离散数学讲义ppt课件

合集下载

离散数学关系-PPT

离散数学关系-PPT
离散数学关系
基本要求和重难点:
• 基本要求
了解序偶与笛卡尔积,掌握关系得性质和运算,重 点掌握关系闭包运算得求法和偏序关系及哈斯图 得正确画法。
• 重难点
关系5种性质得判断,关系得闭包运算和偏序关系 得性质及特殊元素得判断。
引言
日常生活中,大家熟知一些常见关系, 例:家庭集合,有父子关系、夫妻关系等。 全校同学作为一个集合,有同班关系,同组关系。 在计算机科学中,在计算机逻辑设计中,应用了等 价关系,相容关系。 在编译原理、关系数据库、数据结构、数学中也有 关系。
例题
返回第5、3节目录
五、传递性例题
例: A={1,2,3,4} R={<1,4>,<4,3>,<1,3>,<3,1>,<1,2>,<3,2>,<2,3>, <4,2>,<1,1>,<3,3>} R不就是传递得
返回传递性
返回第5、3节目录
六、举 例
自反性 反自反性 对称性 反对称性 传递性
任何集合上得
返回总目录
一、自反性
自反性
定义: 若xA,均有xRx,那么称R就是自反得。
A上关系R就是自反得x(xA xRx)
在关系矩阵中,反映为主对角线元素均为1 在关系图中,反映为每结点都有自回路 例1: A={1,2,3},R={<1,1>,<2,2>,<3,3>,<1,2>}
1 23
例2:“=”关系和“≤”关系就是自反得吗?
S={<4,2>,<2,5>,<3,1>,<1,3>}

离散数学ppt课件

离散数学ppt课件

02
集合论基础
集合的基本概念
总结词
集合是离散数学中的基本概念, 是研究离散对象的重要工具。
详细描述
集合是由一组确定的、互不相同 的、可区分的对象组成的整体。 这些对象称为集合的元素。例如 ,自然数集、平面上的点集等。
集合的运算和性质
总结词
集合的运算和性质是离散数学中的重要内容,包括集合的交、并、差、补等基本运算,以及集合的确定性、互异 性、无序性等性质。
生,1表示事件一定会发生。
离散概率论的运算和性质
概率的加法性质
如果两个事件A和B是互斥的,那么P(A或B)等于P(A)加上 P(B)。
概率的乘法性质
如果事件A和B是独立的,那么P(A和B)等于P(A)乘以P(B) 。
全概率公式
对于任意的事件A,存在一个完备事件组{E1, E2, ..., En}, 使得P(Ai)>0 (i=1,2,...,n),且E1∪E2∪...∪En=S,那么 P(A)=∑[i=1 to n] P(Ai)P(A|Ei)。
工程学科
离散数学在工程学科中也有着重要的 应用,如计算机通信网络、控制系统 、电子工程等领域。
离散数学的重要性
基础性
离散数学是数学的一个重要分支 ,是学习其他数学课程的基础。
应用性
离散数学在各个领域都有着广泛的 应用,掌握离散数学的知识和方法 对于解决实际问题具有重要的意义 。
培养逻辑思维
学习离散数学可以培养人的逻辑思 维能力和问题解决能力,对于个人 的思维发展和职业发展都有很大的 帮助。
详细描述
邻接矩阵是一种常用的表示图的方法,它是 一个二维矩阵,其中行和列对应于图中的节 点,如果两个节点之间存在一条边,则矩阵 中相应的元素为1,否则为0。邻接表是一 种更有效的表示图的方法,它使用链表来存 储与每个节点相邻的节点。

离散数学完整版课件全套ppt教学教程最全整套电子讲义幻灯片(最新)

离散数学完整版课件全套ppt教学教程最全整套电子讲义幻灯片(最新)
(3)至于p为0即“我期终考了年级不是前 10”时,无论q为1或为0,即无论"我老妈 奖励1000元"或不奖励,都不能说老妈的 话是假的,故善意的认为pq为1均为1
1.1 命题及联结词
定义1.5双条件:当p与q值相同时,pq为1,不同 为0。 称p当且仅当q
“普通老师赚了100万当且仅当他 中了100万的彩票”, 普通老师赚了100万 普通老师买彩票中了100万大奖
故pq为0
1.1 命题及联结词
定义1.4条件式当p是1 ,q是0时,pq为0,即 10为0,其他情况为1。 p称为前件,q称为后件
(1)当p为1即“我期终考了年级前10”
q为0即“我老妈没有奖励1000元” 这时老妈的话为假,即pq为0 (2)当p为1即“我期终考了年级前10” q为1即“我老妈奖励1000元” 这时妈妈的话就对了,即pq为1
由于所有内容(整数,实数,字符,汉字,图片,声 音,视频,网页,……)进入电脑后,全是01组成的字 符串,从而都可以用布尔运算即逻辑运算实现,命题逻 辑成为计算机的基础。
命题逻辑将数学由连续变到离散,由高数进入离散。
Google采用逻辑运算进行搜索:数字之美 吴军 杨圣洪 000100010001110000 两者对应位置与运算。 离散数学 100100000000100001
陈述句(6)的正确性,到2018年12月时能确定的,若届 时建成了则它是对的、为真命题,否为假命题。
1.1 命题及联结词
对错确定的陈述语句称为命题。如:
(7) x与y之和为100,其中x为整数,y为整数 (8)1加1等于10 (7)的对错不确定。当x为50、y为50时是对的,当x为 51、y为52时是错的。 (8)的对错是不确定的,为二进制时正确,当为八进制、 十进制时是错的,因此这两个陈述句不是命题。 (9)青枫峡的红叶真美呀! (10)动作快点! (11)你是杨老师吗? 这三个语句不是陈述语句,因此不是命题。

