初中全等三角形难题
全等三角形难题(含答案)
全等三角形难题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP ,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形AD B CC∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)BB ACDF21 E∴△EFD≌△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
全等三角形难题(含答案)
全等三角形难题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形AD BC∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点GC G∥EF,可得,∠EFD=CGDDE =DC∠FDE=∠GDC(对顶角)B ACDF21 E∴△EFD≌△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又 EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
初一数学全等三角形难题全集
三角形的边角与全等三角形一、选择题1.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组2、已知图2中的两个三角形全等,则∠α度数是( )A.72°B.60°C.58°D.50° 3、如图,在等腰梯形ABCD 中,AB =DC ,AC 、BD 交于点O ,则图中全等三角形共有( ) A .2对 B .3对C .4对D .5对ABC DO4、如图,将Rt △ABC(其中∠B =340,∠C =900)绕A 点按顺时针方向旋转到△AB 1 C 1的位置,使得点C 、A 、B 1 在同一条直线上,那么旋转角最小等于( ) A.560B.680C.1240D.18005、如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20° B .30° C .35° D .40°6、尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS7、图(三)、图(四)、图(五)分别表示甲、乙、丙三人由A 地到B 地的路线图。
已知 甲的路线为:A →C →B 。
乙的路线为:A →D →E →F →B ,其中E 为AB 的中点。
丙的路线为:A →I →J →K →B ,其中J 在AB 上,且AJ >JB 。
全等三角形难题集
全等三角形难题集引言全等三角形是初等数学中的一个重要概念,也是几何学的基础之一。
全等三角形指的是在形状、大小、角度等各方面完全相同的两个三角形。
解决全等三角形的难题对于培养学生的逻辑思维能力和几何直观能力具有重要意义。
本文将介绍一些关于全等三角形的难题,希望能够帮助读者更好地理解和掌握全等三角形的相关知识。
难题一:全等三角形的判定给定两个三角形ABC和XYZ,判断它们是否全等。
请根据下列条件判断并给出理由:1.两个三角形的三边分别相等,即AB = XY,BC = YZ,AC = XZ。
2.两个三角形的三个角度分别相等,即∠A = ∠X,∠B = ∠Y,∠C = ∠Z。
3.两个三角形的两边和夹角分别相等,即AB = XY,AC = XZ,∠BAC = ∠YXZ。
理由:1.两个三角形的三边分别相等,根据全等三角形的定义,可以判断它们为全等三角形。
因为边长相等可以保证三角形的形状和大小完全相同。
2.两个三角形的三个角度分别相等,根据全等三角形的定义,可以判断它们为全等三角形。
因为角度相等可以保证三角形的形状和大小完全相同。
3.两个三角形的两边和夹角分别相等,根据全等三角形的定义,可以判断它们为全等三角形。
因为两边和夹角的相等关系可以保证三角形的形状和大小完全相同。
综上所述,根据给定的条件判断两个三角形ABC和XYZ为全等三角形。
难题二:全等三角形的性质全等三角形具有以下性质,请证明或反驳:1.全等三角形的周长相等。
2.全等三角形的面积相等。
3.全等三角形的高度和中线相等。
证明或反驳:1.全等三角形的周长相等:假设三角形ABC和XYZ为全等三角形,根据全等三角形的定义,可以知道它们的边长相等。
所以,周长也相等。
2.全等三角形的面积相等:假设三角形ABC和XYZ为全等三角形,根据全等三角形的定义,可以知道它们的底边和高相等。
由于面积等于底边乘以高的一半,所以面积也相等。
3.全等三角形的高度和中线相等:反驳。
全等三角形难题(含规范标准答案解析)
全等三角形难题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP,BP ∵DP=DC,DA=DB∴ACBP 为平行四边形 又∠ACB=90∴平行四边形ACBP 为矩形ADBC∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 连接BE在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC∠FDE =∠GDC (对顶角)BA CDF2 1 E∴△EFD≌△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又 EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
全等三角形难题集锦(整理)
1、(1)如图1,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小;(2)如图2,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.图1 图22、(1)如图1,现有一正方形ABCD ,将三角尺的指直角顶点放在A 点处,两条直角边也与CB 的延长线、DC 分别交于点E 、F .请你通过观察、测量,判断AE 与AF 之间的数量关系,并说明理由. (2)将三角尺沿对角线平移到图2的位置,PE 、PF 之间有怎样的数量关系,并说明理由.(3)如果将三角尺旋转到图3的位置,PE 、PF 之间是否还具有(2)中的数量关系?如果有,请说明3、E 、F 分别是正方形ABCD 的边BC 、CD 上的点,且45EAF =︒∠,AH EF ⊥,H 为垂足,求证:AH AB =.4、C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作等边ABC ∆和等边CDE ∆,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论: ① AD=BE ; ② AE PQ //; ③ AP=BQ ;④ DE=DP ; ⑤ ︒=∠60AOB ⑥CP=CQ ⑦△CPQ 为等边三角形. ⑧共有2对全等三角形 ⑨CO 平分AOE ∠ ⑩CO 平分BCD ∠ 恒成立的结论有______________(把你认为正确的序号都填上).CHF ED BAABC ED O P Q5、D 为等腰ABC Rt ∆斜边AB 的中点,DM ⊥DN ,DM ,DN 分别交BC ,CA 于点E ,F 。
(1)当MDN ∠绕点D 转动时,求证:DE=DF 。
(2)若AB=2,求四边形DECF 的面积。
初二数学全等三角形难题
1、三角形ABC,角A=60°,∠B、∠C的角平分线BE与CD交与点O求:OE=OD.在BC上取点G,使得BD=BG因为∠A=60°所以∠BOC=120°因为∠DOB=∠EOC(对顶角)所以∠DOB=∠EOC=60°(360-120)/2尤SAS得△DBO≌△BOG所以DO=G0 ∠DOB=∠GOB=60°所以∠GOC=∠BOG=60°再由ASA得△OGC≌△OEC所以OG=OE因为OD=OG所以OE=OD2、已知在△ABC中,∠A=90°,AB=AC,AE⊥BD于E,∠ADB=∠CDF,延长AE交BC于F,求证:D为AC的中点作D关于BC的对称点G连接FG、CG由于角ADB=角BAF 所以角FDC=角BAF而角B=角C=45°所以角AFB=180°-角B-角BAF=180°-角C-角CDF=角DFG所以角AFD+角DFG=角AFD+角DFC+角AFB=180°所以A、F、G共线又因为角CAG=角ABD角ACG=2*45°=90°=角BAD所以三角形BAD全等于三角形ACG所以CG=AD又CG=DC所以AD=DC3.已知三角形ABC中,AD为BC边的中线,E为AC上一点,BE与AD交于F,若AE=EF,求证:AC=BF延长AD到M使DM=AD,连BM,CM∵AD=DM,BD=CD∴ABMC为平行四边形(对角线互相平分)∴AC‖BM,AC=BM(等于那个最后再用到)∴∠DAC=∠DMB(∠DAC即∠EAF,∠DMB即∠BMF下面用到)(内错角相等)……①在三角形AEF中,∵AE=EF∴∠EAF=∠EFA (等腰三角形)……②又∵∠EFA=∠BFM(对顶角相等)……③由①②③,得∠EAF=∠EFA=∠BFM=∠BMF在三角形BFM中,∵∠BFM=∠BMF∴三角形BFM为等腰三角形,边BF=BM由前面证得的AC=BM,得AC=BF4.已知三角形ABC,AD为BC边上的中线,E为AC上一点,AD、BE交于点F,且AE=EF,请问BF=AC吗?延长AD并过B点作AC的平行线,相交于G点则AC//BG,AE=EF,可得BF=BG在三角形BDG和三角形CDA中BD=CD,<ADC=<GDB,<DBG=<ACD,两三角形全等所以AC=BG=BF5、在△ABC中,∠ACB是直角,∠B= 60°,AD、CE分别是∠BAC、∠BCA 的平分线,AD、CE相交于点F。
全等三角形难题(含答案.解析)
∴∠D=∠CFE
又∵∠DCE=∠FCE
CE平分∠BCD
CE=CE
∴⊿DCE≌⊿FCE(AAS)
∴CD=CF
∴BC=BF+CF=AB+CD
8. 已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C
ED
C
F
AB
AB‖ED,得:∠EAB+∠AED=∠BDE+∠ABD=180度,
1<AD<3
∴AD=2
1
2.已知:D是AB中点,∠ACB=90°,求证:
CDAB
2
A
D
CB
延长CD与P,使D为CP中点。连接AP,BP
∵DP=DC,DA=DB
∴ACBP为平行四边形
又∠ACB=90
∴平行四边形ACBP为矩形
∴AB=CP=1/2AB
3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2
AB=AE,BF=EF,
∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF
∴三角形ABF和三角形AEF全等。
∴∠BAF=∠EAF (∠1=∠2)。
4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC
A
2
1
F
C
D
E
B
过C作CG∥EF交AD的延长线于点G
CG∥EF,可得,∠EFD=CGD
DE=DC
∠FDE=∠GDC(对顶角)
∴△EFD≌△CGD
EF=CG
∠CGD=∠EFD
又,EF∥AB
∴,∠EFD=∠1
∠1=∠2
∴∠CGD=∠2
全等三角形难题
全等三角形难题引言在初中数学中,学习了许多有关三角形的性质和定理。
其中,全等三角形是一个重要的概念。
全等三角形是指两个三角形的对应边长和对应角度完全相等的情况。
在解决全等三角形难题时,我们需要利用已知条件和全等三角形的性质来推导出未知信息。
本文将探讨一些全等三角形的难题,并提供相应的解题思路和方法。
难题一:求等腰三角形的底边长度已知一个等腰三角形的顶角度数为60°,求其底边的长度。
解题思路1.假设等腰三角形的底边长度为x。
2.根据等腰三角形的性质,顶角的度数等于底角的度数,所以底角的度数也为60°。
3.由三角形的内角和为180°可得,两个底角的度数之和为180°-60°=120°。
4.由于等腰三角形的两条底边相等,可推导出底角为等边三角形,其两个底角的度数相等,即每个底角的度数为120°/2=60°。
5.由三角形的内角和为180°可得,三个底角的度数之和为180°。
6.将三角形的底边长度记为x,则根据正弦定理可得:(x/2)/sin60° = x/sin180°。
7.化简等式可得:1/2 = x/1。
8.通过求解等式可得:x = 2。
解答和验证根据上述解题思路可得,等腰三角形的底边长度为2。
我们可以通过验证来确保解答的正确性。
1. 等腰三角形的顶角度数为60°,底角的度数也为60°。
2. 底边的长度为2。
3. 三角形的两条底边相等,满足等腰三角形的性质。
4. 三个底角的度数之和为180°。
综上所述,等腰三角形的底边长度为2。
Markdown代码# 全等三角形难题## 引言在初中数学中,学习了许多有关三角形的性质和定理。
其中,全等三角形是一个重要的概念。
全等三角形是指两个三角形的对应边长和对应角度完全相等的情况。
在解决全等三角形难题时,我们需要利用已知条件和全等三角形的性质来推导出未知信息。
完整版)全等三角形难题题型归类及解析
完整版)全等三角形难题题型归类及解析1.在三角形ABC中,AD是角BAC的平分线,AE=AC,DE=2cm,BD=3cm,求BC的长度。
为了解决这个问题,我们可以利用角平分线的轴对称性,构造全等三角形ADE和ABC。
因为AE=AC,所以三角形ADE和三角形ABC的两边分别相等,因此它们是全等的。
根据全等三角形的性质,∠DAE=∠CAB,∠AED=∠ACB。
又因为AD是角BAC的平分线,所以∠DAE=∠EAC,因此∠CAB=2∠EAC。
设BC=x,则根据正弦定理可得:3/x=sin(2EAC)/sin(EAC),化简后得到x=6.2.在三角形ABC中,BD是角ABC的平分线,AB=BC,P在BD上,PM⊥AD于M,PN⊥CD于N,求解PM与PN 的关系。
首先,我们可以利用角平分线的性质,构造等腰三角形ABD和CBD。
因为AB=BC,所以三角形ABD和三角形CBD的两边分别相等,因此它们是全等的。
根据全等三角形的性质,∠BDA=∠BDC,∠ADB=∠CDB。
