∠MBN 的平分线,只需证PD=PF ,而PA 、PC 为外角平分线,?故可过P 作PE ⊥AC 于E .根据角平分线性质定理有PD=PE ,PF=PE ,则有PD=PF ,故问题得证. 【证明】过P 作PE ⊥AC 于E . ∵PA 、PC 分别为∠MAC 与∠NCA 的平分线.且PD ⊥BM ,PF ⊥BN ∴PD=PE ,PF=PE,∴PD=PF 又∵PD ⊥BM ,PF ⊥BN,∴点P 在∠MBN 的平分线上, D C A E H I F G

全等三角形练习题及答案

全等三角形练习题及答案 1、下列判定直角三角形全等的方法,不正确的是() A、两条直角边对应相等。 B、斜边和一锐角对应相等。 C、斜边和一条直角边对应相等。 D、两锐角相等。 2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是() A.∠A B.∠B C.∠C D.∠B或∠C 3、下列各条件中,不能作出唯一三角形的是() A.已知两边和夹角 B.已知两角和夹边 C.已知两边和其中一边的对 角 D.已知三边 4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断 △ABC与△DEF全等的 是(). A. BC=EF B.AC=DF C.∠B=∠E D.∠C=∠F 5、使两个直角三角形全等的条件是() A.一锐角对应相等B.两锐角对应相等 C.一条边对应相等D.两条直角边对应相等 6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A', ⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是() A、①②③ B、①②⑤ C、①②④ D、②⑤⑥ 7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是 () A、∠ADB=∠ADC B、∠B=∠C C、DB=DC D、AB=AC 8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为 A. 40° B. 80° C.120° D. 不能确定

9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为() A.600 B.700C.750D.850 10、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( ) A. 150° B.40° C.80° D. 90° 11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( ) A.①③ B.②④ C.②③④ D.①②④ 12、下列条件中,不能判定两个三角形全等的是() A.三条边对应相等 B.两边和一角对应相等 C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等 13、如图,已知,,下列条件中不能判定⊿≌⊿的是() (A)(B) (C)(D)∥ 14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°, 则∠D的度数为().

华师大版八年级上册数学《全等三角形》重难点专训

华师大版八年级上册数学《全等三角形》重难点专训 专训一:命题与定理 名师点金:命题贯穿于数学始终,是数学的基础知识,学习时,要会判断一句话是不是命题,能找出命题的条件和结论,会判断命题的真假,会用证明的方法去证明一个真命题. 命题的定义及结构 1.下列句子是命题的有() ①一个角的补角比这个角的余角大多少度? ②垂线段最短,对吗? ③等角的补角相等; ④两条直线相交只有一个交点; ⑤同旁内角互补. A.1个B.2个C.3个D.4个 2.写出下列命题的条件和结论. (1)平行于同一条直线的两直线平行; (2)互为邻补角的两个角的平分线互相垂直; (3)两点确定一条直线. 命题的真假 3.判断下列命题是真命题还是假命题,若是假命题,请说明理由. (1)一个三角形如果有两个角互余,那么这个三角形是直角三角形; (2)如果a是有理数,那么a2+1>0; (3)如果AC=BC,那么点C是AB的中点; (4)如果等腰三角形的两条边长分别为5和7,那么这个等腰三角形的周长为17.

命题的证明 类型1 证明真命题 4.如图所示,AB ∥CD ,直线EF 与AB ,CD 分别交于点M ,N ,∠BMN 与∠DNM 的平分线相交于点G. 求证:MG ⊥NG. 请补全下面的证明过程: 证明:∵MG 平分∠BMN(____________), ∴∠GMN =12∠BMN(____________________). 同理∠GNM =12∠DNM. ∵AB ∥CD(____________), ∴∠BMN +∠DNM =________(____________), ∴∠GMN +∠GNM =________(____________), ∵∠GMN +∠GNM +∠G =________(________), ∴∠G =________, ∴MG ⊥NG(____________). 类型2 证明假命题 5.已知命题:“一个锐角与一个钝角的度数之和一定等于180°”,请你判断这个命题的真假,如果是假命题,请你用举反例的方法说明它是假命题. 专训二:全等三角形判定的三种类型 名师点金:一般三角形全等的判定方法有四种:S .S .S .,S .A .S .,A .S .A .,A .A .S .;直角三角形是一种特殊的三角形,它的判定方法除了上述四种之外,还有一种特殊的方法,即“H .L .”.具体到某一道题目时,要根据题目所给出的条件进行观察、分析,选择合适的、简单易行的方法来解题. 已知一边一角型 题型1 一次全等型

