(完整版)电流源与电压源的等效变换

(完整版)电流源与电压源的等效变换
(完整版)电流源与电压源的等效变换

第十五周(第 1、2 讲)

课题电流源与电压源的等效变换课型新授课

教学目标掌握电压源电流源之间的等效变换方法,理解两种电源模型的特性。

教学重点电压源和电流源之间的等效变换方法。

教学难点电压源和电流源之间的等效变换方法。

教学手段使用多媒体演示平台

【教学过程】:

导入新课:

电路中的电能都是由电源来提供的,对负载来说,电源是电压的提供者,也可以看成是电流的提供者。

讲授新课:

一、电压源

为电路提供一定电压的电源可以用电压源来表征

1、理想电压源(恒压源):电源内阻为零,并能提供一个恒定不变的电压。所

以也称恒压源。如图1-a所示。

2、恒压源的两个特点:(1)提供给负载的电压恒定不变;(2)提供给负载的

电流可任意。

3、实际电压源:可以用一个电阻(相当于内阻)与一个理想的电压源串联来

等效。它提供的端电压受负载影响。如图1-b虚线框内所示。

图 1

二、电流源

为电路提供一定电流的电源可用电流源来表征。

1、理想电流源(恒流源):电源的内阻为无穷大,并能提供一个恒定不变的电

源。所以也称为恒流源。如图2-a所示。

2、恒流源的两个特点:(1)提供给负载的电流是恒定不变的;(2)提供给负

载的电压是任意的。

3、实际电流源:实际上电源的内阻不可能为无穷大,可以把理想电流源与一

个内阻并联的组合等效为一个电流源。如图2-b 所示。

图 2

三、两种电源模型的等效变换

讨论问题:两种电源模型的等效变换的条件是什么?

对外电路,只要负载上的电压与流过的电流是相等的,则两个不同的电源等效。

;;00S S S S S r I E r E r E I r r ?=??===

或者:

(1)电压源等效为电流源:

0r E

I S = 0r r s =

(2)电流源等效为电压源: s S r I E = s r r =0

即:内阻相等,电流源的恒定电流等于电压源的短路电流:或电压源的恒定电压等于电流源的开路电压。

要注意一个理想电压源是不能等效变换为一个理想电流源的,反之也一样。只有电流源和电压源之间才能等效变换。但是这种等效变换是对外电路而言的,电源内部并不等效。

例题讲解:76页例1

课堂练习:

1.判断:

? 恒压源和恒流源可以等效互换。( ) ? 电压源和电流源等效变换前后电源内部是不等效的。( )

2.3-7-1

3.3-7-2(a )

4.3-7-3(a )

课堂小结:

1、电压源: 为电路提供一定电压的电源。

2、电流源:为电路提供一定电流的电源。

3、电压源和电流源等效变换的条件: ;;00S S S

S S r I E r E r E I r r ?=??=== 即:内阻相等,电流源的恒定电流等于电压源的短路电流:或电压源的恒定电压等于

电流源的开路电压。

作业布置:

3-7-2(b ),3-7-3(b ),3-7-4

【课后记】:

这是一堂公开课,教师准备比较充分,上课课堂纪律很好,学生回答问题很积极。在讲解过程中,我感觉到自己的知识面还不够宽,听课的老师也提出了一些问题:一、应多联系实际生活和生产中怎样应用电压源和电流源进行讲解;二、讲课过程中前后不够连贯。

运放电压电流转换电路

运放电压电流转换电路 LELE was finally revised on the morning of December 16, 2020

运放电压电流转换电路1、 0-5V/0-10mA的V/I变换电路 图1是由运放和阻容等元件组成的V/I变换电路,能将0—5V的直流电压信号线性地转换成0-10mA的电流信号,A1是比较器.A3是电压跟随器,构成负反馈回路,输入电压Vi与反馈电压Vf比较,在比较器A1的输出端得到输出电压VL,V1控制运放A1的输出电压V2,从而改变晶体管T1的输出电流IL而输出电流IL又影响反馈电压Vf,达到跟踪输入电压Vi的目的。输出电流IL的大小可通过下式计算:IL=Vf/(Rw+R7),由于负反馈的作用使Vi=Vf,因此IL=Vi/(Rw+R7),当Rw+R7取值为500Ω时,可实现0-5V/0-10mA的V/I转换,如果所选用器件的性能参数比较稳定,运故A1、A2的放大倍数较大,那么这种电路的转换精度,一般能够达到较高的要求。 2、 0-10V/0-10mA的V/I变换电路 图2中Vf是输出电流IL流过电阻Rf产生的反馈电压,即V1与V2两点之间的电压差,此信号经电阻R3、R4加到运放A1的两个输入端Vp与Vn,反馈电压Vf=V1-V2,对于运放A1,有VN=Vp;Vp=V1/(R2+R3)×R2,VN=V2+(Vi- V2)×R4/(R1+R4),所以V1/(R2+R3)×R2=V2+(Vi-V2)×R4/(R1+R4),依据Vf=V1-V2及上式可推导出: 若式中R1=R2=100kΩ,R1=R4=20kΩ,则有:Vf×R1=Vi×R4, 得出:Vf=R4/R1×Vi=1/5Vi,如果忽略流过反馈回路R3、R4的电流,则有:IL=Vf/Rf=Vi/5Rf,由此可以看出.当运放的开环增益足够大时,输出电流IL与输入电压Vi满足线性关系,而且关系式中只与反馈电阻Rf的阻值有关.显然,当Rf=200Ω时,此电路能实现0-10v/0-10mA的V/I变换。 3、 1-5V/4-20mA的V/I变换电路 在图3中.输入电压Vi是叠加在基准电压VB(VB=10V)上,从运放A1的反向输入VN端输入的,晶体管T1、T2组成复合管,作为射极跟踪器,起到降低T1基极电流的作用(即忽略反馈电流I2),使得IL≈I1,而运放A1满足VN≈Vp,如果电路图中R1=R2=R,R4=R5=kR,则有如下表达式:

等效电源定理

实验二等效电源定理 一、实验目的 1. 验证戴维宁定理和诺顿定理的正确性,加深对该定理的理解。 2. 掌握测量有源二端网络等效参数的一般方法。 二、原理说明 1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。 戴维宁定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is等于这个有源二端网络的短路电流I SC,其等效内阻R0定义同戴维宁定理。 Uoc(Us)和R0或者I SC(I S)和R0称为有源二端网络的等效参数。 2. 有源二端网络等效参数的测量方法 (1) 开路电压的测量 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc。 (2)短路电流的测量 在有源二端网络输出端短路,用电流表测其短路电流Isc。 (3)等效内阻R0的测量 Uoc R0=── Isc 如果二端网络的内阻很小,若将其输出端口短路,则易损坏其内部元件,因此不宜用此法。 三、实验设备

四、实验内容 被测有源二端网络如图5-1(a)所示,即HE-12挂箱中“戴维宁定理/诺顿定理”线路。 (a) (b) 图5-1 1. 用开路电压、短路电流法测定戴维宁等效电路的Uoc、R0。 按图5-1(a)接入稳压电源Us=12V和恒流源Is=10mA,不接入R L。测出U O c和Isc,并计算出R0(测U OC时,不接入mA表。),并记录于表1。 表1 实验数据表一 2. 负载实验 按图5-1(a)接入可调电阻箱R L。按表2所示阻值改变R L阻值,测量有源二端网络的外特性曲线,并记录于表2。 3. 验证戴维宁定理 把恒压源移去,代之用导线连接原接恒压源处;把恒流源移去,这时,A、B两点间的电阻即为R0,然后令其与直流稳压电源(调到步骤“1”时所测得的开路电压Uoc之值)相串联,如图5-1(b)所示,仿照步骤“2”测其外特性,对戴氏定理进行验证,数据记录于表3。

电路分析-等效电源定理-实验报告.docx

电路分析等效电源定理实验报告 一、实验名称 等效电源定理 二、实验目的 1. 验证戴维宁定理和诺顿定理的正确性,加深对该定理的理解。 2. 掌握测量有源二端网络等效参数的一般方法。 三、原理说明 1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。 戴维宁定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is等于这个有源二端网络的短路电流I SC,其等效内阻R0定义同戴维宁定理。 Uoc(Us)和R0或者I SC(I S)和R0称为有源二端网络的等效参数。 2. 有源二端网络等效参数的测量方法 (1) 开路电压的测量 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc。 (2)短路电流的测量 在有源二端网络输出端短路,用电流表测其短路电流Isc。 (3)等效内阻R0的测量 Uoc R0=── Isc 如果二端网络的内阻很小,若将其输出端口短路,则易损坏其内部元件,因此不宜用此法。

五、实验内容 被测有源二端网络如图5-1(a)所示,即HE-12挂箱中“戴维宁定理/诺顿定理”线路。 (a) (b) 图5-1 1. 用开路电压、短路电流法测定戴维宁等效电路的Uoc、R0。 按图5-1(a)接入稳压电源Us=12V和恒流源Is=10mA,不接入R L。测出U O c和Isc,并计算出R0(测U OC时,不接入mA表。),并记录于表1。 表1 实验数据表一 2. 负载实验 按图5-1(a)接入可调电阻箱R L。按表2所示阻值改变R L阻值,测量有源二端网络的外特性曲线,并记录于表2。 表2 实验数据表二 3. 验证戴维宁定理 把恒压源移去,代之用导线连接原接恒压源处;把恒流源移去,这时,A、B两点间的电阻即为R0,然后令其与直流稳压电源(调到步骤“1”时所测得的开路电压Uoc之值)相串联,如图5-1(b)所示,仿照步骤“2”测其外特性,对戴氏定理进行验证,数据记录于表3。 表3 实验数据表三 4. 验证诺顿定理 在图5-1(a)中把理想电流源及理想电压源移开,并在电路接理想电压源处用导线短接(即相当于使两电源置零了),这时,A、B两点的等效电阻值即为诺顿定理中R0,然后令

几种常见的电压电流转换电路

由运放组成的V-I、I-V转换电路 1、0-5V/0-10mA的V/I变换电路 图1是由运放和阻容等元件组成的V/I变换电路,能将0—5V的直流电压信号线性地转换成0-10mA的电流信号,A1是比较器,A3是电压跟随器,构成负反馈回路,输入电压Vi与反馈电压Vf比较,在比较器A1的输出端得到输出电压V1,V1控制运放A2的输出电压V2,从而改变晶体管T1的输出电流IL而输出电流IL又影响反馈电压Vf,达到跟踪输入电压Vi的目的。输出电流IL的大小可通过下式计算:IL=Vf/(Rw+R7),由于负反馈的作用使Vi=Vf,因此IL=Vi/(Rw+R7),当Rw+R7取值为500Ω时,可实现0-5V/0-10mA 的V/I转换,如果所选用器件的性能参数比较稳定,故运放A1、A2的放大倍数较大,那么这种电路的转换精度,一般能够达到较高的要求。 2、0-10V/0-10mA的V/I变换电路 图2中Vf是输出电流IL流过电阻Rf产生的反馈电压,即V1与V2两点之间的电压差,此信号经电阻R3、R4加到运放A1的两个输入端Vp与Vn,反馈电压Vf=V1-V2,对于运放A1,有VN=Vp;Vp=V1/(R2+R3)×R2,VN=V2+(Vi-V2)×R4/(R1+R4),所以V1/(R2+R3)×R2=V2+(Vi-V2)×R4/(R1+R4),依据Vf=V1-V2及上式可推导出: 若式中R1=R2=100kΩ,R1=R4=20kΩ,则有:Vf×R1=Vi×R4,得出:Vf=R4/R1×Vi=1/5Vi,如果忽略流过反馈回路R3、R4的电流,则有:IL=Vf/Rf=Vi/5Rf,由此可以看出.当运放的开环增益足够大时,输出电流IL与输入电压Vi满足线性关系,而且关系式中只与反馈电阻Rf的阻值有关.显然,当Rf=200Ω时,此电路能实现0-10v/0-10mA的V/I变换。 3、1-5V/4-20mA的V/I变换电路 在图3中.输入电压Vi是叠加在基准电压VB(VB=10V)上,从运放A1的反向输入VN 端输入的,晶体管T1、T2组成复合管,作为射极跟踪器,起到降低T1基极电流的作用(即