又因为BD是角ABC的平分线,所以∠ADB=∠BDC,因此∠BDA=∠CDB。
因此,三角形APM和三角形CPN是全等的。
因为全等三角形的对应边相等,所以PM=PN。
3.在三角形OAB中,P是角OAB的平分线上的一点,PC⊥OA于C,∠OAP+∠OBP=180°,OC=4cm,求解AO+BO的值。
我们可以利用角平分线的轴对称性,构造全等三角形OAC和OBC。
因为∠OAP+∠OBP=180°,所以∠AOP=∠BOP=90°。
因此,三角形OAP和三角形OBP是直角三角形。
设AO=x,BO=y,则根据勾股定理可得:x^2+PC^2=OP^2,y^2+PC^2=OP^2.又因为OC=4cm,所以PC=2cm。
将PC代入上面的两个式子中,得到x^2+y^2=OP^2-4.又因为三角形OAC和三角形OBC是全等的,所以x=y,因此2x^2=OP^2-4,即OP^2=2x^2+4.因此,AO+BO=2x=2√((OP^2-4)/2)=2√(2x^2)=2√(2y^2)=2√(2x^2+4)/2=2√(OP^2)/2=OP√2=2√6.4.在三角形ABC中,E在边AC上,且∠XXX∠ABC。
全等三角形难题(含答案)
全等三角形经典证明已知:AB=10,AC=2,D 是BC 中点,AD 是整数,求AD1. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BECDB AADBC6. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
7.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C8、已知:AB=CD ,∠A=∠D ,求证:∠B=∠C9.(5分)如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC . 10.(5分)如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA 11.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,DCB A FEBD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.12.(7分)已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):/13.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .14、(10分)如图:DF=CE ,AD=BC ,∠D=∠C 。
全等三角形难题(含答案解析)
全等三角形难题(含答案)1.已知:AB=4 ,AC=2 ,D 是BC 中点,AD 是整数,求ADAB CDA D 到E, 使AD=DE解:延长∵D 是 BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE= ∠ADCBD=DC∴△ACD ≌△B DE∴AC=BE=2∵在△ABE 中AB-BE <AE<AB+BE∵AB=4即4-2< 2AD <4+21<AD <3∴AD=212.已知: D 是 AB 中点,∠ACB=90 °,求证:CD AB2ADC B延长 CD 与P,使 D 为CP 中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形 ACBP 为矩形∴AB=CP=1/2AB3.已知: BC=DE ,∠B= ∠E,∠C= ∠D,F 是 CD 中点,求证:∠ 1=∠2A21B EC F D证明:连接BF 和 EF∵BC=ED,CF=DF, ∠BCF= ∠EDF∴三角形BCF 全等于三角形EDF( 边角边 )∴BF=EF, ∠CBF= ∠DEF连接 BE在三角形BEF 中,BF=EF∴∠EBF= ∠BEF 。
∵∠ABC= ∠AED 。
∴∠ABE= ∠AEB 。
∴AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF= ∠ABE+ ∠EBF= ∠AEB+ ∠BEF= ∠AEF∴三角形ABF 和三角形AEF 全等。
∴∠BAF= ∠EAF ( ∠1= ∠2)。
4.已知:∠1= ∠2,CD=DE ,EF//AB ,求证: EF=ACA21FCDEB过 C 作CG ∥EF 交 AD 的延长线于点GCG ∥EF,可得,∠EFD =CGDDE=DC∠FDE =∠GDC (对顶角)∴△EFD ≌△C GDEF =CG∠CGD =∠EFD又, EF∥A B∴,∠EFD =∠1∠1=∠2∴∠CGD =∠2∴△AGC 为等腰三角形,AC=CG又EF= CG∴EF =AC5.已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2 ∠CAD E长AB 取点E,使AE =AC,连接证明:延∵AD 平分∠BAC∴∠EAD =∠CAD∵AE= AC,AD =AD∴△AED ≌△A CD (SAS )∴∠E=∠C∵AC =AB+BD∴AE= AB+BD∵AE= AB+BE∴BD =BE∴∠BDE =∠E∵∠ABC =∠E+∠BDE∴∠ABC =2∠E∴∠ABC =2∠C6.已知:AC 平分∠BAD ,CE⊥AB ,∠B+∠D=180 °,求证:AE=AD+BE 证明:在AE 上取F,使EF =EB ,连接C F∵CE ⊥AB∴∠CEB =∠CEF =90 °∵EB= EF,CE =CE ,∴△CEB ≌△C EF∴∠B=∠CFE∵∠B+∠D=180 °,∠CFE +∠CFA =180 °∴∠D=∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC∵AC =AC∴△ADC ≌△A FC (SAS )∴AD =AF∴AE= AF+FE =AD+ BE7.如图,四边形ABCD 中,AB∥D C ,BE、CE 分别平分∠ ABC 、∠BCD ,且点 E 在 AD 上。
初二全等三角形难题全等三角形难题及答案
初二全等三角形难题全等三角形难题及答案1、如图,在ABC 中,AB BC, ABC 90 。
F 为AB延长线上一点,点E在BC上,BE BF ,连接AE,EF 和CF。
求证:AE CFo 2、如图,D是ABC的边BC 上的点,且CD AB, ADB BAD,AE是ABD 的中线。
求证:AC…旋转已知,如图,三角形ABC是等腰直角三角形,/ ACB=90 , F是AB的中点,直线I经过点C,分别过点A、B作I的垂线,即AD丄CE , BE丄CE , (1)如图1,当CE 位于点F的右侧时,求证:AADC CEB ; (2)如图2,当CE位于点F的左侧时…全等三角形难题题型归类及解析一、角平分线型角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。
另外掌握两个常用的结论:角平分线与平行线构成等腰三角形,角平分线与垂…1、如图,在ABC中,AB BC, ABC 90 。
F为AB 延长线上一点,点E在BC上,BE BF,连接AE,EF和CF。
求证:AE CFo 2、如图,D是ABC的边BC上的点,且CD AB,ADB BAD, AE是ABD 的中线。
求证:AC 2AE。
AB AC PB PC。
3、如图,在ABC 中,AB AC,求证:1 2,P 为AD上任意一点。
4、如图,BD、CE分别是ABC的边AC、AB上的高,F、G分别是线段DE、BC的中点求证:FG DE5、如图所示,MBC是等腰直角三角形,/ ACB = 90° AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:/ ADC =Z BDE6、如图,在锐角ABC中,已知ABC 2 C,ABC的平分线BE与AD垂直,垂足为D,若BD 4cm, 求AC的长参考答案1、思路分析:可以利用全等三角形来证明这两条线段相等,关键是要找到这两个三角形。
重点初中全等三角形难题
重点初中全等三角形难题首先,让我们来回顾一下什么是全等三角形。
全等三角形是指两个三角形的所有对应边和对应角都相等。
当两个三角形是全等的时候,它们的形状和大小完全相同。
接下来,我们来解决一些重点初中全等三角形的难题。
难题一:已知三角形ABC和三角形DEF,AB=DE,∠A=∠D,BC=EF,求证三角形ABC≌三角形DEF。
解答:根据已知条件,可以得出AB=DE,∠A=∠D,BC=EF。
根据全等三角形的定义,我们只需要再证明∠B=∠E,AC=DF即可。
由于∠A=∠D,∠B=∠C=∠E=∠F(三角形内角和为180°),所以∠B=∠E。
又因为BC=EF,而且三角形中的对应边相等,所以AC=DF。
综上所述,根据全等三角形的定义,三角形ABC≌三角形DEF。
难题二:已知三角形ABC和三角形DEF,AB=DE,∠A=∠D,BC=EF,AC≠DF,求证三角形ABC≌三角形DEF。
解答:根据已知条件,可以得出AB=DE,∠A=∠D,BC=EF。
根据全等三角形的定义,我们只需要再证明∠B=∠E,AC=DF即可。
由于∠A=∠D,∠B=∠C=∠E=∠F(三角形内角和为180°),所以∠B=∠E。
又因为BC=EF,而且三角形中的对应边相等,所以AC≠DF。
综上所述,根据全等三角形的定义,三角形ABC≌三角形DEF是不成立的。
难题三:已知三角形ABC和三角形DEF,AB=DE,∠A=∠D,AC=DF,求证三角形ABC≌三角形DEF。
解答:根据已知条件,可以得出AB=DE,∠A=∠D,AC=DF。
根据全等三角形的定义,我们只需要再证明∠B=∠E,BC=EF即可。
由于∠A=∠D,∠B=∠C=∠E=∠F(三角形内角和为180°),所以∠B=∠E。
又因为AC=DF,而且三角形中的对应边相等,所以BC=EF。
综上所述,根据全等三角形的定义,三角形ABC≌三角形DEF。
通过以上三个例题,我们可以看出,在证明两个三角形全等的时候,我们需要找到对应的边和角都相等的条件。
全等三角形(历年中考难题)
红城教导培训黉舍数学教研组制造制造人:汪皞监制:汪校长 黄校长 童先生 全等三角形专题(一) 姓名:1.如图,OP 等分,MON PA ON ∠⊥于点A ,点Q 是射线OM 上的一个动点,若2PA =,则PQ 的最小值为( )A.1B.2D. 42.如图所示,两块完整雷同的含30°角的直角三角形叠放在一路,且∠DAB=30°.有以下四个结论:①AF ⊥BC ;②△ADG ≌△ACF; ③O 为BC 的中点; ④AG :DE =3:4,个中准确结论的序号是.(错填得0分,少填酌情给分)3.如图,在Rt △ABC 中,∠BAC=90°,AC=2AB,点D 是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分离与 A.D 重合,贯穿连接BE.EC .试猜测线段BE 和EC 的数目及地位关系,并证实你的猜测.4.八(1)班同窗上数学活动课,应用角尺等分一个角(如图).设计了如下计划: (Ⅰ)∠AOB 是一个随意率性角,将角尺的直角极点P 介于射线OA.OB 之间,移动角尺使角尺双方雷同的刻度与M.N 重合,即PM=PN,过角尺极点P 的射线OP 就是∠AOB 的等分线.(Ⅱ)∠AOB 是一个随意率性角,在边OA.OB 上分离取OM=ON,将角尺的直角极点P 介于射线OA.OB 之间,移动角尺使角尺双方雷同的刻度与M.N 重合,即PM=PN,过角ABCDEON尺极点P 的射线OP 就是∠AOB 的等分线.(1)计划(Ⅰ).计划(Ⅱ)是否可行?若可行,请证实;若不成行,请解释来由. (2)在计划(Ⅰ)PM=PN 的情况下,持续移动角尺,同时使PM⊥OA,PN⊥OB.此计划是否可行?请解释来由.5.(2010湖南娄底)如图10,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,贯穿连接AE .BE ,BE ⊥AE ,延伸AE 交BC 的延伸线于点F .求证:(1)FC =AD ; (2)AB =BC +AD6.(2010江苏扬州)电子跳蚤游戏盘是如图所示的△ABC ,AB =6,AC =7,BC =8.假如跳蚤开端时在BC 边的P 0处,BP 0=2.跳蚤第一步从P 0跳到AC 边的P 1(第一次落点)处,且CP 1=CP 0;第二步从P 1跳到AB 边的P 2(第一次落点)处,且AP 2=AP 1;第三步从P 2跳到BC 边的P 3(第三次落点)处,且BP 3=BP 2;……;跳蚤按上述规矩一致跳下去,第n 次落点为P n (n 为正整数),则点P 2007与P 2010之间的距离为()A .1B .2C .3D .47.(2010安徽蚌埠)在ABC ∆中,E D 、分离是AC BC 、上的点,CD BD CE AE 2,2==,BE AD 、交于点F,若3=∆ABC S ,则四边形DCEF 的面积为________.8.(2010安徽蚌埠)三角形纸片内有100个点,连同三角形的极点共103个点,个中随意率性三点都不共线.现以这些点为极点作三角形,并把纸片剪成小三角形,则如许的三角形的个数为__________.9.不雅察图中每一个大三角形中白色三角形的分列纪律,则第5个大三角形中白色三角形有 个 .03第8题10.(2009临沂)数学课上,张先生出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经由思虑,小明展现了一种准确的解题思绪:取AB 的中点M ,衔接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基本上,同窗们作了进一步的研讨:(1)小颖提出:如图2,假如把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的随意率性一点”,其它前提不变,那么结论“AE =EF ”仍然成立,你以为小颖的不雅点准确吗?假如准确,写出证实进程;假如不准确,请解释来由;(2)小华提出:如图3,点E 是BC 的延伸线上(除C 点外)的随意率性一点,其他前提不变,结论“AE =EF ”仍然成立.你以为小华的不雅点准确吗?假如准确,写出证实进程;假如不准确,请解释来由.11.