全等三角形练习题含答案

七年级全等测试 ?选择题(共3小题) 1. 如图,EB交AC于M,交FC于D, AB交FC于N,/ E=Z F=90° / B=Z C, AE=AF,给出下列结论:①/ 1 = /2;②BE=CF③厶ACN^A ABM:④CD=DN 其中正确的结论有() A. 4个 B. 3个 C. 2个 D. 1个 2. 如图,△ ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE AE与BD相交于点P,BF丄AE于点F.若BP=4则PF的长() A. 2 B. 3 C. 1 D. 2 二 3. 如图,OA=OC OB=OD且0A丄OB, OCX OD,下列结论:①△ AOD^A COB ②CD=AB③/ CDA=Z ABC; 其中正确的结论是() D A.①② B.①②③ C?①③D.②③ 二.解答题(共11小题) 4. 如图,四边形ABCD中,对角线AC BD交于点O, AB=AC点E是BD上点,且AE=AD / EAD=Z BAC

(1)求证:/ ABD=/ ACD

(2)若/ ACB=65,求/ BDC的度数. B C 5. (1)如图①,在四边形ABCD中,AB// DC, E是BC的中点,若AE是/ BAD 的平分线,试探究AB, AD,DC之间的等量关系,证明你的结论; (2)如图②,在四边形ABCD中,AB// DC, AF与DC的延长线交于点F, E是BC 的中点,若AE是/BAF的平分线,试探究AB,AF, CF之间的等量关系,证明你的结论. 6 .已知:在△ ABC中,AB=AC D为AC的中点,DE丄AB, DF丄BC,垂足分别为点E, F,且DE=DF求证:△ ABC是等边三角形. 7. 已知,在△ ABC中,/ A=90°, AB=AC点D为BC的中点. (1)如图①,若点E、F分别为AB、AC上的点,且DE丄DF,求证:BE=AF (2)若点E、F分别为AB、CA延长线上的点,且DE丄DF,那么BE=AF吗?请利用图②说明理由. 圍①图 图圏

全等三角形与角平分线专题讲解

C E O D B A 2 1C E D B A 214 3 O A 全等三角形专题讲解 专题一 全等三角形判别方法的应用 专题概说:判定两个三角形全等的方法一般有以下4种: 1.三边对应相等的两个三角形全等(简写成“SSS ”,“边边边”) 2.两边和它们的夹角对应相等的两个三角形全等(简写成“SAS ”,“边角边”) 3.两角和它们的夹边对应相等的两个三角形全等(简写成“ASA ”,“角边角”) 4.两个角和其中一个角的对边对应相等的两个三角形全等(简写成“AAS ”,“角角边”) 而在判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”,即斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL ”, “斜边、直角边”).也就是说“斜边、直角边”是判别两个直角三角形全等的特有的方法,它仅适用于判别两个直角三角形全等. 三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢? (1)条件充足时直接应用 在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等. 例1 已知:如图,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O ,且AO 平分∠BAC .那么图中全等的三角形有___对. 分析:由CE ⊥AB ,BD ⊥AC ,得∠AEO=∠ADO=90o.由AO 平分∠BAC ,得∠EAO=∠DAO .又AO 为公共边,所以△AEO ≌△ADO .所以EO=DO ,AE=AD .又∠BEO=∠CDO=90o, ∠BOE=∠COD ,所以△BOE ≌△COD .由 AE=AD ,∠AEO=∠ADO=90o,∠BAC 为公 共角,所以△EAC ≌DAO .所以AB=AC .又 ∠EAO=∠DAO , AO 为公共边,所以△ABO ≌△ACO . 所以图中全等的三角形一共有4对. (2)条件不足,会增加条件用判别方法 此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案. 例2 如图,已知AB=AD ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是(只需填一个)_____. 分析:要使△ABC ≌△ADE ,注意到∠1=∠2, 所以∠1+∠DAC=∠2+∠DAC ,即∠BAC=∠EAC . 要使△ABC ≌△ADE ,根据SAS 可知只需AC=AE 即可; 根据ASA 可知只需∠B=∠D ;根据AAS 可知只需∠C=∠E . 故可添加的条件是AC=AE 或∠B=∠D 或∠C=∠E . (3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时, 当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系, 使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等. 例3 已知:如图,AB=AC ,∠1=∠2.