等效电源定理

等效电源定理 戴维南定理和诺顿定理分别能把含源二端网络等效成为一个实际电压源支路和实际电流源支路,故统称等效电源定理。 1、戴维南定理 任一线性含源二端网络,对外电路讲,可以等效为一个电压源和电阻串联的组合,电压源的电压为该网络的开路电压u oc,串联电阻等于该网络中所有独立源为零时的入端等效电阻R o。 2、诺顿定理 任一线性含源二端网络,对外电路讲,可以等效为一个电流源和电阻并联的组合,电流源的电流为该网络的短路电流isc,并联电阻等于该网络中所有独立源为零值时的入端等效电阻R o。 图(a)所示为一接有外电路的含源二端网络,根据替代定律,把R L 支路分别用流过它的电流i和两端电压u作为电压源等效替代,然后运用叠加定理分别得到 u=u oc-R o i=i sc-u/R o 等效电源电路如图(b)所示。 这两条定律所得到的电压源支路和电流源支路可以互相等效,所以人们多应用戴维南等效电压源定律,然后变化为诺顿等效电流源电路,如图(b)上、下图所示。戴维南定律对求解电路中某一支路的电压、电流和功率,特别是负载吸收的最大功率最为方便。求解时含源二端网络必须是线性的,待求支是线性的或非线性、有源或无源均可。

应用这两条定律,一般分三个步骤: (1)断开待求支路或将待求支路短路,分别求得开路电压u oc和短路电流i sc; (2)让全部独立源为零,求入端等效电阻R o。 (3)画出等效电源电路,接上待求支路,求解待求量。 3、用戴维南定律分析含受控源电路 根据受控源的性质和等效电源定律的要求,当用戴维南定律和诺顿定律分析受控源电路时,必须掌握: (1)当控制量在端口上时,它要随端口开路或短路变化,必须用变化了的控制量来表示受控源的电压或电流。 (2)当控制量在网络内,则在短路或开路时,必须保证受控源及其控制量同在含源二端网络内。 (3)受控源不能充当激励,具有电阻性。 在求戴维南等效电阻时,独立源为零,受控源和电阻一样要保留,故

电压电流转换电路

模拟电路课程设计报告设计课题:电流电压转换电路 专业班级: 学生姓名: 学号: 指导教师: 设计时间:

电流电压转换电路 一、设计任务与要求 ①将4mA~20mA的电流信号转换成±10V的电压信号,以便送入计算机进行处理。 这种转换电路以4mA为满量程的0%对应-10V,12mA为50%对应0V,20mA为 100%对应+10V。 ②用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 二、方案设计与论证 在工业控制中各类传感器常输出标准电流信号4~20mA为此,常要先将其转换成+10v 或—10v的电压信号,以便送给各类设备进行处理。这里转换电路以4mA为满量程的0%对 应-10V,12mA为50%对应0V,20mA为100%对应+10V。 方案一 、。

方案二 方案二所示的是由单个运放构成的电流/电压转换电路。由于运放本身的输入偏置电流不为零,因此会产生转换误差。 三、单元电路设计与参数计算 1、桥式整流电容滤波集成稳压块电路设计电路所需的正负直流 电源(±12V)。 其流程图为: 直流电源电路图如下:

原理分析: (1)电源变压器。 其电路图如下: 由于要产生±12V的电压,所以在选择变压器时变压后副边电压应大于24V,由现有的器材可选变压后副边电压为30V的变压器。 (2)整流电路。 其电路图如下:

①原理分析: 桥式整流电路巧妙地利用了二极管的单向导电性,将四个二极管分为两组,根据变压器副边电压的极性分别导通,将变压器副边电压的正极性端与负载电阻的上端相连,负极性端与负载电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。 整流输出电压的平均值(即负载电阻上的直流电压VL)VL定义为整流输出电压vL 在一个周期内的平均值,即 设变压器副边线圈的输出电压为,整流二极管是理想的。则根据桥式整流电路的工作波形,在vi 的正半周,vL = v2 ,且vL的重复周期为p ,所以

实验八--戴维南定理和诺顿定理

实验八戴维南定理和诺顿定理 一、实验目的 1.验证戴维南定理和诺顿定理的正确性,加深对两个定理的理解。 2.掌握含源二端网络等效参数的一般测量方法。 3.验证最大功率传递定理。 二、原理说明 戴维南定理与诺顿定理在电路分析中是一对“对偶”定理,用于复杂电路的化简,特别是当“外电路”是一个变化的负载的情况。 在电子技术中,常需在负载上获得电源传递的最大功率。选择合适的负载,可以获得最大的功率输出。 1.戴维南定理 任何一个线性有源网络,总可以用一个含有内阻的等效电压源来代替,此电压源的电动势Es等于该网络的开路电压Uoc,其等效内阻Ro等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 2.诺顿定理 任何一个线性含源单口网络,总可以用一个含有内阻的等效电流源来代替,此电流源的电流Is等于该网络的短路电流Isc,其等效内阻Ro等于该网络中所有独立源均置零时的等效电阻。 Uoc、Isc和Ro称为有源二端网络的等效参数。 3.最大功率传递定理 在线性含源单口网络中,当把负载RL以外的电路用等效电路(Es+Ro或Is∥Ro)取代时,若使R L=Ro,则可变负载R L上恰巧可以获得最大功率: P MAX=I sc2.R L/4=Uoc2/4RL (1) 4.有源二端网络等效参数的测量方法 ⑴开路电压Uoc的测量方法 ①直接测量法 直接测量法是在含源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc,如图8-1(a)所示。它适用于等效内阻Ro较小,且电压表的内阻Rv>>Ro的情况下。 ②零示法 在测量具有高内阻(Ro>>Rv)含源二端网络的开路电压时,用电压表进行直接测量会造成较大的误差,为了消除电压表内阻的影响,往往采用零示测量法,如图8-1(b)所示。 零示法测量原理是用一低内阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压Es与有源二端网络的开路电压Uoc相等时,电压表的读数将为“0”,然后将电路断开,测量此时稳压电源的输出电压,即为被测有源二端网络的开路电压。 ⑵短路电流Isc的测量方法 ①直接测量法:是将有源二端网络的输出端短路,用电流表直接测其短路电流Isc。此方法适用于内阻值 Ro较大的情况。若 二端网络的内阻值 很低时,会使Isc 很大,则不宜直接测 其短路电流。