(2009年牡丹江)已知Rt ABC △中,90AC BC C D ==︒,∠,为AB边的中点,90EDF ∠=°,EDF ∠绕D 点扭转,它的双方分离交AC .CB (或它们的延伸线)于E .F .当EDF ∠绕D 点扭转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点扭转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请赐与证实;若不成立,DEF S △.CEF S △.ABC S △又有如何的数目关系?请写出你的猜测,不需证实.ADFC GE B图1ADF C GE B 图2 ADFGE B图3AADA12.(2008山东泰安)两个大小不合的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E ,,在统一条直线上,贯穿连接DC .(1)请找出图2中的全等三角形,并赐与证实(解释:结论中不得含有未标识的字母);(2)证实:DC BE ⊥.13.在等边ABC ∆的双方AB.AC 地点直线上分离有两点M.N,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探讨:当M.N 分离在直线AB.AC 上移动时,BM.NC.MN 之间的数目关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.图1 图2 图3(I )如图1,当点M.N 边AB.AC 上,且DM=DN 时,BM.NC.MN 之间的数目关系是;此时=L Q ;(II )如图2,点M.N 边AB.AC 上,且当DM ≠DN 时,猜测(I )问的两个结论还成立吗?写出你的猜测并加以证实;(III ) 如图3,当M.N 分离在边AB.CA 的延伸线上时, 若AN=x ,则Q=(用x .L 暗示).14.已知四边形ABCD 中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN∠绕B 点扭转,它的双方分离交AD DC ,(或它们的延伸线)于E F ,. 当MBN ∠绕B 点扭转到AE CF =时(如图1),易证AE CF EF +=.当MBN ∠绕B 点扭转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立?若成立,请赐与证实;若不成立,线段AE CF ,,EF又有如何的数目关系?请写出图1图2(第22题)你的猜测,不需证实.15 正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF,求∠EAF 的度数.16.如图①,OP 是∠MON 的等分线,请你应用该图形画一对以OP 地点直线为对称轴的全等三角形.请你参考这个作全等三角形的办法,解答下列问题: (1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD .CE 分离是∠BAC .∠BCA的等分线,AD .CE 订交于点F .请你断定并写出FE 与FD 之间的数目关系;(2)如图③,在△ABC 中,假如∠ACB 不是直角,而(1)中的其它前提不变,请问,中所得结论是否仍然成立?若成立,请证实;若不成立,请解释来由. 17.∠B=60°,△ABC 的角等分线AD,CE 订交于点O,求证:18.ABC 中,AD 等分∠BAC,DG ⊥BC 且等分BC,DE ⊥AB 于E,DF ⊥AC 于F.(1)解释BE=CF 的来由;(2)假如AB=a ,AC=b ,求AE.BE 的长. 1.如图,ABC ∆中,AB=2AC,AD 等分BAC ∠,且AD=BD,求证:CD ⊥AC全等三角形难题1.在△ABC 中,AB =AC,∠A =20°,D.E 分离是AB.AC 上的点,∠DCB =50°,∠EBC=60°,求∠DEB 的度数.2.在三角形ABC 中,AB=AC,AD 等分角ABC 交AC 于D,AD+BD=BC,求角A 的度数.3.在直角三角形ABC 中,∠BAC=90°,AB=AC,点D.E 是直线AC 上的两个动点,且CB(图1) A B CD E FM N (图2) A B CDE FM N (图3)ABCDE F MN (第23题图) AE B CD F ACEF BD图②图③E DGFCBAAD=EC,AM ⊥BD,垂足为M,AM 的延伸线交BC 于N,直线BD 直线NE 订交于点F,试断定三角形DEF的外形,并加以证实.4.如图,在△ABC 中,∠C = 2∠B ,D 是BC 上的一点,且AD ⊥AB ,点E 是BD 的中 点,贯穿连接AE .(1)求证:∠AEC = ∠C (2)求证:BD = 2AC(3)若AE = ,AD = 5,那么△ABE 的周长是若干?全等三角形中的动态几何问题汪先生:动态几何题,是指以几何常识和几何图形为布景,渗入渗出活动变更不雅点的一类试题;而经由过程对几何图形活动变更,使同窗们阅历由不雅察.想象.推理等发明.摸索的进程,是中考数学试题中,考核创新意识.创新才能的主要题型;解决这类问题,要擅长摸索图形的活动特色和纪律,抓住变更中图形的性质与特点,化动为静,以静制动.本文以中测验题中的全等三角形动态几何题为例,谈谈这类问题的解题思绪,供同窗们进修时参考.例1.(扬州)在△ABC 中,∠ACB=90°,AC=BC,直线MN 经由点C,且AD⊥MN 于D,BE⊥MN 于E .(1)当直线MN 绕点C 扭转到图1的地位时,求证:①△ADC≌△CEB;②DE=AD +BE;(2)当直线MN 绕点C 扭转到图2的地位时,求证:DE=AD -BE;(3)当直线MN 绕点C 扭转到图3的地位时,试问DE.AD.BE 具有如何的等量关系?请写出这个等量关系,并加以证实. 证实:C ED NMABCDEMACBEM′O评注:本题以直线MN 绕点C 扭转进程中与△ABC 的不合的地位关系为布景设置的三个小题,第(1)小题的两个小题中,①是②的台阶,只要证清楚明了①,不可贵到②;第(1)小题思绪又作为解决第(2)小题的借鉴;第(3)小题为摸索性问题,摸索的结论及证实进程可借鉴第(1).(2)两小题,全部试题考核了同窗们从具体.特别的情况动身去探讨活动变更进程中的纪律的才能.例2 (锦州)如图A,△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共极点C,衔接AF 和BE .(1)线段AF 和BE 有如何的大小关系?请证实你的结论;(2)将图A 中的△CEF 绕点C 扭转必定的角度,得到图B,(1)中的结论还成立吗?作出断定并解释来由;(3)若将图A 中的△ABC 绕点C 扭转必定的角度,请你画山一个变换后的图形C (草图即可),(1)中的结论还成立吗?作出断定不必解释来由;(4)依据以上证实.说理.绘图,归纳你的发明. 答:全等三角形进步演习图所示,△ABC ≌△ADE,BC 的延伸线过点E,∠ACB=∠AED=105°,∠CAD=10°, ∠B=50°,求∠DEF 的度数.2.如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针扭转52°得到△A ′OB ′边A ′B ′与边OB 交于点C (A ′不在OB 上),则∠A ′CO 的度数为.3,在△ABC 中,∠A=90°,D,E 分离是AC,BC 上的点,若△ADB ≌△EDB ≌△EDC,则∠C 的度数是.4.如图所示,把△ABC 绕点C 顺时针扭转35°,得到△A ′B′C,A ′B ′交AC 于点D,若∠A ′DC=90°,则∠A=.5.已知,如图所示,AB=AC,AD ⊥BC 于D,且AB+AC+BC=50cm,而AB+BD+AD=40cm,则AD=.6.如图,Rt △ABC 中,∠BAC=90°,AB=AC,分离过点B,C,作过点A 的直线的垂线BD,CE,垂足为D,E,若BD=3,CE=2,则DE=.7.如图,AD 是△ABC 的角等分线,DE ⊥AB,DF ⊥AC,垂足分离是E,F,衔接EF,交AD 于G,AD 与EF 垂直吗?证实你的结论.AB DCD A ECB8.如图所示,在△ABC 中,AD 为∠BAC 的角等分线,DE ⊥AB 于E,DF ⊥AC 于F,△ABC 的面积是28cm 2,AB=20cm,AC=8cm,求DE 的长.9.已知,如图,AB=AE, ∠B=∠E, ∠BAC=∠EAD, ∠CAF=∠DAF. 求证:AF ⊥CD10.如图,AD=BD,AD ⊥BC 于D,BE ⊥AC 于E,AD 于BE 订交于点H,则BH 与AC 相等吗?为什么?11.如图所示,已知,AD 为△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF=AC,FD=CD. 求证:BE ⊥ACB D CFAE GAEFBDCADC12.△DAC,△EBC 均是等边三角形,AE,BD 分离与CD,CE 交于点M,N, 求证:(1)AE=BD (2)CM=CN (3)△CMN 为等边三角形(4)MN ∥BC13.已知:如图1,点C 为线段AB 上一点,△ACM,△CBN 都是等边三角形,AN 交MC于点E,BM 交CN 于点F . (1)求证:AN=BM; (2)求证:△CEF 为等边三角形;(3)将△ACM 绕点C 按逆时针偏向扭转90 O,其他前提不变,在图2中补出相符请求的图形,并断定第(1).(2)两小题的结论是否仍然成立(不请求证实).14.如图所示,已知△ABC和△BDE 都是等边三角形.下列结论:① AE=CD;②BF=BG;③BH 等分∠AHD;④∠AHC=600,⑤△BFG 是等边三角形;⑥ FG ∥AD.个中准确的有( ) A 3个 B 4个 C 5个 D 6个15.已知:BD,CE 是△ABC 的高,点F 在BD 上,BF=AC,点G 在CE 的延伸线上,CG=AB. 求证:AG ⊥AFBAEHDCCBC16.如图:在△ABC 中,BE.CF 分离是AC.AB 双方上的高,在BE 上截取BD=AC,在CF 的延伸线上截取CG=AB,贯穿连接AD.AG. 求证:(1)AD=AG,(2)AD 与AG 的地位关系若何. 17.如图,已知E 是正方形ABCD 的边CD 的中点,点F 在BC上,且∠DAE=∠FAE.求证:AF=AD+CF18.如图所示,已知△ABC 中,AB=AC,D 是CB 延伸线上一点,∠ADB=60°,E 是AD 上一点,且DE=DB,求证:AC=BE+BC19.如图所示,已知在△AEC 中,∠E=90°,AD 等分∠EAC,DF ⊥AC,垂足为F,DB=DC. 求证:BE=CF.20.已知:如图3-50,AB=DE,直线AE,BD 订交于C,∠B +∠D=180°,AF ∥DE,交BD 于F .求证:CF=CD .21.如图,OC 是∠AOB 的等分线,P 是OC 上一点,PD ⊥OA 于D, PE ⊥OB 于E,F 是OC 上A B C EDAD EB CF CG HF E D CB A一点,衔接DF 和EF,求证:DF=EF.22.已知:如图,B F⊥AC 于点F,CE⊥AB 于点E,且BD=CD 求证:⑴△BDE≌△CDF⑵点D 在∠A 的等分线上 23如图,已知AB ∥CD,O 是∠ACD 与∠BAC 的等分线的交点,OE ⊥AC 于E,且OE =2,则AB与CD 之间的距离为24.如图,过线段AB 的两个端点作射线AM.BN,使AM ∥BN,按下列请求绘图并答复: 画∠MAB.∠NBA 的等分线交于E. (1)∠AEB 是什么角? (2)过点E 作一向线交AM 于D,交BN 于C,不雅察线段DE.CE,你有何发明?(3)无论DC 的两头点在AM.BN 若何移动,只要DC 经由点E,①AD+BC=AB;②AD+BC=CD 谁成立?并解释来由.26.如图,△ABC 的三边AB .BC .CA 长分离是20.30.40,其三条角等分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于( )A .1︰1︰1B .1︰2︰3C .2︰3︰4D .3︰4︰527.正方形ABCD 中,AC.BD 交于O,∠EOF =90o ,已知AE =3,CF =4,则S △BEF 为___.29.如图,在R t △ABC 中,∠ACB=450,∠BAC=900,AB=AC,点D 是AB 的中点,AF ⊥CD 于H 交BC 于F,BE ∥AC 交AF 的延伸线于E,求证:BC 垂直且等分DE.△ABC 中,∠ACB =90o ,AC =BC,直线MN 经由点C,且AD ⊥MN 于D,BE ⊥MN 于E.⑴当直线MN 绕点C 扭转到图⑴的地位时,求证: DE =AD +BE⑵当直线MN 绕点C 扭转到图⑵的地位时,求证: DE =AD -BE;⑶当直线MN 绕点C 扭转到图⑶的地位时,试问DE.AD.BE 具有如何的等量关系?请直接写出这个等量关系. BA D CEF A B D C O E。
(完整word版)八年级数学全等三角形难题集锦
1. 如图① , 在△ ABC中 , ∠ ACB=90° ,AC=BC, 过点C 在△ ABC外作直线MN,AM⊥ MN于点M,BN⊥MN于点 N.(1)试说明 :MN=AM+BN.(2)如图② , 若过点 C作直线 MN与线段 AB订交 ,AM⊥MN 于点 M,BN⊥MN于点 N(AM>BN),(1) 中的结论能否仍旧建立 ?说明原因 .【答案】 (1) 答案看法析 ;(2) 不建立【分析】试题剖析:(1)利用互余关系证明∠ MAC =∠ NCB,又∠ AMC=∠CNB=90°, AC=BC,故可证△ AMC ≌△ CNB,进而有 AM=CN, MC=BN,即可得出结论;(2)近似于( 1)的方法,证明△ AMC ≌△ CNB,进而有 AM =CN ,MC =BN,可推出 AM 、 BN 与 MN 之间的数目关系.试题分析:解:( 1)∵ AM ⊥ MN , BN⊥ MN,∴∠ AMC=∠CNB=90°.∵∠ ACB=90°,∴∠ MAC +∠ ACM=90°,∠ NCB+∠ ACM=90°,∴∠ MAC=∠NCB.在△ AMC 和△ CNB 中,∵∠ AMC =∠ CNB,∠ MAC =∠ NCB, AC= CB,∴△ AMC ≌△ CNB(AAS ),∴ AM =CN ,MC =NB.∵MN =NC+CM ,∴ MN =AM+BN;(2)图( 1)中的结论不建立, MN =BN-AM.原因以下:∵AM ⊥ MN , BN⊥ MN ,∴∠ AMC=∠ CNB=90°.∵∠ ACB=90°,∴∠ MAC +∠ ACM=90°,∠ NCB+∠ ACM=90°,∴∠ MAC=∠NCB.在△ AMC 和△ CNB 中,∵∠ AMC =∠ CNB,∠ MAC =∠ NCB, AC= CB,∴△ AMC ≌△ CNB(AAS ),∴ AM =CN ,MC =NB.∵MN =CM -CN,∴ MN=BN-AM .点睛:此题考察了全等三角形的判断与性质.重点是利用互余关系推出对应角相等,证明三角形全等.2. 如图, BE、CF 是△ ABC 的高且订交于点 P,AQ∥ BC 交 CF 延伸线于点 Q,如有 BP=AC ,CQ=AB ,线段 AP 与 AQ 的关系怎样?说明原因。