全等三角形练习题及答案

一、填空题(每小题4分,共32分). 1.已知:///ABC A B C ??≌,/A A ∠=∠,/B B ∠=∠,70C ∠=?,15AB cm =,则/ C ∠=_________,//A B =__________. 2.如图1,在ABC ?中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三 角形_______对. 图1 图2 图3 3. 已知△ABC ≌△A ′B ′C ′,若△ABC 的面积为10 cm 2,则△A ′B ′C ′的面积为______ c m 2,若△A ′B ′C ′的周长为16 cm ,则△ABC 的周长为________cm . 4. 如图2所示,∠1=∠2,要使△ABD ≌△ACD ,需添加的一个条件是________________(只添一个条件即可). 5.如图3所示,点F 、C 在线段BE 上,且∠1=∠2,BC =EF ,若要使△ABC ≌△DEF ,则还需补充一个条件________,依据是________________. 6.三角形两外角平分线和第三个角的内角平分线_____一点,且该点在三角形______部. 7.如图4,两平面镜α、β的夹角 θ,入射光线AO 平行于β,入射到α上,经两 次反射后的出射光线CB 平行于α,则角θ等于________. 8.如图5,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △ 的面积为 ______. 二、选择题(每小题4分,共24分) 9.如图6,AE =AF ,AB =AC ,E C 与BF 交于点O ,∠A =600,∠B =250,则∠E O B 的度数为( ) A 、600 B 、700 C 、750 D 、850 10.△ABC ≌△DEF ,且△ABC 的周长为100 cm ,A 、B 分别与D 、E 对应,且AB =35 cm ,DF =30 cm ,则EF 的长为( ) A .35 cm B .30 cm C .45 cm D .55 cm 11.图7是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在________两点上的木条.( ) A .A 、F B . C 、E C .C 、A D . E 、F 12.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD=?BC ,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上,可以证明△EDC ?≌△ABC ,?得到ED=AB ,因此测得ED 的长就是AB 的长(如图8),判定△EDC ≌△ABC 的理由是( ) N A M C B 图7 图8 图9 图10