电流电压转换电路模拟电路课程设计

电流电压转换电路模拟 电路课程设计 SANY GROUP system office room 【SANYUA16H-

3.20电流/电压转换电路 一. 实验目的 掌握工业控制中标准电流信号转换成电压信号的电流/电压变换器的设计与调试。 二. 实验原理 在工业控制中各类传感器常输出标准电流信号4~20mA ,为此,常要先将其转换成±10V ;的电压信号,以便送给各类设备进行处理。这种转换电路以4mA 为满量程的0%对应-10V ;12mA 为50%对应0V ;20mA 为100%对应+10V 。参考电路见图3-20-1所示。 图中A 1运放采用差动输入,其转换电压用电阻R 1两端接电流环两端,阻值用500Ω,可由二只1K Ω电阻并联实现。这样输入电流4mA 对应电压2V ,输入电流20mA 对应电压10V 。A 1设计增益为1,对应输出电压为-2V~-10V 。故要求电阻R 2,R 3,R 4和R 5+R W 阻值相等。这里选R 2=R 3=R 4=10K Ω;选R 5=9.1KΩ,R W1=2K Ω。R w1是用于调整由于电阻元件不对称造成的误差,使输出电压对应在-2V~-10V 。变化范围为-2-(-10)=8V. 而最终输出应为-10V~+10V ,变化范围10V-(-10V)=20V ,故A 2级增益为20V/8V=2.5倍,又输入电流为12mA 时,A 1输出电压为-12mA×0.5mA=-6V.此时要求A 2输出为0V 。故在A 2反相输入端加入一个+6V 的直流电压,使?A 2输出为0。A 2运放采用反相加法器,增益为2.5倍。取R 6=R 7=10KΩ,R 9=22KΩ,R W2=5KΩ,R 8=R 6//R 7//R 9=4KΩ,取标称值R 8=3.9KΩ。 反相加法器引入电压为6V ,通过稳压管经电阻分压取得。稳压管可选稳定电压介于6~8V 间的系列。这里取6V2,稳定电压为6.2V 。工作电流定在5mA 左右。电位器电流控制在1~2mA 左右。这里I RW3=6.2V/2K=3.1mA 。 则有 (12V-VZ )/R 10=I Z +I RW3 故 ΩK 71.0=1 .3+52.612=I +I V V 12=R 3RW Z Z 10 取标称值R 10=750Ω.式中12V 为电路工作电压。

电路的等效变换.

电路的等效变换 执教:金陵中学:范世民 一、教学目标 1、知识与技能:通过对比较复杂的组合电路的简化,了解电路等效变换的方法,学会看懂电路。 2、过程与方法:列举法、感受假设、理想化方法、归纳法、等效法等科学方法在电路分析中的应用,体验科学方法对解决实际问题的重要性。 3、价值观与情愿态度:生活中离不开用电器,用电器工作状态是受电路控制的,电路的设计,离不开对电路的分析与计算。明白电路的基本规律已经成为现代生活和科技的基础,增强创新意识。 二、学情分析:看懂电路——能确定电路中各用电器间的串、并联关系是正确分析和计算简单电路的前提,是关键。对电路进行等效变换就是在不改变电路中各用电器上的电压和电流的前提下对电路进行改画,以使用电器间的串、并联 关系一目了然。 由于学生已了解了串、并联电路的特点和基本规律,所以,可充分利用学生已有的知识与技能引导学生对实际电路进行分析和设计,感受列举法、假设、理想化方法、归纳法、等效法等科学方法在电路分析中的应用,感悟电路等效变换的方法。 三、教学重、难点 重点:学会用电路等效变换的方法看懂电路。难点:节点电流法。 四、教学过程设计 1、导入 展示电吹风和电冰箱电路图,说明生活中离不开用电 R I 器,用电器工作状态是受电路控制的,电路的设计,离不开 对电路的分析与计算。 引例1、请同学们用学过的串联和并联电路的特点, 求如图所示电路中电压表和电流表的示数。 已知ab 间的电压为24V,R2=R3=2R I=20Q, R4=30Q。 引例2:P.47示例。 请学生对 其中一个电路作计算。与引例1 比较,谈体会。

