现代调制技术PPT课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sMQAM(t)= A ng(tnS)T co w cts(n)
n
sMQAM(t)= [A n g ( t n S ) c T n ] o cw c t o s [A s n g ( t n S ) s T n i ] s n w c i t
n
n
令
Xn=An cos n
Yn=Ansin n
6.1.1 MQAM
正交振幅调制是用两个独立的基带数字信号对两个相互正 交的同频载波进行抑制载波的双边带调制,利用这种已调信号 在同一带宽内频谱正交的性质来实现两路并行的数字信息传输。
正交振幅调制信号的一般表示式为
sMQAM(t)= A ng(tnS)T co w cts(n)
n
式中,An是基带信号幅度,g(t-nTs)是宽度为Ts的单个基带 信号波形。 式(6.1 - 1)还可以变换为正交表示形式:
M=4, 16, 32, …, 256 MQAM 信号的星座图如图 6 - 3 所示。其中,M=4, 16, 64, 256 时星座图为矩形,而M=32, 128 时星座图为十字形。前者M为2的偶次方,即每个符号携带偶 数个比特信息;后者M为2的奇次方,即每个符号携带奇数个 比特信息。
现代数字调制解调技术
6.1 正交振幅调制(QAM) 6.2 最小移频键控(MSK) 6.3 高斯最小移频键控(GMSK) 6.4 DQPSK
现代数字调制解调技术
在通信原理课程中我们讨论了数字调制的三种基 本方式:数字振幅调制、数字频率调制和数字相 位调制,然而,这三种数字调制方式都存在不足 之处,如频谱利用率低、抗多径抗衰落能力差、 功率谱衰减慢带外辐射严重等。为了改善这些不 足,近几十年来人们不断地提出一些新的数字调 制解调技术,以适应各种通信系统的要求。例如 ,在恒参信道中,正交振幅调制(QAM)和正交频 分复用(OFDM)方式具有高的频谱利用率,正交 振幅调制在卫星通信和有线电视网络高速数据传 输等领域得到广泛应用。
下面分别对几种具有代表性的数字调制 系统进行讨论。
6.1正交振幅调制(QAM)
在现代通信中,提高频谱利用率一直是人们关注的 焦点之一。近年来,随着通信业务需求的迅速增长, 寻找频谱利用率高的数字调制方式已成为数字通信系 统设计、研究的主要目标之一。 QAM(Quadrature Amplitude Modulation)就是一种频谱 利用率很高的调制方式,其在中、 大容量数字微波通 信系统、有线电视网络高速数据传输、卫星通信系统 等领域得到了广泛应用。在移动通信中,随着微蜂窝 和微微蜂窝的出现,使得信道传输特性发生了很大变 化。 过去在传统蜂窝系统中不能应用的正交振幅调制 也引起人们的重视
若信号点之间的最小距离为2A,且所有信号点等概率 出现,则平均发射信号功率为
p(s)M A2 nM 1(cn2 dn2)
(- 3 ,3 ) (- 3 ,1 )
(3 ,3 ) (3 ,1 )
(- 1 ,- 1 ) (- 1 ,1 ) (- 3 ,- 3 )
(3 ,- 3 )
(a)
(0 ,4 .61 )
则式(6.1 - 2)变为
sMQAM(t)= [X n g ( t n T S ) ] c o s w c t [Y n g ( t n T S ) ] s i n w c t
n
n
X (t)co w ct sy(t)siw c n t
QAM中的振幅Xn和Yn可以表示为 Xn=cnA Yn=dnA
两者功率相差1.4dB。另外,两者的星座结构也有重要的 差别。一是星型16QAM只有两个振幅值,而方型16QAM 有 三 种 振 幅 值 ; 二 是 星 型 16QAM 只 有 8 种 相 位 值 , 而 方 型 16QAM 有 12 种 相 位 值 。 这 两 点 使 得 在 衰 落 信 道 中 , 星 型 16QAM比方型16QAM更具有吸引力。
(0 ,2 .61 )
(- 4 .6 1 ,0 ) (- 2 .6 1 ,0 )
(2 .6 1,0 ) (4 .6 1,0 )
(0 ,- 2 .6 1 )
(0 ,- 4 .6 1 )