全等三角形的的性质与判定难题50道(含详细答案)
全等三角形的的性质与判定难题50道1.边长为a 的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),⋯,按此方式依次操作,则第6个正六边形的边长为( )A .511()32a ⨯B .511()23a ⨯C .611()32a ⨯D .611()23a ⨯2.如图,在等边ABC ∆中,点D ,E 分别在边BC ,AC 上,且//DE AB ,过点E 作EF DE ⊥,交BC 的延长线于点F ,(1)求F ∠的度数;(2)若3CD =,求DF 的长.3.数学课上,李老师出示了如下的题目:“在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED EC =,如图,试确定线段AE 与DB 的大小关系,并说明理由”. 小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论当点E 为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结论:AEDB (填“>”,“ <”或“=” ). (2)特例启发,解答题目解:题目中,AE 与DB 的大小关系是:AE DB (填“>”,“ <”或“=” ).理由如下:如图2,过点E 作//EF BC ,交AC 于点F .(请你完成以下解答过程) (3)拓展结论,设计新题在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =.若ABC ∆的边长为1,2AE =,求CD 的长(请你直接写出结果).4.如图,过等边ABC ∆的边AB 上一点P ,作P E A C ⊥于E ,Q 为BC 延长线上一点,且PA CQ =,连PQ 交AC 边于D . (1)求证:PD DQ =;(2)若ABC ∆的边长为1,求DE 的长.5.如图所示,已知等边ABC ∆的边长为a ,P 是ABC ∆内一点,//PD AB ,//PE BC ,//PF AC ,点D 、E 、F 分别在BC 、AC 、AB 上,猜想:PD PE PF ++= ,并证明你的猜想.6.如图,已知ABC ∆和CDE ∆均为等边三角形,且点B 、C 、D 在同一条直线上,连接AD 、BE ,交CE 和AC 分别于G 、H 点,连接GH .(1)请说出AD BE =的理由; (2)试说出BCH ACG ∆≅∆的理由;(3)试猜想:CGH ∆是什么特殊的三角形,并加以说明.7.如图,已知ABC ∆是边长为6cm 的等边三角形,动点P ,Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速运动,其中点P 运动的速度是1/cm s ,点Q 运动的速度是2/cm s ,当点Q 运动到点C 时,P ,Q 都停止运动.(1)出发后运动2s 时,试判断BPQ ∆的形状,并说明理由;那么此时PQ 和AC 的位置关系呢?请说明理由;(2)设运动时间为t ,BPQ ∆的面积为S ,请用t 的表达式表示S .8.已知:在等边ABC ∆中,点D 、E 、F 分别为边AB 、BC 、AC 的中点,点G 为直线BC 上一动点,当点G 在CB 延长线上时,有结论“在直线EF 上存在一点H ,使得DGH ∆是等边三角形”成立(如图①),且当点G 与点B 、E 、C 重合时,该结论也一定成立. 问题:当点G 在直线BC 的其它位置时,该结论是否仍然成立?请你在下面的备用图②③④中,画出相应图形并证明相关结论.9.已知点C 为线段AB 上一点,分别以AC 、BC 为边在线段AB 同侧作ACD ∆和BCE ∆,且CA CD =,CB CE =,ACD BCE ∠=∠,直线AE 与BD 交于点F ,(1)如图1,若60ACD ∠=︒,则AFB ∠= ;如图2,若90ACD ∠=︒,则AFB ∠= ;如图3,若120ACD ∠=︒,则AFB ∠= ;(2)如图4,若ACD α∠=,则AFB ∠= (用含α的式子表示);(3)将图4中的ACD ∆绕点C 顺时针旋转任意角度(交点F 至少在BD 、AE 中的一条线段上),变成如图5所示的情形,若ACD α∠=,则AFB ∠与α的有何数量关系?并给予证明.10.如图1,ABC ∆为等边三角形,面积为S .1D 、1E 、1F 分别是ABC ∆三边上的点,且11112AD BE CF AB ===,连接11D E 、11E F 、11F D ,可得△111D E F 是等边三角形,此时△11AD F 的面积114S S =,△111D E F 的面积114S S =. (1)当2D 、2E 、2F 分别是等边ABC ∆三边上的点,且22213AD BE CF AB ===时如图2,①求证:△222D E F 是等边三角形;②若用S 表示△22AD F 的面积2S ,则2S = ;若用S 表示△222D E F 的面积2S ',则2S '= .(2)按照上述思路探索下去,并填空:当n D 、n E 、n F 分别是等边ABC ∆三边上的点,11n n n AD BE CF AB n ===+时,(n 为正整数)△n n n D E F 是 三角形;若用S 表示△n n AD F 的面积n S ,则n S = ;若用S 表示△n n n D E F 的面积n S ',则n S '= .11.如图,在等边ABC ∆的三边上分别取点D 、E 、F ,使AD BE CF ==. (1)试说明DEF ∆是等边三角形;(2)连接AE 、BF 、CD ,两两相交于点P 、Q 、R ,则PQR ∆为何种三角形?试说明理由.12.如图所示,一个六边形的六个内角都是120︒,其中连续四边的长依次是1、9、9、5.求这个六边形的周长.13.如图,已知D 是ABC ∆的边BC 上的一点,CD AB =,BDA BAD ∠=∠,AE 是ABD ∆的中线.(1)若60B ∠=︒,求C ∠的值; (2)求证:AD 是EAC ∠的平分线.14.如图,ABC ∆为等边三角形,BD 平分ABC ∠交AC 于点D ,//DE BC 交AB 于点E . (1)求证:ADE ∆是等边三角形.(2)求证:12AE AB =.15.如图.在等边ABC ∆中,ABC ∠与ACB ∠的平分线相交于点O ,且//OD AB ,//OE AC . (1)试判定ODE ∆的形状,并说明你的理由;(2)线段BD 、DE 、EC 三者有什么关系?写出你的判断过程.16.如图,ABC ∆是等边三角形,DF AB ⊥,DE CB ⊥,EF AC ⊥,求证:DEF ∆是等边三角形.17.用三根火柴棒可以搭成一个等边三角形,你能用9根火柴搭出5个等边三角形吗? 18.如图,ABC ∆是等边三角形,AD 是高,并且AB 恰好是DE 的垂直平分线. 求证:ADE ∆是等边三角形.19.如图,60AOB ∠=︒,OC 平分AOB ∠,C 为角平分线上一点,过点C 作CD OC ⊥,垂足为C ,交OB 于点D ,//CE OA 交OB 于点E . (1)判断CED ∆的形状,并说明理由;(2)若3OC=,求CD的长.20.如图,在ABC∆中,AB AC=,120BAC∠=︒,D、F分别为AB、AC的中点,且DE AB⊥,FG AC⊥,点E、G在BC上,18BC cm=,求线段EG的长.(提示:需要添加辅助线)21.已知,如图,ABC∆是正三角形,D,E,F分别是各边上的一点,且AD BE CF==.请你说明DEF∆是正三角形.22.如图所示,DEF∆是等边三角形,且123∠=∠=∠,试问:ABC∆是等边三角形吗?请说明理由.23.如图,ABC∆为等边三角形,BD平分ABC∠,//DE BC.(1)求证:ADE∆是等边三角形;(2)求证:12AE AB=.24.如图ABC∆是等边三角形(1)如图①,//∆是等边三角形;DE BC,分别交AB、AC于点D、E.求证:ADE(2)如图②,ADE∆仍是等边三角形,点B在ED的延长线上,连接CE,判断BEC∠的度数及线段AE、BE、CE之间的数量关系,并说明理由.25.如图,E是AOB⊥,C、D是垂足,连接CD ∠的平分线上一点,EC OB⊥,ED OA交OE于点F,若60∠=︒.AOB(1)求证:OCD∆是等边三角形;(2)若5EF=,求线段OE的长.26.如图,ABCBCD CBE∠=∠=︒,BAC∆中,60∠=︒,点D、E分别在AB、AC上,30 BE、CD相交于点O,OG BC+=.OE OD OG⊥于点G,求证:227.如图,在ABC∠=∠=︒,EBC E∠,60∆中,AB AC=,D、E是ABC∆内两点,AD平分BAC若30=,则BC=cm.DE cmBE cm=,228.如图,已知ABC=,∆为等边三角形,D为BC延长线上的一点,CE平分ACD∠,CE BD 求证:ADE∆为等边三角形.29.如图,ABC∆∠=︒,DE与ABC ∆为等边三角形,D为BC边上一点,以AD为边作60ADE的外角平分线CE交于点E,连接AE,且CE BD∆是等边三角形.=.求证:ADE30.如图,在ABC+=.求ABD∠=︒,BD DC AB ∆中,AB AC=,D是三角形外一点,且60证:60∠=︒.ACD31.如图,在等边ABCOD AB,//OE AC.∠与ACB∠的平分线相交于点O,且//∆中,ABC(1)求证:ODE∆是等边三角形.(2)线段BD、DE、EC三者有什么数量关系?写出你的判断过程.(3)数学学习不但要能解决问题,还要善于提出问题.结合本题,在现有的图形上,请提出两个与“直角三角形”有关的问题.(只要提出问题,不需要解答)32.已知:如图,在ABC∠=︒,BD是中线,延长BC至点E,使C E C D=.A=,60∆中,AB AC求证:DB DE=.33.如图,ABD∆和BCD∆均是边长为2的等边三角形,E、F分别是AD、CD上的两个动点,且满足2+=.AE CF(1)求证:BDE BCF∆≅∆;(2)判断BEF∆的形状,并说明理由.34.已知:如图,四边形ABCD中,AB BC CD DA a∠=︒,M为BC上====,120BAD的点(M不与B、C重合),若AMN∆有一角等于60︒.(1)当M 为BC 中点时,则ABM ∆的面积为 (结果用含a 的式子表示); (2)求证:AMN ∆为等边三角形;(3)设AMN ∆的面积为S ,求出S 的取值范围(结果用含a 的式子表示).35.如图,点O 是等边ABC ∆内一点,110AOB ∠=︒,BOC α∠=,将B O C ∆绕点C 按顺时针方向旋转60︒得ADC ∆,连接OD . (1)COD ∆是什么三角形?说明理由;(2)若21AO n =+,21AD n =-,2(OD n n =为大于1的整数),求α的度数; (3)当α为多少度时,AOD ∆是等腰三角形?36.已知:如图,ABC ∆、CDE ∆都是等边三角形,AD 、BE 相交于点O ,点M 、N 分别是线段AD 、BE 的中点. (1)求证:AD BE =; (2)求DOE ∠的度数;(3)求证:MNC ∆是等边三角形.37.已知:在AOB ∆和COD ∆中,OA OB =,OC OD =.(1)如图①,若60AOB COD ∠=∠=︒,求证:①AC BD =②60APB ∠=︒.(2)如图②,若A O B C O D α∠=∠=,则AC 与BD 间的等量关系式为 ,APB ∠的大小为 (直接写出结果,不证明)38.如图,ABC ∆是等边三角形,D 是AC 上一点,BD CE =,12∠=∠,试判断ADE ∆形状,并证明你的结论.39.等边ABC ∆边长为6,P 为BC 上一点,含30︒、60︒的直角三角板60︒角的顶点落在点P 上,使三角板绕P 点旋转.(1)如图1,当P 为BC 的三等分点,且PE AB ⊥时,判断EPF ∆的形状;(2)在(1)问的条件下,FE 、PB 的延长线交于点G ,如图2,求EGB ∆的面积; (3)在三角板旋转过程中,若2CF AE ==,()CF BP ≠,如图3,求PE 的长.40.为了使同学们更好地解答本题,我们提供了思路点拨,你可以依照这个思路填空,并完成本题解答的全过程,当然你也可以不填空,只需按照解答的一般要求,进行解答即可. 如图,已知AB AD =,60BAD ∠=︒,120BCD ∠=︒,延长BC ,使C E C D =,连接DE ,求证:BC DC AC +=. 思路点拨:(1)由已知条件AB AD=,60BAD∠=︒,可知:ABD∆是三角形;(2)同理由已知条件120BCD∠=︒得到DCE∠=,且CE CD=,可知;(3)要证BC DC AC+=,可将问题转化为两条线段相等,即=;(4)要证(3)中所填写的两条线段相等,可以先证明⋯.请你完成证明过程:41.已知ABC∆是等边三角形,点P是AC上一点,PE BC⊥于点E,交AB于点F,在CB 的延长线上截取BD PA=,PD交AB于点I,PA nPC=.(1)如图1,若1n=,则EBBD=,FIED=;(2)如图2,若60EPD∠=︒,试求n和FIED的值;(3)如图3,若点P在AC边的延长线上,且3n=,其他条件不变,则EBBD=.(只写答案不写过程)42.如图ABC∆为等边三角形,直线//a AB,D为直线BC上任一动点,将一60︒角的顶点置于点D处,它的一边始终经过点A,另一边与直线a交于点E.(1)若D恰好在BC的中点上(如图1)求证:ADE∆是等边三角形;(2)若D为直线BC上任一点(如图2),其他条件不变,上述(1)的结论是否成立?