对电路进行分析与计算,关键是要看得懂用电器的连接方式,才好利用串、并联的基规律解析。本节课我们就来探索看得懂电路的方法一一电路的等效变换。 对电路进行等效变换就是在不改变电路中各用电器上的电压和电流的前提下对电路进行改画,以使用电器间的串、并联关系一目了然。 试一试:请说一说上图中各电阻间的连接方式。 2、等效电路的方法: 方法一、按电路层次逐步等效,化繁为简。 (前提:每一部分电阻间的关系一目了然。)试一试:如 图所示的电路中,R仁100Q,ac 间电压为10V。be间电压 为40V。虚线框内电路结构及电阻均不知道,则a、b间的 总电阻为_ Q o(500Q) 引例3:如图所示电路中,R I=R2=R3=8Q, 电压恒为2.4V,则电流表的示数为 ______ A,电压表 的示数为______ V o若将电压表与电流表的位置互换,则电 流表的示数为_ A, 电压表的示数为_____ V o 是谁的电流、电压呢? 2、如果将电路中的电压表拿掉,电流表用导线替代,会引起各电阻上的电流和电 设问:1、你能看懂该电路中各电阻间的关系吗?电流表、电压表分别测的 压较大变化吗?(理想化方法)这样做有什么好处呢? 方法二、在简化电路时,将理想电压表拿掉,而理想电流表用导线替代,可 使电路中各电阻间的关系变得一目了然。引例4、如图所示电路中,R i=2Q,R2=3Q, R3=6Q, U=2.4V,求两只电流表的示数。 设问:1、用导线替代理想电流表后各电阻间的关系

几个常用的电压电流转换电路

几个常用的电压电流转换电路

I/V转换电路设计 1、在实际应用中,对于不存在共模干扰的电流输入信号,可以直接利用一个精密的线绕电阻,实现电流/电压的变换,若精密电阻R1+Rw=500Ω,可实现0-10mA/0-5V的I/V变换,若精密电阻R1+Rw=250Ω,可实现4-20mA/1-5V的I/V变换。图中R,C组成低通滤波器,抑制高频干扰,Rw用于调整输出的电压范围,电流输入端加一稳压二极管。 电路图如下所示: 输出电压为: Vo=Ii?(R1+Rw)(Rw可以调节输出电压范围) 缺点是:输出电压随负载的变化而变化,使得输入电流与输出电压之间没有固定的比例关系。 优点是:电路简单,适用于负载变化不大的场合, 2、由运算放大器组成的I/V转换电路 原理: 先将输入电流经过一个电阻(高精度、热稳定性好)使其产生一个电压,在将电压经过一个电压跟随器(或放大器),将输入、输出隔离开来,使其负载不能影响电流在电阻上产生的电压。然后经一个电压跟随器(或放大器)输出。C1滤除高频干扰,应为pf级电容。

电路图如下所示: 输出电压为: Vo=Ii?R4?(1+(R3+Rw) R1 ) 注释:通过调节Rw可以调节放大倍数。 优点:负载不影响转换关系,但输入电压受提供芯片电压的影响即有输出电压上限值。 要求:电流输入信号Ii是从运算放大器A1的同相输入端输入的,因此要求选用具有较高共模抑制比的运算放大器,例如,OP-07、OP-27等。R4为高精度、热稳定性较好的电阻。 V/I转换电路设计 原理: 1、V I 变换电路的基本原理: 最简单的VI变换电路就是一只电阻,根据欧姆定律:Io=Ui R ,如果保证电阻不变,输出电流与输入电压成正比。但是,我们很快发现这样的电路无法实用,一方面接入负载后,由于不可避免负载电阻的存在,式中的R发生了变化,输出电流也发生了变化;另一方面,需要输入

电路原理习题答案第二章电阻电路的等效变换练习

第二章电阻电路的等效变换 等效变换”在电路理论中是很重要的概念,电路等效 变换的方法是电路问题分析中经常使用的方法。 所谓两个电路是互为等效的,是指(1)两个结构参数 不同的电路再端子上有相同的电压、电流关系,因而可以互代换的部分)中的电压、电流和功率。 相代换;(2)代换的效果是不改变外电路(或电路中未由此得出电路等效变换的条件是相互代换的两部分电 路具有相同的伏安特性。等效的对象是外接电路(或电路未变化部分)中的电压、电流和功率。等效变换的目的是简化电路,方便地求出需要求的结果。 深刻地理解“等效变换” 的思想,熟练掌握“等效变换” 的方法在电路分析中是重要的。 2-1 电路如图所示,已知。若:(1);(2);(3)。试求以上3 种情况下电压和电流。 解:(1)和为并联,其等效电阻, 则总电流分流有 2)当,有

3),有 2-2 电路如图所示,其中电阻、电压源和电流源均为已知,且为正值。求:(1)电压和电流;(2)若电阻增大,对哪些元件的电压、电流有影响?影响如何? 解:(1)对于和来说,其余部分的电路可以用电流源 等效代换,如题解图(a)所示。因此有 2)由于和电流源串接支路对其余电路来说可以等效为 个电流源,如题解图(b)所示。因此当增大,对及的电 流和端电压都没有影响。 但增大,上的电压增大,将影响电流源两端的电压, 因为 显然随的增大而增大。 注:任意电路元件与理想电流源串联,均可将其等效 为理想电压源,如本题中题解图(a)和(b)o但应该注意等效是对外部电路的等效。图(a)和图b) 中电流源两端 的电压就不等于原电路中电流源两端的电压。同时,任意电

1电压源与电流源的等效变换

实验一 电压源与电流源的等效变换 一、实验目的 1. 掌握电源外特性的测试方法; 2. 验证电压源与电流源等效变换的条件。 二、原理说明 1. 一个直流稳压电源在一定的电流范围内,具有很小的内阻,故在实用中,常将它视为一个 理想电压源,即输出电压不随负载电流而变,其外特性,即伏安特性)(i f u =是一条平行于i 轴的直线;同理,一个恒流源在实用中,在一定的电压范围内,可视为一个理想的电流源。 2. 一个实际的电压源(或电流源),其端电压(或输出电流)不可能不随负载而变,因它具 有一定的内阻值,故在实验中,用一个小阻值的电阻(或大阻值的电阻)与稳压源(或恒流源)相串联(或并联)来模拟一个实际的电压源(或电流源)的情况。 3. 一个实际的电源,就其外部特性而言,既可以看成是一个电压源,又可以看成是一个电流 源,若视为电压源,则可以用一个理想电压源S E 与一个电阻O R 相串联的组合来表示;若视为电流源,则可用一个理想电流源s I 与一个电阻O R 相并联的组合来表示。若它们向同样大小的负载提供出同样大小的电流和端电压,则这两个电源针对外电路而言是等效的,即具有相同的外特性。 一个电压源与一个电流源等效变换的条件为O S s R E I /=或O S S R I E =如图1-1所示: 图1-1 电压源与电流源的等效变换条件 三、实验设备 1. 电源:恒压源、恒流源 2. 负载:可调变阻器、定值电阻若干(EEL-23组件) 3. 测量仪表:直流电压表、直流毫安表