(b)
图 6- 2 16QAM (a) 方型16QAM星座; (b) 星型16QAM星座
对于方型16QAM,信号平均功率为
p (s ) M A 2n M 1 (c n 2 d n 2 ) 1 A 2(4 6 2 8 1 4 0 1) 8 1A 2 0
对于星型16QAM,信号平均功率为
p (s ) M A 2n M 1 (c n 2 d n 2 ) 1 A 2(4 6 2 .62 1 8 4 .62 ) 1 1.0 4 A 2 3
串 / 并变换
2到L
Am
电平变换
预调制 LPF
2到L
Βιβλιοθήκη Baidu
Bm
电平变换
预调制 LPF
cos t
已调信号输出
∑
y(t)
sin t
图6-1 QAM信号调制原理图
信号矢量端点的分布图称为星座图。通常,可以用星座 图 来 描 述 QAM 信 号 的 信 号 空 间 分 布 状 态 。 对 于 M=16 16QAM来说,有多种分布形式的信号星座图。 两种具有代 表意义的信号星座图如图 6 - 2 所示。在图 6 - 2(a)中, 信号 点的分布成方型,故称为方型16QAM星座,也称为标准型 16QAM。在图 6 - 2(b)中,信号点的分布成星型,故称为星 型16QAM星座。
而正交频分复用在非对称数字环路ADSL 和高清晰度电视HDTV 的地面广播系统等得 到成功应用。高斯最小移频键控(GMSK)和 π/4DQPSK 具有较强的抗多径抗衰落性能, 带外功率辐射小等特点,因而在移动通信领 域得到应用。高斯最小移频键控用于泛欧数 字蜂窝移动通信系统(GSM),π/4 DQPSK 用于北美和日本的数字蜂窝移动通信系统。
式中,A是固定振幅,cn、dn由输入数据确定。cn、dn决 定了已调QAM信号在信号空间中的坐标点。
QAM信号调制原理图如图 6 - 1 所示。图中,输入的二 进制序列经过串/并变换器输出速率减半的两路并行序列, 再分别经过2电平到L电平的变换,形成L电平的基带信号。 为了抑制已调信号的带外辐射,该L电平的基带信号还要经 过预调制低通滤波器,形成X(t)和Y(t),再分别对同相载波和 正交载波相乘。 最后将两路信号相加即可得到QAM信号。
n
sMQAM(t)= [A n g ( t n S ) c T n ] o cw c t o s [A s n g ( t n S ) s T n i ] s n w c i t
n
n
令
Xn=An cos n
Yn=Ansin n
6.1.1 MQAM
正交振幅调制是用两个独立的基带数字信号对两个相互正 交的同频载波进行抑制载波的双边带调制,利用这种已调信号 在同一带宽内频谱正交的性质来实现两路并行的数字信息传输。
正交振幅调制信号的一般表示式为
sMQAM(t)= A ng(tnS)T co w cts(n)
n
式中,An是基带信号幅度,g(t-nTs)是宽度为Ts的单个基带 信号波形。 式(6.1 - 1)还可以变换为正交表示形式:
M=4, 16, 32, …, 256 MQAM 信号的星座图如图 6 - 3 所示。其中,M=4, 16, 64, 256 时星座图为矩形,而M=32, 128 时星座图为十字形。前者M为2的偶次方,即每个符号携带偶 数个比特信息;后者M为2的奇次方,即每个符号携带奇数个 比特信息。
现代数字调制解调技术
6.1 正交振幅调制(QAM) 6.2 最小移频键控(MSK) 6.3 高斯最小移频键控(GMSK) 6.4 DQPSK
现代数字调制解调技术
在通信原理课程中我们讨论了数字调制的三种基 本方式:数字振幅调制、数字频率调制和数字相 位调制,然而,这三种数字调制方式都存在不足 之处,如频谱利用率低、抗多径抗衰落能力差、 功率谱衰减慢带外辐射严重等。为了改善这些不 足,近几十年来人们不断地提出一些新的数字调 制解调技术,以适应各种通信系统的要求。例如 ,在恒参信道中,正交振幅调制(QAM)和正交频 分复用(OFDM)方式具有高的频谱利用率,正交 振幅调制在卫星通信和有线电视网络高速数据传 输等领域得到广泛应用。
下面分别对几种具有代表性的数字调制 系统进行讨论。
6.1正交振幅调制(QAM)