若成立,请给予证明;若不成立,请说明理由.43.如图,在等边ABC=,点P从点C出发沿CB边向点B点以2/cm s的速AB cm∆中,9度移动,点Q点从B点出发沿BA边向A点以5/cm s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.(1)你能用t表示BP和BQ的长度吗?请你表示出来.(2)请问几秒钟后,PBQ∆为等边三角形?(3)若P、Q两点分别从C、B两点同时出发,并且都按顺时针方向沿ABC∆三边运动,请问经过几秒钟后点P与点Q第一次在ABC∆的哪条边上相遇?44.如图:在ABC⊥于Q.==,AE CD∆中,AB BC AC=,AD与BE相交于点P,BQ AD求证:①ADC BEA∆≅∆;②2=.BP PQ45.如图1,点B是线段AD上一点,ABC∆分别是等边三角形,连接AE和CD.∆和BDE(1)求证:AE CD=;(2)如图2,点P、Q分别是AE、CD的中点,试判断PBQ∆的形状,并证明.46.如图:已知ABC∆是等边三角形,D、E、F分别是AB、AC、BC边的中点,M是直线BC上的任意一点,在射线EF上截取EN,使EN FM=,连接DM、MN、DN.(1)如图①,当点M在点B左侧时,请你按已知要求补全图形,并判断DMN∆是怎样的特殊三角形(不要求证明);(2)请借助图②解答:当点M在线段BF上(与点B、F不重合),其它条件不变时,(1)中的结论是否依然成立?若成立,请证明;若不成立,请说明理由;(3)请借助图③解答:当点M在射线FC上(与点F不重合),其它条件不变时,(1)中的结论是否仍然成立?不要求证明.47.如图,ABC∆是等边三角形,点D、E、F分别是线段AB、BC、CA上的点,(1)若AD BE CF∆是等边三角形吗?试证明你的结论;==,问DEF(2)若DEF∆是等边三角形,问AD BE CF==成立吗?试证明你的结论.48.如图,已知ABC=,连∆为等边三角形,延长BC到D,延长BA到E,并且使AE BD 接CE,DE.求证:EC ED=.49.如图,已知ABC ∆与ACD ∆都是边长为2的等边三角形,如图有一个60︒角的三角板绕着点A 旋转分别交BC 、CD 于点P 、Q 两点(不与端点重合). (1)试说明:PAQ ∆是等边三角形; (2)求四边形APCQ 的面积;(3)填空:当BP = 时,APQ S ∆最小.50.如图,A 、B 、C 三点在同一直线上,ABM ∆和BCN ∆是正三角形,P 是AN 中点,Q 是CM 中点.求证:BPQ ∆是正三角形.全等三角形的的性质与判定难题50道参考答案与试题解析一.选择题(共1小题)1.边长为a 的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),⋯,按此方式依次操作,则第6个正六边形的边长为( )A .511()32a ⨯B .511()23a ⨯C .611()32a ⨯D .611()23a ⨯【解答】解:连接AD 、DF 、DB . 六边形ABCDEF 是正六边形,ABC BAF AFE ∴∠=∠=∠,AB AF =,120E C ∠=∠=︒,EF DE BC CD ===, 30EFD EDF CBD BDC ∴∠=∠=∠=∠=︒, 120AFE ABC ∠=∠=︒, 90AFD ABD ∴∠=∠=︒,在Rt ABD ∆和RtAFD 中 AF ABAD AD =⎧⎨=⎩Rt ABD Rt AFD(HL)∴∆≅∆, 1120602BAD FAD ∴∠=∠=⨯︒=︒,60120180FAD AFE ∴∠+∠=︒+︒=︒, //AD EF ∴,G 、I 分别为AF 、DE 中点,////GI EF AD ∴,60FGI FAD ∴∠=∠=︒,六边形ABCDEF 是正六边形,QKM ∆是等边三角形, 60EDM M ∴∠=︒=∠,ED EM ∴=,同理AF QF =, 即AF QF EF EM ===, 等边三角形QKM 的边长是a ,∴第一个正六边形ABCDEF 的边长是13a ,即等边三角形QKM 的边长的13,过F 作FZ GI ⊥于Z ,过E 作EN GI ⊥于N , 则//FZ EN , //EF GI ,∴四边形FZNE 是平行四边形,13EF ZN a ∴==,11112236GF AF a a ==⨯=,60FGI ∠=︒(已证), 30GFZ ∴∠=︒,11212GZ GF a ∴==,同理112IN a =, 1111123122GI a a a a ∴=++=,即第二个等边三角形的边长是12a ,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是1132a ⨯;同理第第三个等边三角形的边长是1122a ⨯,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是111322a ⨯⨯;同理第四个等边三角形的边长是111222a ⨯⨯,第四个正六边形的边长是11113222a ⨯⨯⨯;第五个等边三角形的边长是11112222a ⨯⨯⨯,第五个正六边形的边长是1111132222a ⨯⨯⨯⨯;第六个等边三角形的边长是1111122222a ⨯⨯⨯⨯,第六个正六边形的边长是111111322222a ⨯⨯⨯⨯⨯, 即第六个正六边形的边长是511()32a ⨯,故选:A .二.解答题(共49小题)2.如图,在等边ABC ∆中,点D ,E 分别在边BC ,AC 上,且//DE AB ,过点E 作EF DE ⊥,交BC 的延长线于点F ,(1)求F ∠的度数;(2)若3CD =,求DF 的长.【解答】解:(1)ABC ∆是等边三角形,60B ∴∠=︒, //DE AB ,60EDC B ∴∠=∠=︒,EF DE ⊥,90DEF ∴∠=︒,9030F EDC ∴∠=︒-∠=︒;(2)60ACB ∠=︒,60EDC ∠=︒,EDC∴∆是等边三角形.∴==,ED DC3∠=︒,F90∠=︒,30DEF∴==.DF DE263.数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED EC=,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE =DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作//EF BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED EC∆的边=.若ABC 长为1,2AE=,求CD的长(请你直接写出结果).【解答】解:(1)故答案为:=.(2)过E作//EF BC交AC于F,等边三角形ABC,∴∠=∠=∠=︒,AB AC BC==,ABC ACB A60AFE ACB∴∠=∠=︒,60∠=∠=︒,AEF ABC60即60∠=∠=∠=︒,AEF AFE A∴∆是等边三角形,AEFAE EF AF ∴==,60ABC ACB AFE ∠=∠=∠=︒,120DBE EFC ∴∠=∠=︒,60D BED FCE ECD ∠+∠=∠+∠=︒,DE EC =,D ECD ∴∠=∠,BED ECF ∴∠=∠,在DEB ∆和ECF ∆中DEB ECF DBE EFC DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,DEB ECF ∴∆≅∆,BD EF AE ∴==,即AE BD =,故答案为:=.(3)解:1CD =或3,理由是:分为两种情况:①如图1过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,则//AM EN ,ABC ∆是等边三角形,1AB BC AC ∴===,AM BC ⊥, 1122BM CM BC ∴===, DE CE =,EN BC ⊥,2CD CN ∴=,//AM EN ,AMB ENB ∴∆∆∽, ∴AB BM BE BN=, ∴11221BN=-, 12BN ∴=, 13122CN ∴=+=, 23CD CN ∴==;②如图2,作AM BC ⊥于M ,过E 作EN BC ⊥于N ,则//AM EN ,ABC ∆是等边三角形,1AB BC AC ∴===,AM BC ⊥,1122BM CM BC ∴===, DE CE =,EN BC ⊥,2CD CN ∴=,//AM EN , ∴AB BM AE MN=, ∴1122MN=, 1MN ∴=,11122CN ∴=-=,21CD CN ∴==,即3CD =或1.4.如图,过等边ABC ∆的边AB 上一点P ,作P E A C ⊥于E ,Q 为BC 延长线上一点,且PA CQ =,连PQ 交AC 边于D .(1)求证:PD DQ =;(2)若ABC ∆的边长为1,求DE 的长.【解答】(1)证明:如图,过P 做//PF BC 交AC 于点F ,AFP ACB ∴∠=∠,FPD Q ∠=∠,PFD QCD ∠=∠ABC ∆为等边三角形,60A ACB ∴∠=∠=︒,60A AFP ∴∠=∠=︒,APF ∴∆是等边三角形;AP PF =,AP CQ =,PF CQ ∴=PFD QCD ∴∆≅∆,PD DQ ∴=.(2)APF ∆是等边三角形,PE AC ⊥,AE EF ∴=,PFD QCD ∆≅∆,CD DF ∴=,12DE EF DF AC =+=, 1AC =,12DE =. 5.如图所示,已知等边ABC ∆的边长为a ,P 是ABC ∆内一点,//PD AB ,//PE BC ,//PF AC ,点D 、E 、F 分别在BC 、AC 、AB 上,猜想:PD PE PF ++= a ,并证明你的猜想.【解答】解:PD PE PF a ++=.理由如下:如图,延长EP 交AB 于G ,延长FP 交BC 于H ,//PE BC ,//PF AC ,ABC ∆是等边三角形,60PGF B ∴∠=∠=︒,60PFG A ∠=∠=︒,PFG ∴∆是等边三角形,同理可得PDH ∆是等边三角形,PF PG ∴=,PD DH =,又//PD AB ,//PE BC ,∴四边形BDPG是平行四边形,∴=,PG BD∴++=++==.PD PE PF DH CH BD BC a故答案为a.6.如图,已知ABC∆均为等边三角形,且点B、C、D在同一条直线上,连接AD、∆和CDEBE,交CE和AC分别于G、H点,连接GH.(1)请说出AD BE=的理由;(2)试说出BCH ACG∆≅∆的理由;(3)试猜想:CGH∆是什么特殊的三角形,并加以说明.【解答】解:(1)ABC∆均为等边三角形∆和CDE=∴=,EC DCAC BC∠=∠=︒ACB ECD60∴∠=∠ACD ECBACD BCE∴∆≅∆∴=;AD BE(2)ACD BCE∆≅∆∴∠=∠CBH CAGACB ECD∠=∠=︒,点B、C、D在同一条直线上60∴∠=∠=∠=︒ACB ECD ACG60又AC BC=ACG BCH∴∆≅∆;(3)CGH∆是等边三角形,理由如下:ACG BCH∆≅∆∴=(全等三角形的对应边相等)CG CH又60∠=︒ACG∴∆是等边三角形(有一内角为60度的等腰三角形为等边三角形);CGH7.如图,已知ABC∆是边长为6cm的等边三角形,动点P,Q同时从A、B两点出发,分别沿AB、BC方向匀速运动,其中点P运动的速度是1/cm s,cm s,点Q运动的速度是2/当点Q运动到点C时,P,Q都停止运动.(1)出发后运动2s时,试判断BPQ∆的形状,并说明理由;那么此时PQ和AC的位置关系呢?请说明理由;(2)设运动时间为t,BPQ∆的面积为S,请用t的表达式表示S.【解答】解:(1)BPQ∆是等边三角形,//PQ AC,(2分)运动至2s时,2AP=,4BQ=,BP AB AP BQ∴=-==(4分)4又ABC∆是边长为6cm的等边三角形∴∠=︒B60∴∆是等边三角形(6分)BPQ∴∠=∠=︒60BPQ A∴.//PQ AC(2)过Q作QH AB⊥于H,=,30∠=︒,BQHBQ t2∴=,QH=.(10分)BH t=-BP t6213(6)3(6)2S t t t t ∴=-=-=+. (12分)8.已知:在等边ABC ∆中,点D 、E 、F 分别为边AB 、BC 、AC 的中点,点G 为直线BC上一动点,当点G 在CB 延长线上时,有结论“在直线EF 上存在一点H ,使得DGH ∆是等边三角形”成立(如图①),且当点G 与点B 、E、C 重合时,该结论也一定成立. 问题:当点G 在直线BC 的其它位置时,该结论是否仍然成立?请你在下面的备用图②③④中,画出相应图形并证明相关结论.【解答】证明:连接DE 、EF 、DF .(1)当点G 在线段BE 上时,如图①,在EF 上截取EH 使EH BG =.D 、E 、F 是等边ABC ∆三边中点,DEF ∴∆、DBE ∆也是等边三角形且12DE AB BD ==. 在DBG ∆和DEH ∆中,60DB DE DBG DEH BG EH =⎧⎪∠=∠=︒⎨⎪=⎩,()DBG DEH SAS ∴∆≅∆,DG DH ∴=.BDG EDH ∴∠=∠.60BDE GDE BDG ∠=∠+∠=︒,60GDH GDE EDH ∴∠=∠+∠=︒∴在直线EF 上存在点H 使得DGH ∆是等边三角形.(2)当点G 在射线EC 上时,如图②,在EF 上截取EH 使EH BG =.由(1)可证DBG DEH ∆≅∆.DG DH ∴=,BDG EDH ∠=∠.60BDE BDG EDG ∠=∠-∠=︒,60GDH EDH EDG ∴∠=∠-∠=︒.∴在直线EF 上存在点H 使得DGH ∆是等边三角形.(3)当点G 在BC 延长线上时,如图③,与(2)同理可证,结论成立.综上所述,点G 在直线BC 上的任意位置时,该结论成立.9.已知点C 为线段AB 上一点,分别以AC 、BC 为边在线段AB 同侧作ACD ∆和BCE ∆,且CA CD =,CB CE =,ACD BCE ∠=∠,直线AE 与BD 交于点F ,(1)如图1,若60ACD ∠=︒,则AFB ∠= 120︒ ;如图2,若90ACD ∠=︒,则AFB ∠= ;如图3,若120ACD ∠=︒,则AFB ∠= ;(2)如图4,若ACDα∠=(用含α的式子表示);∠=,则AFB(3)将图4中的ACD∆绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若ACDα∠与α的有何数量关系?