四、实验步骤 1. 测定理想电压源与实际电压源外特性 (1) 理想电压源(恒压源)(0-20V/0-200mA ) 按图1-2接线,S E 为+6V 的恒压源,调节变阻器2R 令其阻值由大到小变化,记录电压表及电流表两表读数填入表1-1: 表1-1 理想电压源特性数据表格 图1-2 测定理想电压源的外特性 图1-3 测定实际电压源的外特性 (2) 实际电压源(恒压源串联一内阻)(0-20V/0-200mA ) 按图1-3接线,虚线框可模拟为一个实际电压源,调节变阻器2R ,令其阻值由大到小变化,读两表数据并填入表1-2: 表1-1 实际电压源特性数据表格 2.测定理想电流源与实际电流源外特性(0-20V/0-20mA) 理想电流源(恒流源)和实际电流源(恒流源并联一内阻) 按图1-4接线,s I 为直流恒流源,调节其输出为5mA ,令O R 阻值分别等于∞和Ωk 1,调节变阻器2R ,测出这两种情况下的电压表及电流表读数。填入表1-3和1-4。 图1-4 测定电流源外特性

戴维南定理的解析与练习21408

戴维宁定理 一、知识点: 1、二端(一端口) 网络的概念: 二端网络:具有向外引出一对端子的电路或网络。 无源二端网络:二端网络中没有独立电源。 有源二端网络:二端网络中含有独立电源。 2、戴维宁(戴维南)定理 任何一个线性有源二端网络都可以用一个电压为U OC的理想电压源和一个电阻R0串联的等效电路来代替。如图所示: 等效电路的电压U OC是有源二端网络的开路电压,即将负载R L断开后a 、b两端之间的电压。 等效电路的电阻R0是有源二端网络中所有独立电源均置零(理想电压源用短路代替,理想电流源用开路代替)后, 所得到的无源二端网络a 、b两端之间的等效电阻。

二、 例题:应用戴维南定理解题: 戴维南定理的解题步骤: 1.把电路划分为待求支路和有源二端网络两部分,如图1中的虚线。 2.断开待求支路,形成有源二端网络(要画图),求有源二端网络的开路电压UOC 。 3.将有源二端网络内的电源置零,保留其内阻(要画图),求网络的入端等效电阻Rab 。 4.画出有源二端网络的等效电压源,其电压源电压US=UOC (此时要注意电源的极性),内阻R0=Rab 。 5.将待求支路接到等效电压源上,利用欧姆定律求电流。 例1:电路如图,已知U 1=40V ,U 2=20V ,R 1=R 2=4W ,R 3=13 W ,试用戴维宁定理求电流I 3。 解:(1) 断开待求支路求开路电压 U OC U OC = U 2 + I R 2 = 20 +2.5 ′ 4 = 30V 或: U OC = U 1 – I R 1 = 40 –2.5 ′ 4 = 30V U OC 也可用叠加原理等其它方法求。 (2) 求等效电阻R 0 将所有独立电源置零(理想电压源 用短路代替,理想电流源用开路代替) (3) 画出等效电路求电流I 3 例2:试求电流 I 1 A 5.24420402121 =+-=+-=R R U U I Ω=+?=22 1210R R R R R A 213 23030OC 3=+=+=R R U I

电流-电压变换电路.

电流/电压转换电路 一.实验目的 掌握工业控制中标准电流信号转换成电压信号的电流/电压变换器的设计与调试。二.实验原理 在工业控制中各类传感器常输出标准电流信号4~20mA,为此,常要先将其转换成±10V ;的电压信号,以便送给各类设备进行处理。这种转换电路以4mA 为满量程的0%对应-10V ;12mA 为50%对应0V ;20mA 为100%对应+10V。参考电路见图3-20-1所示。 O 图3-20-1 电流/电压变换电路 图中A 1运放采用差动输入,其转换电压用电阻R 1两端接电流环两端,阻值用500Ω,可由二只1K Ω电阻并联实现。这样输入电流4mA 对应电压2V ,输入

电流20mA 对应电压10V 。A 1设计增益为1,对应输出电压为-2V~-10V。故要求电阻R 2,R 3,R 4和R 5+RW 阻值相等。这里选R 2=R3=R4=10KΩ;选R 5=9.1K?,R W1=2KΩ。R w1是用于调整由于电阻元件不对称造成的误差,使输出电压对应在-2V~-10V。变化范围为-2-(-10)=8V. 而最终输出应为-10V~+10V,变化范围10V-(-10V=20V,故A 2级增益为20V/8V=2.5倍,又输入电流为12mA 时,A 1输出电压为-12mA×0.5mA=-6V. 此时要求A 2输出为0V 。故在A 2反相输入端加入一个+6V的直流电压,使 A2输出为0。A 2运放采用反相加法器,增益为2.5倍。取R 6=R7=10K?,R 9=22K?,R W2=5K?,R 8=R6//R7//R9=4K?,取标称值R 8=3.9K?。 反相加法器引入电压为6V ,通过稳压管经电阻分压取得。稳压管可选稳定电压介于6~8V间的系列。这里取6V2,稳定电压为6.2V 。工作电流定在5mA 左右。电位器电流控制在1~2mA左右。这里I RW3=6.2V/2K=3.1mA。则有(12V-VZ )/R10=IZ +IRW3 故 R 10= 12V V Z 126. 2 ==0. 71K ? I Z +I RW 35+3. 1 取标称值R 10=750?. 式中12V 为电路工作电压。 R W2用于设置改变增益或变换的斜率(4mA为-10V ,20mA 为+10,通过调整R W2使变换电路输出满足设计要求。三.设计任务 1.预习要求 熟悉有关运放的各类应用电路,按设计要求写出设计过程和调试过程及步骤。2.设计要求