在现代通信中,提高频谱利用率一直是人们关注的 焦点之一。近年来,随着通信业务需求的迅速增长, 寻找频谱利用率高的数字调制方式已成为数字通信系 统设计、研究的主要目标之一。 QAM(Quadrature Amplitude Modulation)就是一种频谱 利用率很高的调制方式,其在中、 大容量数字微波通 信系统、有线电视网络高速数据传输、卫星通信系统 等领域得到了广泛应用。在移动通信中,随着微蜂窝 和微微蜂窝的出现,使得信道传输特性发生了很大变 化。 过去在传统蜂窝系统中不能应用的正交振幅调制 也引起人们的重视
若信号点之间的最小距离为2A,且所有信号点等概率 出现,则平均发射信号功率为
p(s)M A2 nM 1(cn2 dn2)
(- 3 ,3 ) (- 3 ,1 )
(3 ,3 ) (3 ,1 )
(- 1 ,- 1 ) (- 1 ,1 ) (- 3 ,- 3 )
(3 ,- 3 )
(a)
(0 ,4 .61 )
则式(6.1 - 2)变为
sMQAM(t)= [X n g ( t n T S ) ] c o s w c t [Y n g ( t n T S ) ] s i n w c t
n
n
X (t)co w ct sy(t)siw c n t
QAM中的振幅Xn和Yn可以表示为 Xn=cnA Yn=dnA
两者功率相差1.4dB。另外,两者的星座结构也有重要的 差别。一是星型16QAM只有两个振幅值,而方型16QAM 有 三 种 振 幅 值 ; 二 是 星 型 16QAM 只 有 8 种 相 位 值 , 而 方 型 16QAM 有 12 种 相 位 值 。 这 两 点 使 得 在 衰 落 信 道 中 , 星 型 16QAM比方型16QAM更具有吸引力。
(0 ,2 .61 )
(- 4 .6 1 ,0 ) (- 2 .6 1 ,0 )
(2 .6 1,0 ) (4 .6 1,0 )
(0 ,- 2 .6 1 )
(0 ,- 4 .6 1 )
(b)
图 6- 2 16QAM (a) 方型16QAM星座; (b) 星型16QAM星座
对于方型16QAM,信号平均功率为
p (s ) M A 2n M 1 (c n 2 d n 2 ) 1 A 2(4 6 2 8 1 4 0 1) 8 1A 2 0
对于星型16QAM,信号平均功率为
p (s ) M A 2n M 1 (c n 2 d n 2 ) 1 A 2(4 6 2 .62 1 8 4 .62 ) 1 1.0 4 A 2 3
串 / 并变换
2到L
Am
电平变换
预调制 LPF
2到L
Βιβλιοθήκη Baidu
Bm
电平变换
预调制 LPF
cos t
已调信号输出
∑
y(t)
sin t
图6-1 QAM信号调制原理图
信号矢量端点的分布图称为星座图。通常,可以用星座 图 来 描 述 QAM 信 号 的 信 号 空 间 分 布 状 态 。 对 于 M=16 16QAM来说,有多种分布形式的信号星座图。 两种具有代 表意义的信号星座图如图 6 - 2 所示。在图 6 - 2(a)中, 信号 点的分布成方型,故称为方型16QAM星座,也称为标准型 16QAM。在图 6 - 2(b)中,信号点的分布成星型,故称为星 型16QAM星座。
而正交频分复用在非对称数字环路ADSL 和高清晰度电视HDTV 的地面广播系统等得 到成功应用。高斯最小移频键控(GMSK)和 π/4DQPSK 具有较强的抗多径抗衰落性能, 带外功率辐射小等特点,因而在移动通信领 域得到应用。高斯最小移频键控用于泛欧数 字蜂窝移动通信系统(GSM),π/4 DQPSK 用于北美和日本的数字蜂窝移动通信系统。
式中,A是固定振幅,cn、dn由输入数据确定。cn、dn决 定了已调QAM信号在信号空间中的坐标点。
QAM信号调制原理图如图 6 - 1 所示。图中,输入的二 进制序列经过串/并变换器输出速率减半的两路并行序列, 再分别经过2电平到L电平的变换,形成L电平的基带信号。 为了抑制已调信号的带外辐射,该L电平的基带信号还要经 过预调制低通滤波器,形成X(t)和Y(t),再分别对同相载波和 正交载波相乘。 最后将两路信号相加即可得到QAM信号。