并给予∠=,则AFB证明.【解答】解:(1)如图1,CA CD∠=︒,ACD=,60所以ACD∆是等边三角形.∠=∠=︒,ACD BCE=,60CB CE所以ECB∆是等边三角形.AC DC∠=∠+∠,BCD BCE DCE∠=∠+∠,=,ACE ACD DCE又ACD BCE∠=∠,∴∠=∠.ACE BCDAC DC=,=,CE BC∴∆≅∆.ACE DCB∴∠=∠.EAC BDC∠是ADFAFB∆的外角.∴∠=∠+∠=∠+∠+∠=∠+∠+∠=∠+∠=︒AFB ADF FAD ADC CDB FAD ADC EAC FAD ADC DAC120.如图2,AC CD=,∠=∠=︒,EC CBACE DCB=,90∴∆≅∆.ACE DCB∴∠=∠,AEC DBC又FDE CDB∠=︒,DCB∠=∠,9090EFD ∴∠=︒.90AFB ∴∠=︒.如图3,ACD BCE ∠=∠,ACD DCE BCE DCE ∴∠-∠=∠-∠.ACE DCB ∴∠=∠.又CA CD =,CE CB =,ACE DCB ∴∆≅∆.EAC BDC ∴∠=∠.180180(180)120BDC FBA DCB ACD ∠+∠=︒-∠=︒--∠=︒, 120FAB FBA ∴∠+∠=︒.60AFB ∴∠=︒.故填120︒,90︒,60︒.(2)ACD BCE ∠=∠,ACD DCE BCE DCE ∴∠+∠=∠+∠.ACE DCB ∴∠=∠.CAE CDB ∴∠=∠.DFA ACD ∴∠=∠.180180180AFB DFA ACD α∴∠=︒-∠=︒-∠=︒-.(3)180AFB α∠=︒-;证明:ACD BCE α∠=∠=,则ACD DCE BCE DCE ∠+∠=∠+∠, 即ACE DCB ∠=∠.在ACE ∆和DCB ∆中AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,则()ACE DCB SAS ∆≅∆.则CBD CEA ∠=∠,由三角形内角和知EFB ECB α∠=∠=. 180180AFB EFB α∠=︒-∠=︒-.10.如图1,ABC ∆为等边三角形,面积为S .1D 、1E 、1F 分别是ABC ∆三边上的点,且11112AD BE CF AB ===,连接11D E 、11E F 、11F D ,可得△111D E F 是等边三角形,此时△11AD F 的面积114S S =,△111D E F 的面积114S S =. (1)当2D 、2E 、2F 分别是等边ABC ∆三边上的点,且22213AD BE CF AB ===时如图2,①求证:△222D E F 是等边三角形; ②若用S 表示△22AD F 的面积2S ,则2S = 29S ;若用S 表示△222D E F 的面积2S ',则2S '= .(2)按照上述思路探索下去,并填空:当n D 、n E 、n F 分别是等边ABC ∆三边上的点,11n n n AD BE CF AB n ===+时,(n 为正整数)△n n n D E F 是 三角形;若用S 表示△n n AD F 的面积n S ,则n S = ;若用S 表示△n n n D E F 的面积n S ',则n S '= .【解答】解:(1)①ABC ∆为等边三角形,AB BC AC ∴==,60A B ∠=∠=︒,(1分) 由已知得213AD AB =,213BE BC =,213CF AC =223AF AC ∴=,223BD AB = 22AD BE ∴=,22AF BD =(2分)△22AD F ≅△22BE D (3分) 2222D E F D ∴=同理可证△22AD F ≅△22CF E 2222F D E F =(4分) 222222D E E F F D ∴==∴△222D E F 为等边三角形;(5分)②229S S =;(6分)221393S S S S '=-⨯=(7分)(2)由(1)可知:△n n n D E F 等边三角形;(8分)由(1)的方法可知:229S S =,3316S S =,2(1)n n S S n ⋯=+;(9分) 213S S '=,232711621n n n S S S S n n '-+'=⋯=++.(10分) 11.如图,在等边ABC ∆的三边上分别取点D 、E 、F ,使AD BE CF ==. (1)试说明DEF ∆是等边三角形;(2)连接AE 、BF 、CD ,两两相交于点P 、Q 、R ,则PQR ∆为何种三角形?试说明理由.【解答】证明:(1)ABC ∆是等边三角形, AB BC AC ∴==, AD BE CF ==,AF BD ∴=,在ADF ∆和BED ∆中,AD BEA B AF BD =⎧⎪∠=∠⎨⎪=⎩,()ADF BED SAS ∴∆≅∆,DF DE ∴=,同理DE EF =,DE DF EF ∴==. DEF ∴∆是等边三角形;(2)PQR ∆是等边三角形, 理由:由(1)证得ADF BED ∆≅∆,BD AF ∴=,在ABF ∆与CBD ∆中,AB BC BAC CBD AF BD =⎧⎪∠=∠⎨⎪=⎩,ABF CBD ∴∆≅∆, ABF BCD ∴∠=∠, 60ABF CBF ∠+∠=︒, 60CBF BCD ∴∠+∠=︒,60RPQ FBC BCD ∠=∠+∠=︒,同理60PQR PRQ ∠=∠=︒, PQR ∴∆是等边三角形.12.如图所示,一个六边形的六个内角都是120︒,其中连续四边的长依次是1、9、9、5.求这个六边形的周长.【解答】解:如图,延长并反向延长AB ,CD ,EF ,两两相交于点G 、H 、I , 六边形ABCDEF 的每个内角都是120︒,60G H I ∴∠=∠=∠=︒,60GCB GBC ∠=∠=︒, GHI ∴∆,GBC ∆是等边三角形, 同理:HAF ∆,DEI ∆是等边三角形,9BG GC BC ∴===,5DE DI EI ===, 99523GI GC CD DI ∴=++=++=, 23GH GI HI ∴===, 13AH GH BG AB ∴=--=,13AF AH FH ∴===, 5EF HI EI FH ∴=--=,∴六边形ABCDEF 的周长113559942AB AF EF DE CD BC =+++++=+++++=.13.如图,已知D 是ABC ∆的边BC 上的一点,CD AB =,BDA BAD ∠=∠,AE 是ABD ∆的中线.(1)若60B ∠=︒,求C ∠的值; (2)求证:AD 是EAC ∠的平分线.【解答】(1)解:60B ∠=︒,BDA BAD ∠=∠, 60BAD BDA ∴∠=∠=︒,AB AD ∴=,CD AB =, CD AD ∴=, DAC C ∴∠=∠,2BDA DAC C C ∴∠=∠+∠=∠, 60BAD ∠=︒, 30C ∴∠=︒;(2)证明:延长AE 到M ,使EM AE =,连接DM ,在ABE ∆和MDE ∆中, EM AE AEB MED BE DE =⎧⎪∠=∠⎨⎪=⎩, ABE MDE ∴∆≅∆,B MDE ∴∠=∠,AB DM =,ADC B BAD MDE BDA ADM ∠=∠+∠=∠+∠=∠, 在MAD ∆与CAD ∆,DM CD ADM ADC AD AD =⎧⎪∠=∠⎨⎪=⎩,MAD CAD ∴∆≅∆, MAD CAD ∴∠=∠,AD ∴是EAC ∠的平分线.14.如图,ABC ∆为等边三角形,BD 平分ABC ∠交AC 于点D ,//DE BC 交AB 于点E . (1)求证:ADE ∆是等边三角形. (2)求证:12AE AB =.【解答】证明:(1)ABC ∆为等边三角形, 60A ABC C ∴∠=∠=∠=︒. //DE BC ,60AED ABC ∴∠=∠=︒,60ADE C ∠=∠=︒.ADE ∴∆是等边三角形.(2)ABC ∆为等边三角形, AB BC AC ∴==.BD 平分ABC ∠,12AD AC ∴=.ADE ∆是等边三角形, AE AD ∴=.12AE AB ∴=. 15.如图.在等边ABC ∆中,ABC ∠与ACB ∠的平分线相交于点O ,且//OD AB ,//OE AC . (1)试判定ODE ∆的形状,并说明你的理由;(2)线段BD 、DE 、EC 三者有什么关系?写出你的判断过程.【解答】解:(1)ODE ∆是等边三角形, 其理由是:ABC ∆是等边三角形, 60ABC ACB ∴∠=∠=︒,(2分) //OD AB ,//OE AC ,60ODE ABC ∴∠=∠=︒,60OED ACB ∠=∠=︒(3分)ODE ∴∆是等边三角形;(4分)(2)答:BD DE EC ==,其理由是:OB 平分ABC ∠,且60ABC ∠=︒, 30ABO OBD ∴∠=∠=︒,(6分) //OD AB ,30BOD ABO ∴∠=∠=︒, DBO DOB ∴∠=∠,DB DO ∴=,(7分) 同理,EC EO =, DE OD OE ==,BD DE EC ∴==.(8分) 16.如图,ABC ∆是等边三角形,DF AB ⊥,DE CB ⊥,EF AC ⊥,求证:DEF ∆是等边三角形.【解答】证明:ABC∆是等边三角形,ABC ACB CAB∠=∠=∠=︒,∴==,60AB AC BC⊥,DE CBDF AB⊥,⊥,EF AC∴∠=∠=∠=︒,DAB ACF CBE90∴∠=∠=∠=︒,FAC BCE DBA30∴∠=∠=∠=︒-︒-︒=︒,D E F180903060∴==,DF DE EFDEF∴∆是等边三角形,17.用三根火柴棒可以搭成一个等边三角形,你能用9根火柴搭出5个等边三角形吗?【解答】解:等边三角形各边长相等,故按照上图搭出图形,即为9根火柴搭出5个等边三角形.18.如图,ABC∆是等边三角形,AD是高,并且AB恰好是DE的垂直平分线.求证:ADE∆是等边三角形.【解答】证明:A在DE的垂直平分线上,∴=,AE AD∴∆是等腰三角形,ADE⊥,AB DE90ADE BAD ∴∠=︒-∠,AD BD ⊥,90B BAD ∴∠=︒-∠,由90ADE BAD ∠=︒-∠,90B BAD ∠=︒-∠,得:60B ADE ∠=∠=︒,ADE ∴∆是等边三角形.19.如图,60AOB ∠=︒,OC 平分AOB ∠,C 为角平分线上一点,过点C 作CD OC ⊥,垂足为C ,交OB 于点D ,//CE OA 交OB 于点E . (1)判断CED ∆的形状,并说明理由; (2)若3OC =,求CD 的长.【解答】解:(1)CED ∆是等边三角形,理由如下: OC 平分AOB ∠,60AOB ∠=︒, 30AOC COE ∴∠=∠=︒, //CE OA ,30AOC COE OCE ∴∠=∠=∠=︒,60CED ∠=︒, CD OC ⊥, 90OCD ∴∠=︒, 60EDC ∴∠=︒, CED ∴∆是等边三角形;(2)CED ∆是等边三角形, CD CE ED ∴==,又COE OCE ∠=∠, OE EC ∴=, CD ED OE ∴==,设CD x =,则2OD x =,在Rt OCD ∆中,根据勾股定理得:2294x x +=,解得:x =则CD =.20.如图,在ABC ∆中,AB AC =,120BAC ∠=︒,D 、F 分别为AB 、AC 的中点,且DE AB ⊥,FG AC ⊥,点E 、G 在BC 上,18BC cm =,求线段EG 的长.(提示:需要添加辅助线)【解答】解:如图,连接AE 、AGD 为AB 中点,ED AB ⊥, EB EA ∴=,ABE ∴∆为等腰三角形,又30B EAB ∠=∠=︒, 30BAE ∴∠=︒, 60AEG ∴∠=︒,同理可证:60AGE ∠=︒, AEG ∴∆为等边三角形, AE EG AG ∴==,又AE BE =,AG GC =,BE EG GC ∴==,又18()BE EG GC BC cm ++==, 6()EG cm ∴=.21.已知,如图,ABC ∆是正三角形,D ,E ,F 分别是各边上的一点,且AD BE CF ==.请你说明DEF ∆是正三角形.【解答】解:ABC==,∆为等边三角形,且AD BE CF∴==,AE BF CD又60∠=∠=∠=︒,A B CADE BEF CFD SAS∴∆≅∆≅∆,()∴==,DE EF FD∴∆是等边三角形.DEF22.如图所示,DEF∆是等边三角形,且123∆是等边三角形吗?请∠=∠=∠,试问:ABC说明理由.【解答】解:ABC∆是等边三角形,理由:DEF∆是等边三角形,∴∠=︒,DEF60∴∠=︒,BEC120BCE∴∠+∠=︒,260∠=∠,23BCE∴∠+∠=︒,360ACB∴∠=︒,60同理60∠=∠=︒,ABC BACABC ∴∆是等边三角形.23.如图,ABC ∆为等边三角形,BD 平分ABC ∠,//DE BC .(1)求证:ADE ∆是等边三角形;(2)求证:12AE AB =.【解答】证明:(1)ABC ∆为等边三角形,60A ABC ACB ∴∠=∠=∠=︒,//DE BC ,60AED ABD ∴∠=∠=︒,60ADE ACB ∴∠=∠=︒,A AED ADE ∴∠=∠=∠,ADE ∴∆是等边三角形;(2)ADE ∆是等边三角形AD AE ∴=ABC ∆为等边三角形,AB AC ∴= BD 平分ABC ∠,D ∴是AC 的中点(三线合一)1122AD AC AB ==, 12AE AB ∴=. 24.如图ABC ∆是等边三角形(1)如图①,//DE BC ,分别交AB 、AC 于点D 、E .求证:ADE ∆是等边三角形;(2)如图②,ADE ∆仍是等边三角形,点B 在ED 的延长线上,连接CE ,判断BEC ∠的度数及线段AE 、BE 、CE 之间的数量关系,并说明理由.【解答】(1)证明:ABC ∆是等边三角形,60B C ∴∠=∠=︒,//DE BC ,60ADE B ∴∠=∠=︒,60AED C ∠=∠=︒,ADE ∴∆是等边三角形;(2)解:AE CE BE +=.60BAD DAC ∠+∠=︒,60CAE DAC ∠+∠=︒,BAD CAE ∴∠=∠,在BAD ∆和CAE ∆中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,BAD CAE ∴∆≅∆,BD CE ∴=,120AEC ADB ∠=∠=︒,BE BD DE AE CE ∴=+=+,CE BD DE ==,30EBC ∴∠=︒,60BEC ∴∠=︒.25.