等效电压源定理及其在高中物理中应用

等效电压源定理及其在高中物理中应用 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

等效电压源定理及其在高中物理中应用 湖北省恩施高中 陈恩谱 一、等效电压源定理(戴维宁定理) 1、内容:一个包含电源的二端电路网络(端点为A 、B ),可看成一个等效的电压源,等效电压源的电动势等于“二端电路网络”两端的开路电压(E U '=开),内阻等于“二端电路网络”中去掉电动势后两端间的等效电阻(AB r R '=)。 2、证明: (1)基本情形1:如图甲所示电路,将虚线框内部分视为等效电源,则等效电路图如图乙所示。 对甲图,设电路中电流为I ,由闭合电路欧姆定律,有:0E I r R R =++;对乙图,有: E I r R '='+;两式比较,易得:E E '=,0r r R '=+;图丙是该等效电源的内部结构,易知: =U E 开,0AB R r R =+,得证。 (2 对丁图,设通过R 的电流为I ,R 两端电压为U ,则通过电源的电流为0 =U I I R +总 ,由闭合电路欧姆定律,有: 0000 ()(1)()R r U r E U I r U I r U Ir U Ir R R R +=+=++=++=+总 乙 甲 丙 丁 戊 己

变形得: 00 00R R E U I r R r R r =+++ 对戊图,有: E U Ir ''=+ 两式比较,得:00 00R R E E r r R r R r ''= =++, 如己图所示,为该等效电源的内部结构,易知: 00 00AB R R U E R r R r R r ==++开,,得证。 (3)一般情形:如右图所示为一般电路,则按顺序依次将处于内部的虚线框部分视为更外围部分的等效电源,则易知,等效电压源定理适用于一般电路。 二、等效电压源定理的应用 1、电源电动势和内阻测量的系统误差分析 该实验的理论依据是Ir U E +=,其中U 为电源的端电压,I 为通过电源的电流;如图所示为该实验的两种测量电路。 左图中电流表测量的是通过电源的电流,但由于电流表的分压作用,电压表却测量的不是电源的端电压,右图中电压表测量的是电源的端电压,但由于电压表的分流作用,电流表测量的也不是通过电源的电流。 但是,两图中,电压表测量的都是虚线框两端的电压,电流表测量的都是通过虚线框的电流,因此,依据Ir U E +=算出来的实际上是虚线框内等效电源的电动势和内阻,即左图:E E =测,A r r R =+测, 右图:00 00R R E E r r R r R r = =++测测,。 安箱法、伏箱法的误差分析,由于是把R 当做外电阻,与此同理,也是测量的虚线框内等效电源的电动势和内阻。 E ,r S R

V-I变换电路与I-V变换电路设计报告

V-I变换电路与I-V变换 电路设计报告 组员:张迪 2009332205200004 李镇宇 2009221105200110 程剑 2009221105200041

一.设计任务及要求: 设计一个4-20ma 电流环。在工业控制系统中常常采用4-20毫安电流环作为传感器的输出信号,而我们常见的传感器输出信号是电压型的,试设计一个电路来实现如下要求: 基本要求: 1、 将0-5V 的模拟电压信号线性转变成4-20毫安的电流,即输入 0伏时输出4毫安,输入5V 时,输出20毫安。其间呈线性变化。精度达到3%。 2、 将传感器来的4-20mA 的电流,转换到0-5V 的电压信号,精度达 到3% 发挥部分: 1、 由于传感器输出的一般来说是毫伏级的电压信号,为了适应不同的传感器,请设计电路满足当输入信号在0毫伏到250毫伏变化时,输出电流在4毫安到20毫安线性变化,精度达到1% 二.设计思路和参数运算: 该系统由两部分组成:一是电压转电流;一是电流转电压。 电压转电流: 基于运算放大器的基本VI 变换电路可以保证负载电阻不影响电压电流的变换关系。在同相输入端与输出端加以电压跟随器,以实现共地输出的V/I 变换。其电路如图所示: 相应计算公式为: 由IC2为电压跟随器则: 由运算放大器“虚断”可知: 2 34 P O I P U U U U R R --= 11 2 N O U U R R =

利用运算放大器的“虚短”概念可知: Un=Up 在实际运用中可R1=R2=R3=R4=R,整理上两式,分别得: 因此有: 再利用运算放大器的“虚断”概念可知:流过负载电阻RL的电流IL与流过Re 电阻的电流相等。即有: 因此只要保证Re不变,可见负载电流与输入电压Ui成正比,就能实现了共地输出的VI变换。 该电路在实际使用过程中,由于一般运算放大器的输出能力有限,很难满足毫安级别以上的电压电流变换,只适用于微安级别以及微安一下的电压到电流的变换。因此需要对运算放大器进行扩流输出。我们在实际制作过程中在运放的后面加上三极管用来放大电流。 电流转电压: 同样的,我们采用运放来隔离该电路的输入电流和输出电压。 下面是电路原理图: 经对图中电路分析,可知流过反馈电阻Rf的电流为: (Vo-VN)/Rf=VN/R1+(VN-Vf)/R5 由此,可推出输出电压Vo的表达式: Vo=(1+Rf/R1+Rf/R5)×VN-(R4/R5)×Vf 由于VN≈Vp=Ii×R4,上式中的VN即可用Ii×R4替换,若R4=200Ω,R1=18kΩ,Rf=7.14kΩ,R5=43kΩ,并调整Vf≈7.53V,输出电压Vo的表达式可写成如下的形式:

几个常用的电压电流转换电路

I/V转换电路设计1、在实际应用中,对于不存在共模干扰的电流输入信号,可以直接利用一个精密的线绕电阻,实现电流/电压的变换,若精密电阻R1+Rw=500Ω,可实现0-10mA/0-5V的I/V变换,若精密电阻R1+Rw=250Ω,可实现4-20mA/1-5V的I/V变换。图中R,C组成低通滤波器,抑制高频干扰,Rw用于调整输出的电压范围,电流输入端加一稳压二极管。 电路图如下所示: 输出电压为: Vo=Ii?(R1+Rw)(Rw可以调节输出电压范围) 缺点是:输出电压随负载的变化而变化,使得输入电流与输出电压之间没有固定的比例关系。 优点是:电路简单,适用于负载变化不大的场合, 2、由运算放大器组成的I/V转换电路 原理: 先将输入电流经过一个电阻(高精度、热稳定性好)使其产生一个电压,在将电压经过一个电压跟随器(或放大器),将输入、输出隔离开来,使其负载不能影响电流在电阻上产生的电压。然后经一个电压跟随器(或放大器)输出。C1滤除高频干扰,应为pf级电容。 电路图如下所示:

输出电压为: Vo=Ii?R4?(1+(R3+Rw) R1 ) 注释:通过调节Rw可以调节放大倍数。 优点:负载不影响转换关系,但输入电压受提供芯片电压的影响即有输出电压上限值。 要求:电流输入信号Ii是从运算放大器A1的同相输入端输入的,因此要求选用具有较高共模抑制比的运算放大器,例如,OP-07、OP-27等。R4为高精度、热稳定性较好的电阻。 V/I转换电路设计 原理: 1、V I 变换电路的基本原理: 最简单的VI变换电路就是一只电阻,根据欧姆定律:Io=Ui R ,如果保证电阻不变,输出电流与输入电压成正比。但是,我们很快发现这样的电路无法实用,一方面接入负载后,由于不可避免负载电阻的存在,式中的R发生了变化,输出电流也发生了变化;另一方面,需要输入信号提供相应的电流,在某些场合无法满足这种需要。 1 、基于运算放大器的基本VI变换电路为了保证负载电阻不影响电压/电流的变换关系,需要对电路进行调整,如图1是基于运算放大器的基本VI变换电路。利用运算放大器的“虚短”概念可知U-=U+=0;因此流过Ri的电流: Ii=Ui R

电工试卷(电路的等效变换、戴维南、叠加原理)

科目:专业基础 适用班级: 班 班级: 姓名: 学籍号: ----------------------------------------------------密-------------------封----------------------线------------------------------------------------------ ―――――――――――考――生――答――题――不――得―――过―――此―――线――――――――――――― 郑州电子信息中等专业学校2013—2014学年上学期 《电工基础》10月考试卷 本试题使用班级:11(2) 1.试将下图电路化简为电流源。 2.试用戴维宁定理,求通过R 1中的电流。 3.用电源等效变换法,将下图电路等效变换成电压源模型或电流源模型。 4.计算下图电路中的电压U 。

班级: 姓名: 学籍号: ----------------------------------------------------密-------------------封----------------------线------------------------------------------------------ ―――――――――――考――生――答――题――不――得―――过―――此―――线――――――――――――― 5.已知下图电路中,Us 1=Us 2=10V ,R 1=R 2=R 3=10欧,试用戴维宁定理求I 3。 6.将下图化为最简形式 7.求下图所示电路中的电流I 。 8.如下图,已知Us 1=40V ,Us 2=20V ,Us 3=18V ,R 1=4欧,R 2=2欧,R 3=3欧,试用支路电 流法求解各支路上的电流。

实验四 电压源与电流源的等效变换

实验四 电压源与电流源的等效变换 一、实验目的 1.掌握电压源与电流源外特性的测试方法。 2.验证电压源与电流源等效变换的条件。 二、原理说明 1.能向外电路输送定值电压的装置被称为电压源。理想电压源的内阻为零,其输出电压值与流过它的电流的大小和方向无关,即不随负载电流而变;流过它的电流是由定值电压和外电路共同决定的。它的外特性即伏安特性U =f(I)是一条平行于I 轴的直线。而具有一定内阻值的非理想电压源,其端电压不再如理想电压源一样总是恒定值了,而是随负载电流的增加而有所下降。 一个质量高的直流稳压电源,具有很小的内阻,故在一定的电流范围内,可将它视为一个理想的电压源。 非理想电压源的电路模型是由理想电压源Us 和内阻Rs 串联构成的,如图4-1所示,其输出电压 U =Us —I Rs 2.能向外电路输送定值电流的装置被称为电流源。理想电流源的内阻为无穷大,其输出电流与其端电压无关,即不随负载电压而变;电流源两端的电压值是由定值电流Is 和外电路共同决定的。它的伏安特性I =f(U)是一条平行于U 轴的直线。对于非理想的电流源,因其内阻值不是无穷大,输出电 流不再是恒定值,而是随负载端电压的增加 有所下降。一个质量高的恒流源其内阻值做得很大,在一定的电压范围内,可将它视为一个理想的电流源。 非理想电流源的电路模型是由理想电流源Is 和内阻Rs 并联构成的,如图4-2 所示,其输出电流 I= L R Rs Is Rs . 3.一个实际的电源,就其外部特性而言,即可以看成是一个电压源,又可以看成是一个电流源。若视为电压源,则可用一个理想的电压源Us 与一个电阻Ro 相串联的组 合来表示;若视为电流源,则可用一个理想电流源Is 与一电导g o 相并联的给合来表示, 若 它们向同样大小的负载提供同样大小的电流和端电压,则称这两个电源是等效的,即具 图4-1 电压源的电路模型 图4-2电流源的电路模型

相关文档
最新文档