全等三角形的重难点

全等三角形的重难点 一、确定全等三角形的对应关系 在全等三角形中正确地找出对应顶点、对应边、对应角,是解决与全等三角形相关的问题的关键.全等三角形有许多对应的元素,怎样寻找这些对应元素呢? 1.根据全等符号暗示的信息找对应 符号语言是数学思维的载体,教材中说,“记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上”,此要求同学们在学习中要严格遵循,养成按对应顶点表示全等三角形的习惯,并且按“对应顶点记位置”的特点找全等三角形的对应边、对应角,达到无需看图也能迅速找出两个全等三角形的对应边和对应角的目的. 例1 已知△ABC≌△BAD,如果AB=8,BD=9,AD=11,那么AC= . 【分析】一般情况下,在用符号≌表示两个三角形全等时,我们是把表示对应顶点的字母写在对应的位置上,根据这个规则可知:对应位置上的字母就是表示对应顶点的字母,对应位置上的字母表示的线段就是对应边,表示的角就是对应角.由题设已知中所给△ABC≌△BAD符号表示可知:AC与BD是对应边(如图1),所以AC=BD=9. 例2 已知△ABC与△DEF全等,∠A=30°,∠B=50°,则∠D=(). A.30° B.50° C.100° D.以上三种情况都有可能 【分析】注意本题与上例的区别,题目只说△ABC与△DEF全等,并没有给出对应法则(即没有用全等关系的符号)表示,所以会出现三种可能,选择D. 2.观察图形特征暗示的信息找对应 ①有公共边的,公共边是对应边; ②有公共角的,公共角是对应角; ③有对顶角的,对顶角是对应角; ④两个三角形中,对应角所对的边是对应边,两个对应角的夹边是对应边; ⑤两个三角形中,对应边所对的角是对应角,两条对应边的夹角是对应角; ⑥两个三角形中,一对最长的边是对应边,一对最短的边是对应边; ⑦两个三角形中,一对最大的角是对应角,一对最小的角是对应角. 二、灵活选择运用判定方法 三角形全等的证明有三条公理、一条推论以及直角三角形特有的斜边直角边公理.每个公理和推论都有自己的符号表示形式,如SAS、ASA、AAS、SSS、HL等,在学习中可以充分考虑已知条件和图形的结构特点,利用公理及推论的字母表示形式去寻找解题思路,培养解题能力.如:(1)已知条件中有两边对应相等时,找两边的夹角或第三边对应相等(SAS、SSS);(2)已知条件中有两角对应相等时,找两角的夹边或任何一组等角的对边相等(ASA、AAS);(3)已知条件中有一边和一角对应相等时,找夹等角的另一组边对应相等,或任何一组角对应相等(SAS、AAS). 例3 如图2,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为: .你得到的一对全等三角形是: . 【分析】本例是一道条件探索型试题,需从结论出发,执果索因,考虑要图中存在全等三角形,现已有哪些条件,逆推还需添加什么条件,同时本例又是一道开放性试题,答案不唯一,从图中也可以直观地看出可能有△ACE与△ADE,△ABC与△ABD,△BCE 与△BDE三对三角形全等. 若要△ACE≌△ADE,现已有AC=AD,又AE=AE(公共边),故还需添加CE=DE(从边的角度考虑用SSS)或∠CAE=∠DAE(从角的角度考虑,已有两边,考虑两边的夹角用

全等三角形证明题含答案

全等三角形证明经典题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90 ∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 5. 证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 A D B C

∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。∴ ∠BAF=∠EAF (∠1=∠2)。 6. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角)∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又EF ∥AB ∴∠EFD =∠1 ∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG 又 EF =CG ∴EF =AC 7. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 8. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE , ∴△CEB ≌△CEF ∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF ∴AE =AF +FE =AD +BE 9. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 在BC 上截取BF=AB ,连接EF ∵BE 平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE ≌⊿FBE (SAS ) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o ∵∠BFE+∠CFE=180o B A C D F 2 1 E A

全等三角形重难点题型讲练(无答案)

全等三角形重难点题型讲练 ※题型讲练 【例1】已知:如图,AB∥CD,E是AB的中点,CE=DE. 求证:AC=BD. 变式训练1: 1.如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.求证:BD=2CE. 【例2】如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M. (1)求证:∠FMC=∠FCM; (2)AD与MC垂直吗?并说明理由. 变式训练2: 1.如图,在R t△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.

【例3】已知:如图,△ABC中,∠A=60°,BD、CE分别平分∠ABC和∠ACB,BD、CE交于点O. (1)求∠BOC的度数;(2)求证:BE+CD=BC. 变式训练3: 1.如图,△ABC中,BD=AC,∠ADC=∠CAD,E是DC的中点,求证:AD平分∠BAE. 【例4】如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M. (1)求证:△ABQ≌△CAP; (2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数. (3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.

相关文档
最新文档