如图,E 是AOB ∠的平分线上一点,EC OB ⊥,ED OA ⊥,C 、D 是垂足,连接CD交OE 于点F ,若60AOB ∠=︒.(1)求证:OCD ∆是等边三角形;(2)若5EF =,求线段OE 的长.【解答】解:(1)点E 是AOB ∠的平分线上一点,EC OB ⊥,ED OA ⊥,垂足分别是C ,D ,DE CE ∴=,在Rt ODE ∆与Rt OCE ∆中,DE CE OE OE =⎧⎨=⎩Rt ODE Rt OCE(HL)∴∆≅∆,OD OC ∴=,60AOB ∠=︒,OCD ∴∆是等边三角形;(2)OCD ∆是等边三角形,OF 是COD ∠的平分线,OE DC ∴⊥,60AOB ∠=︒,30AOE BOE ∴∠=∠=︒,60ODF ∠=︒,ED OA ⊥,30EDF ∴∠=︒,210DE EF ∴==,220OE DE ∴==.26.如图,ABC ∆中,60BAC ∠=︒,点D 、E 分别在AB 、AC 上,30BCD CBE ∠=∠=︒,BE 、CD 相交于点O ,OG BC ⊥于点G ,求证:2OE OD OG +=.【解答】证明:延长OE 至点M ,使OM OC =,连接CM ,30BCD CBE ∠=∠=︒,OB OC ∴=,303060MOC ∠=︒+︒=︒,OM OC =,OMC ∴∆为等边三角形,CM OC OB ∴==,60M ∠=︒,DBO MCE ∴∠=∠,在BOD ∆和CME ∆中,DBO MCE BO CMDOB M ∠=∠⎧⎪=⎨⎪∠=∠⎩, BOD MCE ∴∆≅∆,DO EM ∴=,OE OD OM OB ∴+==,在Rt OBG ∆中,30OBG ∠=︒,OG BC ⊥,2OG OB ∴=,2OE OD OG ∴+=.27.如图,在ABC ∆中,AB AC =,D 、E 是ABC ∆内两点,AD 平分BAC ∠,60EBC E ∠=∠=︒,若30BE cm =,2DE cm =,则BC = 32 cm .【解答】解:延长ED交BC于M,延长AD交BC于N,∠,AB AC=,AD平分BAC=,AN BC∴⊥,BN CN∠=∠=︒,EBC E60∴∆为等边三角形,BEMEFD∴∆为等边三角形,DE=,30BE=,2∴=,28DM∆为等边三角形,BEMEMB∴∠=︒,60⊥,AN BC∴∠=︒,90DNM∴∠=︒,30NDM∴=,NM14∴=,16BN∴==,BC BN232故答案为32.28.如图,已知ABC=,∠,CE BD ∆为等边三角形,D为BC延长线上的一点,CE平分ACD 求证:ADE∆为等边三角形.【解答】证明:ABC ∆为等边三角形,60B ACB ∴∠=∠=︒,AB AC =,即120ACD ∠=︒, CE 平分ACD ∠,1260∴∠=∠=︒,在ABD ∆和ACE ∆中,1AB AC B BD CE =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴∆≅∆,AD AE ∴=,BAD CAE ∠=∠,又60BAC ∠=︒,60DAE ∴∠=︒,ADE ∴∆为等边三角形.29.如图,ABC ∆为等边三角形,D 为BC 边上一点,以AD 为边作60ADE ∠=︒,DE 与ABC ∆的外角平分线CE 交于点E ,连接AE ,且CE BD =.求证:ADE ∆是等边三角形.【解答】解:过D 作//DG AC 交AB 于G ,则13∠=∠,GDB ∆为等边三角形,120AGD DCE ∠=∠=︒,AG DC =.又60ADE ACE ∠=∠=︒,ACE ECF ∠=∠,12∴∠=∠,31∴∠=∠.在AGD ∆和DCE ∆中,31AGD DCE AG DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AGD DCE AAS ∴∆≅∆,AD DE ∴=,60ADE ∠=︒,ADE ∴∆是等边三角形.30.如图,在ABC ∆中,AB AC =,D 是三角形外一点,且60ABD ∠=︒,BD DC AB +=.求证:60ACD ∠=︒.【解答】证明:延长BD 至E ,使CD DE =,连接AE ,AD ,BD CD AB +=,BE BD DE =+,BE AB ∴=,60ABD ∠=︒,ABE ∴∆是等边三角形,AE AB AC ∴==,60E ∠=︒,在ACD ∆和ADE ∆中,AC AE CD DE AD AD =⎧⎪=⎨⎪=⎩,()ACD ADE SSS ∴∆≅∆,60ACD E ∴∠=∠=︒.31.如图,在等边ABC ∆中,ABC ∠与ACB ∠的平分线相交于点O ,且//OD AB ,//OE AC .(1)求证:ODE ∆是等边三角形.(2)线段BD 、DE 、EC 三者有什么数量关系?写出你的判断过程.(3)数学学习不但要能解决问题,还要善于提出问题.结合本题,在现有的图形上,请提出两个与“直角三角形”有关的问题.(只要提出问题,不需要解答)【解答】(1)证明:ABC ∆是等边三角形,60ABC ACB ∴∠=∠=︒,//OD AB ,//OE AC ,60ODE ABC ∴∠=∠=︒,60OED ACB ∠=∠=︒,ODE ∴∆是等边三角形;。
全等三角形难题集锦
全等三角形难题集锦1.已知△ABC中,∠ABC=45°,CD⊥XXX于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G。
1)证明BF=AC;2)证明CE=BF/2;3)推导CE与BC的大小关系。
2.已知△ABC为等边三角形,点D为直线BC上的一动点,以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF。
1)当点D在边BC上时,证明BD=CF和AC=CF+CD;2)当点D在边BC的延长线上时,AC≠CF+CD,AC、CF、CD之间存在什么数量关系;3)当点D在边BC的延长线上时,补全图形并直接写出AC、CF、CD之间的数量关系。
3.在△ABC中,BC边在直线l上,AC⊥BC,且AC=BC。
△EFP的边FP也在直线l上,XXX与XXX重合,且EF=FP。
1)通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;2)将△EFP沿直线l向左平移到图中的位置时,猜想并写出BQ与AP所满足的数量关系和位置关系,并证明猜想;3)将△EFP沿直线l向左平移到图中的位置时,EP的延长线交AC的延长线于点Q,猜想并说明BQ与AP的数量关系和位置关系是否仍然成立。
4.△AOB,△COD均为等腰直角三角形,∠AOB=∠COD=90º。
1)在图1中,证明AC与BD相等且垂直;2)当△COD绕点O顺时针旋转到图2的位置时,AC与BD不相等且不垂直;3)当△COD绕点O顺时针旋转到图3的位置时,AC与BD不相等但仍然垂直。
复“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知在△ABC中,AB=AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,则BQ=CP.”XXX是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP之后,将点P移到等腰三角形ABC之外,原题中的条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明.解答:1)由已知得,∠QAP=∠BAC。
初中数学全等相似三角形难题汇总(附答案)
1.如图所示,S△ABC=1,若S△BDE=S△DEC=S△ACE,则S△ADE=()A.B.C.D.2.如图,设在一个宽度为w的小巷内,一个梯子长为a,梯子的脚位于A点,将梯子的顶端放在一堵墙上Q点时,Q离开地面的高度为k,梯子的倾斜角为45°;将该梯子的顶端放在另一堵墙上R点时,R点离开地面的高度为h,且此时梯子倾斜角为75°,则小巷宽度w=()A.h B.k C.a D.3.已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,则下列结论:①AE=(AB+AD);②∠DAB+∠DCB=180°;③CD=CB;④S△ACE ﹣S△BCE=S△ADC.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个4.如图,△ABC中,∠A=2∠B,∠C≠72°,CD平分∠ACB,P为AB中点,则下列各式中正确的是()A.AD=BC﹣CD B.AD=BC﹣AC C.AD=BC﹣AP D.AD=BC﹣BD5.在△ABC与△A′B′C′中,∠B=∠B′=90°,∠A=30°,则以下条件,不能说明△ABC 与△A′B′C′相似的是()A.∠A′=30°B.∠C′=60°C.∠C=60° D.∠A′=2∠C′6.设a,b,c分别是△ABC的三边长,且,则它的内角∠A、∠B的关系是()A.∠B>2∠A B.∠B=2∠A C.∠B<2∠A D.不确定7.已知△ABC的三边长分别为a,b,c,面积为S,△A1B1C1的三边长分别为a1,b1,c1,面积为S1,且a>a1,b>b1,c>c1,则S与S1的大小关系一定是()A.S>S1B.S<S1C.S=S1 D.不确定8.如图,在△ABC中,D是边AC上一点,下面四种情况中,△ABD∽△ACB一定成立的情况是()A.AD•BC=AB•BD B.AB2=AD•AC C.∠ABD=∠CBD D.AB•BC=AC•BD9.如图,D、E分别是△ABC的边AC、AB上的点,BD、CE相交于O点.若S△=2,S△OBE=3,S△OBC=4,则S△ABC=.OCD10.如图,△ABC中,AB=4,AC=7,M是BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于.11.如图,△ABC中,AC=BC=5,∠ACB=80°,O为△ABC中一点,∠OAB=10°,∠OBA=30°,则线段AO的长是.12.如图,△ABC中,BD为∠ABC的平分线;(1)若∠A=100°,∠C=50°,求证:BC=BA+AD;(2)若∠BAC=100°,∠C=40°,求证:BC=BD+AD.13.如图,已知Rt△ABC中,∠C=90°,D是AB上一点,作DE⊥BC于E,若BE=AC,BD=,DE+BC=1,求:∠ABC的度数.14.如图表示甲、乙、丙三个三角形,每个三角形的内角均为55°、60°、65°.记甲、乙、丙三个三角形的周长依次为l甲、l乙、l丙.已知AB=DE=GH,试猜想l甲、l乙、l丙的大小关系,并说明理由.15.已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E,求证:BD=2CE.16.如图,在△ABC中AC>BC,E、D分别是AC、BC上的点,且∠BAD=∠ABE,AE=BD.求证:∠BAD=∠C.1.如图所示,S△ABC=1,若S△BDE=S△DEC=S△ACE,则S△ADE=()A.B.C.D.【考点】K3:三角形的面积.=S△DEC,【解答】解:∵S△BDE∴BD=DC,=S△ABC=,∴S△ABD∵S=1,S△BDE=S△DEC=S△ACE,△ABC=S△DEC=S△ACE=,∴S△BDE=S△ABD﹣S△BDE=﹣=.∴S△ADE故选B.2.如图,设在一个宽度为w的小巷内,一个梯子长为a,梯子的脚位于A点,将梯子的顶端放在一堵墙上Q点时,Q离开地面的高度为k,梯子的倾斜角为45°;将该梯子的顶端放在另一堵墙上R点时,R点离开地面的高度为h,且此时梯子倾斜角为75°,则小巷宽度w=()A.h B.k C.a D.【考点】KE:全等三角形的应用;KM:等边三角形的判定与性质.【解答】解:连接QR,过Q作QD⊥PR,∴∠AQD=45°,∵∠QAR=180°﹣75°﹣45°=60°,且AQ=AR,∴△AQR为等边三角形,即AQ=QR,∵∠AQD=45°∴∠RQD=15°=∠ARP,∠QRD=75°=∠RAP,∴△DQR≌△PRA(ASA),∴QD=PR,即w=h.故选A.3.已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,则下列结论:①AE=(AB+AD);②∠DAB+∠DCB=180°;③CD=CB;④S△ACE ﹣S△BCE=S△ADC.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个【考点】KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【解答】解:①在AE取点F,使EF=BE.∵AB=AD+2BE=AF+EF+BE,EF=BE,∴AB=AD+2BE=AF+2BE,∴AD=AF,∴AB+AD=AF+EF+BE+AD=2AF+2EF=2(AF+EF)=2AE,∴AE=(AB+AD),故①正确;②在AB上取点F,使BE=EF,连接CF.在△ACD与△ACF中,∵AD=AF,∠DAC=∠FAC,AC=AC,∴△ACD≌△ACF,∴∠ADC=∠AFC.∵CE垂直平分BF,∴CF=CB,∴∠CFB=∠B.又∵∠AFC+∠CFB=180°,∴∠ADC+∠B=180°,∴∠DAB+∠DCB=360﹣(∠ADC+∠B)=180°,故②正确;③由②知,△ACD≌△ACF,∴CD=CF,又∵CF=CB,∴CD=CB,故③正确;④易证△CEF≌△CEB,∴S△ACE ﹣S△BCE=S△ACE﹣S△FCE=S△ACF,又∵△ACD≌△ACF,∴S△ACF=S△ADC,∴S△ACE ﹣S△BCE=S△ADC,故④正确.故选D.4.如图,△ABC中,∠A=2∠B,∠C≠72°,CD平分∠ACB,P为AB中点,则下列各式中正确的是()A.AD=BC﹣CD B.AD=BC﹣AC C.AD=BC﹣AP D.AD=BC﹣BD【考点】KD:全等三角形的判定与性质.【解答】解:因为∠A=2∠B,所以∠A>∠B,所以BC>AC.在BC上截取CA′=CE,连接DE′(如图),易证△ACD≌△EC′D,所以AD=ED,且∠CED=∠A=2∠B,又∠CED=∠B+∠EDB,所以∠B=∠EDB,所以AD=ED=EB,所以BC=E′C+E′B=AC+AD,所以AD=BC﹣AC.故此题选B.注意到:若AD=BC﹣CD,则CD=BC﹣AD=A′C=AC,此时∠CDA′=∠CDA=∠A=2∠B,所以∠ADA′=4∠B,又∠ADA′+∠2=4∠B+∠B=180°,所以∠B=36°,所以∠C=72°,与已知矛盾,故A排除,易证BD>BA′=AD,所以PB<BD,PA>AD.所以AD<BC﹣AP,排除C,AD>BC﹣BD,排除D.5.在△ABC与△A′B′C′中,∠B=∠B′=90°,∠A=30°,则以下条件,不能说明△ABC 与△A′B′C′相似的是()A.∠A′=30°B.∠C′=60°C.∠C=60° D.∠A′=2∠C′【考点】S9:相似三角形的判定与性质;KF:角平分线的性质.【解答】解:A、∵∠A′=30°,∠B=∠B′=90°,∠A=30°,∴△ABC∽△A′B′C′,故本选项错误;B、∵∠C′=60°,∴∠A′=30°,∵∠B=∠B′=90°,∠A=30°,∴△ABC∽△A′B′C′,故本选项错误;C、∠C=60°,无法确定△A′B′C′中各角的度数,故无法证明△ABC∽△A′B′C′,故本选项正确;D、∵∠A′=2∠C′,∠A′+∠C′=90°,∴∠A′=30°,∵∠B=∠B′=90°,∠A=30°,∴△ABC∽△A′B′C′,故本选项错误.故选C6.设a,b,c分别是△ABC的三边长,且,则它的内角∠A、∠B的关系是()A.∠B>2∠A B.∠B=2∠A C.∠B<2∠A D.不确定【考点】S9:相似三角形的判定与性质;K8:三角形的外角性质.【解答】解:由=得=,延长CB至D,使BD=AB,于是CD=a+c,在△ABC与△DAC中,∠C为公共角,且BC:AC=AC:DC,∴△ABC∽△DAC,∠BAC=∠D,∵∠BAD=∠D,∴∠ABC=∠D+∠BAD=2∠D=2∠BAC.故选B.7.已知△ABC的三边长分别为a,b,c,面积为S,△A1B1C1的三边长分别为a1,b1,c1,面积为S1,且a>a1,b>b1,c>c1,则S与S1的大小关系一定是()A.S>S1B.S<S1C.S=S1 D.不确定【考点】S9:相似三角形的判定与性质;K3:三角形的面积.【解答】解:分别构造△ABC与△A1B1C1如下:①作△ABC∽△A1B1C1,显然=>1,即S>S1;②设a=b=,c=20,则h c=1,S=10,a1=b1=c1=10,则S1=×100>10,即S<S1;③设a=b=,c=20,则h c=1,S=10,a1=b1=,c1=10,则h c=2,S1=10,即S=S1;因此,S与S1的大小关系不确定.故选D.8.如图,在△ABC中,D是边AC上一点,下面四种情况中,△ABD∽△ACB一定成立的情况是()A.AD•BC=AB•BD B.AB2=AD•AC C.∠ABD=∠CBD D.AB•BC=AC•BD【考点】S8:相似三角形的判定.【解答】解:A、因为AD•BC=AB•BD的夹角非∠A,所以不能判定两三角形相似,故本选项错误;B、因为符合两边及夹角法,故可判定两三角形相似,故本选项正确;C、因为无法确定三角形的对应角相等,故无法判定两三角形相似,故本选项错误;D、因为AB•BC=AC•BD的夹角为∠C、∠B,不确定是否相等,无法判定两三角形相似,故本选项错误,故选B.9.如图,D、E分别是△ABC的边AC、AB上的点,BD、CE相交于O点.若S△=2,S△OBE=3,S△OBC=4,则S△ABC=16.8.OCD【考点】K3:三角形的面积.【解答】解:连接DE,如图则有,,将已知数据代入可得S=1.5,△DOE=x,则由,设S△ADE,所以得方程:,解得:x=6.3,所以四边形ADOE的面积=x+1.5=7.8.=2+3+4+7.8=16.8.所以S△ABC故填:16.8.10.如图,△ABC中,AB=4,AC=7,M是BC的中点,AD平分∠BAC,过M作MF∥AD,交AC于F,则FC的长等于 5.5.【考点】KD:全等三角形的判定与性质.【解答】解:如图,延长FM到N,使MN=MF,连接BN,延长MF交BA延长线于E,∵M是BC中点,∴BM=CM,∠BMN=∠CMF,∴△BMN≌△CMF,∴BN=CF,∠N=∠MFC,又∵∠BAD=∠CAD,MF∥AD,∴∠E=∠BAD=∠CAD=∠CFM=∠AFE=∠N,∴AE=AF,BN=BE,∴AB+AC=AB+AF+FC=AB+AE+FC=BE+FC=BN+FC=2FC,∴FC=(AB+AC)=5.5.故答案为5.5.11.如图,△ABC中,AC=BC=5,∠ACB=80°,O为△ABC中一点,∠OAB=10°,∠OBA=30°,则线段AO的长是5.【考点】KD:全等三角形的判定与性质.【解答】解:作∠CAO的平分线AD,交BO的延长线于点D,连接CD,∵AC=BC=5,∴∠CAB=∠CBA=50°,∵∠OAB=10°,∴∠CAD=∠OAD===20°,∵∠DAB=∠OAD+∠OAB=20°+10°=30°,∴∠DAB=30°=∠DBA,∴AD=BD,∠ADB=120°,在△ACD与△BCD中⇒△ACD≌△BCD⇒∠CDA=∠CDB,∴∠CDA=∠CDB===120°,在△ACD与△AOD中⇒△ACD≌△AOD⇒AO=AC,∴AO=5.故答案为5.12.如图,△ABC中,BD为∠ABC的平分线;(1)若∠A=100°,∠C=50°,求证:BC=BA+AD;(2)若∠BAC=100°,∠C=40°,求证:BC=BD+AD.【考点】KD:全等三角形的判定与性质.【解答】证明:(1)在边BC上截取BE=AB,连接DE,∵BD为∠ABC的平分线,∴∠ABD=∠DBE,∴△ABD≌△DBE,∴AD=DE,∴∠A=∠BED,∵∠A=100°,∴∠BED=100°,∵∠C=50°,∴∠CDE=50°,∴∠C=∠CDE,∴DE=CE,∵BC=BE+CE,∴BC=BA+AD;(2)如图,以BC为边作等边三角形A'BC,在A'C上截取CD'=BD,∴∠ACA′=∠ABD=20°,∵AB=AC,∴△ABD≌△ACD'(SAS),∴AD=AD',∠BAC=∠CAD′=100°,∴∠AD′C=60°,连接AA′,∴∠D'A'A=∠A'AD'=30°,∴A'D'=AD',∴BC=A'C=A'D'+CD'=AD+BD,即BC=BD+AD.13.如图,已知Rt△ABC中,∠C=90°,D是AB上一点,作DE⊥BC于E,若BE=AC,BD=,DE+BC=1,求:∠ABC的度数.【考点】KD:全等三角形的判定与性质.【解答】解:延长BC到F,使CF=DE,连接AF(如图)∵DE+BC=1,∴BF=BC+CF=BC+DE=1∵BE=AC,∠DEB=∠ACF=90°,DE=CF,∴△BDE≌△AFC(SAS),∵BD=,∴AF=BD=,∠B=∠1,∴AF=BF,∵∠B+∠2=90°,∴∠1+∠2=90°,∴∠ABC=30°.14.如图表示甲、乙、丙三个三角形,每个三角形的内角均为55°、60°、65°.记甲、乙、丙三个三角形的周长依次为l 甲、l 乙、l 丙.已知AB=DE=GH ,试猜想l 甲、l 乙、l 丙的大小关系,并说明理由.【考点】KD :全等三角形的判定与性质;K6:三角形三边关系.【解答】解:猜想l 甲<l 乙<l 丙.(5分)理由:在甲三角形中,作∠ABF′=65°,交AC 的延长线于点F′.在△DEF 和△BAF′中,∵∠D=∠ABF′=65°,DE=BA ,∠E=∠A=55°,∴△DEF ≌△BAF′(ASA ).(3分)∵F′C +F′B >BC ,∴△BAF′的周长大于l 甲.即 l 甲<l 乙.(3分)同理可说明l 乙<l 丙.(3分)∴l 甲<l 乙<l 丙.15.已知等腰直角三角形ABC ,BC 是斜边.∠B 的角平分线交AC 于D ,过C 作CE 与BD 垂直且交BD 延长线于E ,求证:BD=2CE .【考点】KD:全等三角形的判定与性质.【解答】证明:如图,分别延长CE,BA交于一点F.∵BE⊥EC,∴∠FEB=∠CEB=90°,∵BE平分∠ABC,∴∠FBE=∠CBE,又∵BE=BE,∴△BFE≌△BCE (ASA).∴FE=CE.∴CF=2CE.∵AB=AC,∠BAC=90°,∠ABD+∠ADB=90°,∠ADB=∠EDC,∴∠ABD+∠EDC=90°.又∵∠DEC=90°,∠EDC+∠ECD=90°,∴∠FCA=∠DBC=∠ABD.∴△ADB≌△AFC.∴FC=DB,∴BD=2EC.16.如图,在△ABC中AC>BC,E、D分别是AC、BC上的点,且∠BAD=∠ABE,AE=BD.求证:∠BAD=∠C.【考点】KD:全等三角形的判定与性质.【解答】证明:作∠OBF=∠OAE交AD于F,∵∠BAD=∠ABE,∴OA=OB.又∠AOE=∠BOF,∴△AOE≌△BOF(ASA).∴AE=BF.∵AE=BD,∴BF=BD.∴∠BDF=∠BFD.∵∠BDF=∠C+∠OAE,∠BFD=∠BOF+∠OBF,∴∠BOF=∠C.∵∠BOF=∠BAD+∠ABE=2∠BAD,∴∠BAD=∠C,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
D
E
A
B
F
A
B
C
D
F
E
全等三角形难题分享
1.如图,点C 在线段AB 上,D A ⊥AB ,EB ⊥AB ,FC ⊥AB , 且DA=BC ,EB=AC ,FC=AB ,∠AFB=51°,求∠DFE 的度数.
2.如图,△ABC 中,D 是BC 的中点,DE ⊥DF ,试判断BE + CF 与EF 的大小关系,并证明你的结论.
3.如图,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,求五边形ABCDE 的面积。
4.如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC=AE+CD.
A
B
E
O
D
C
A
E
B
D
已知:如图,四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,且∠B+∠D=180︒,求证:AE=AD+BE
A
B
D
C
E 1
2
20.如图17所示,在∠AOB 的两边上截取AO =BO ,OC =OD ,连接AD 、BC 交于点P ,连接OP ,则下列结论正确的是 ( )
①△APC ≌△BPD ②△ADO ≌△BCO ③△AOP ≌△BOP ④△OCP ≌△ODP A .①②③④ B .①②③ C .②③④ D .①③④
13.如图△ABC 中,F 是BC 上的一点,且CF =1
2 BF,
那么△ABF 与△ACF 的面积比是_____
29.如图22,已知AD 是△ABC 的中线, DE ⊥AB 于E , DF ⊥AC 于F , 且BE=CF , 求证:(1)AD 是∠BAC 的平分线;(2)AB=AC .
A 1 2
E F C
D B 图22
A B C D
M N
O 1
2
12.在△ABC 中, AB = AC , AD 和CE 是高,它们所在的直线相交于H . ⑴若∠BAC = 45°(如图①),求证:AH = 2BD ; ⑵若∠BAC = 135°(如图②),⑴中的结论是否依然成立?请在图②中画出图形并证明你的结论.
例3.如图所示,D 在AB 上,E 在AC 上,AB=AC, ∠B=∠C. 求证:AD=AE
10. 如图,AB =CD ,AD =BC ,O 为BD 上任意一点,过O 点的直线分别交AD ,BC 于M 、N 点.
求证:21∠=∠
(四)解答题:
1、如图,已知AC=AB ,∠1=∠2;求证:BD=CE
图① E H D
C B A
C
B
A
图② 2
1
A
E
D
22.(6分)如图,△ABC 中,∠B=045,∠ACB=0
70,AD 是△ABC 的角平分线,F 是AD 上一点,EF ⊥AD ,交AC 于E ,交BC 的延长线于G 。
求∠G 的度数。
24. (8分)已知如图,△ABC 中,AB=AC ,D 是AB 的中点,DE ⊥AB 交AC 于E ,
E
F
G
C D B
A
E
D
C
B
A
(1)
D P
E C
B
A (2)
D
P
E
C
B
A
(3)
P
C
B
A
7题图
E
D
C
B
A
22、在△ABC 中,AC =BC,∠C =90°,将一块三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕P 点旋转,三角板的两直角边分别交AC 、CB 于D 、E 两点,如图(1)、(2)所示。
问PD 与PE 有何大小关系?在旋转过程中,还会存在与图⑴、⑵不同的情形吗?若存在,请在图⑶中画出,并选择图⑵或图⑶为例加以证明,若不存在请选择图⑵加以证明.
2、如图,CE 平分∠ACB ,且CE ⊥DB ,∠DAB =∠DBA ,AC =18cm ,△CBD 的周长为28 cm ,则DB = 。
5. 如图已知: △ABC 中,∠ABC 的平分线与∠ACB 的外角平分线交于D ,DE∥BC 交AB 于E ,交AC 于F 。
求证:BE=EF+CF
3、已知:如图,AB∥CD,AB =CD ,BE∥DF; 求证:BE =DF ;
(选做题)
4、在△ABC 中∠BAC 是锐角,AB=AC ,AD 和BE 是高,它们交于点H ,且AE=BE ; (1)求证:AH=2BD ;
(2)若将∠BAC 改为钝角,其余条件不变,上述的结论还成立?若成立,请证明;若不成立,请说明理由;
9.如图,四边形ABCD 的对角线AC 与BD 相交于O 点,12∠=∠,34∠=∠. 求证:(1)ABC ADC △≌△; (2)BO DO =.
F
O D
E
C
B
A
D
C
B
A
O (第23题)
1 2
3 4
11.. 如图,在△ABC 中,∠ABC=100º,AM=AN,CN=CP,求∠MNP 的度数
12. 如图,在△ABC 中,AB=BC,M,N 为BC 边上的两点,并且∠BAM=∠CAN,MN=AN,求∠MAC 的度数.
13.如图,已知∠BAC=90º,AD ⊥BC, ∠1=∠2,EF ⊥BC, FM ⊥AC,说明FM=FD 的理由
14.如图22,已知AD 是△ABC 的中线, DE ⊥AB 于E , DF ⊥AC 于F , 且BE=CF , 求证:(1)AD 是∠BAC 的平分线;(2)AB=AC .
15如图,等腰直角三角形ABC 中,∠ACB =90°,AD 为腰CB 上的中线,CE ⊥AD 交AB 于E .
求证∠CDA =∠EDB .
A 1 2
E F C
D B 图22
1 2
A B C
D E。