离散数学教程PPT课件

离散数学教程PPT课件
A=B C或A=B C或A=B C,则公式A是n+1层公式, n max( i, j)。
例(1)p q r (2)r q p q p
第23页/共292页
1.2 命题公式及其赋值
( p q) r
p:2是素数,q:3是偶数,r:2是有理数 p:2是素数,q:3是偶数,r:2是无理数
例2.等值等价式p q p q q p
等值演算的应用: 1.验证等值式 ( p q) ( p r) p (q r) 2.判定公式的类型 ( p q) p q,( p ( p q)) r, p ((( p q) p) q) 3.解决工作生活中的判断问题
甲、已、丙3人根据口音对王教授是哪人进行了判断: 甲说:王教授不是苏州人,是上海人 已说:王教授不是上海人,是苏州人 丙说:王教授既不是上海人,也不是杭州人
例:1.如果3+3=6,那么雪是白的。 2.除非我能工作完成了,我才去看电影。 3.只要天下雨,我就回家。 4.我回家仅当天下雨。 p→q的逻辑关系为q是p的必要条件或p是q的充分条件。
第15页/共292页
1.1 命题和命题联结词
5).等价词 由命题p、q和 组成的复合命题记作p q,读作“p当且仅当q”。 是自然语言中的“充要条件”,“当且仅当”的逻辑抽象。
1.3 命题公式的等值式
定义1.设A和B是两个命题公式,若A B为重言式, 则称公式A, B是等值的公式,记作A B。
例1.证明(p q) (q p); p p p.
注意: 和 的区别 是公式间的关系符号,如:p q 是命题联结词.p q
第28页/共292页
1.3 命题公式的等值式
1.1 命题和命题联结词
例:1)海洋的面积比陆地的面积大。 例 q2:): 22p6:6海 9洋 9。 。的面积比陆地的面积大。 r3:)火火星星上上有有生生命命。。 s4:)三三角角形形的的内内角角和和等等于 于118800。 。 55))你你喜 喜欢 欢数学吗吗?? 66))我我们 们要 要努 努力力学学习习。。 77))啊啊, ,我 我的 的天天哪哪!! 88))我我正 正在 在说 说谎 谎。。

【精品】离散数学PPT课件(完整版)

【精品】离散数学PPT课件(完整版)
一个简单命题.
13
联结词与复合命题(续)
3.析取式与析取联结词“∨” 定义 设 p,q为二命题,复合命题“p或q”称作p与q 的析取式,记作p∨q. ∨称作析取联结词,并规 定p∨q为假当且仅当p与q同时为假.
例 将下列命题符号化 (1) 2或4是素数. (2) 2或3是素数. (3) 4或6是素数. (4) 小元元只能拿一个苹果或一个梨. (5) 王晓红生于1975年或1976年.
15
联结词与复合命题(续)
4.蕴涵式与蕴涵联结词“” 定义 设 p,q为二命题,复合命题 “如果p,则q” 称 作p与q的蕴涵式,记作pq,并称p是蕴涵式的 前件,q为蕴涵式的后件. 称作蕴涵联结词,并 规定,pq为假当且仅当 p 为真 q 为假.
16
联结词与复合命题(续)
pq 的逻辑关系:q 为 p 的必要条件 “如果 p,则 q ” 的不同表述法很多:
19
例 求下列复合命题的真值 (1) 2 + 2 = 4 当且仅当 3 + 3 = 6. (2) 2 + 2 = 4 当且仅当 3 是偶数. (3) 2 + 2 = 4 当且仅当 太阳从东方升起. (4) 2 + 2 = 4 当且仅当 美国位于非洲. (5) 函数 f (x) 在x0 可导的充要条件是它在 x0
解 令 p:王晓用功,q:王晓聪明,则 (1) p∧q (2) p∧q (3) p∧q.
12
例 (续)
令 r : 张辉是三好学生,s :王丽是三好学生 (4) r∧s. (5) 令 t : 张辉与王丽是同学,t 是简单命题 .
说明: (1)~(4)说明描述合取式的灵活性与多样性. (5) 中“与”联结的是两个名词,整个句子是
若 p,就 q 只要 p,就 q p 仅当 q 只有 q 才 p 除非 q, 才 p 或 除非 q, 否则非 p. 当 p 为假时,pq 为真 常出现的错误:不分充分与必要条件

离散数学第八章第1讲课件.ppt

离散数学第八章第1讲课件.ppt

B
C
例:
一个3阶有向图的度序列是2,2,4,入度序列是
2,0,2,出度序列是
.
定理3:在任何有向图中,所有结点的入度和等于所有结点 的出度之和。
证:因为每一条有向边必对应一个入度和出度,若一个 结点具有一个入度或出度,则必关联一条有向边,所以, 有向图中各结点入度和等于边数,各结点出度和也是等 于边数,因此,任何有向图中,入度之和等于出度和。
A
最大度,记为:△(G)=max{d(v)| vV} B
E
最小度,记为:δ(G)=min{d(v)| vV}
D
C
定理1 (握手定理) :每个图中,结点度数的总和等于边 数的两倍。即
deg(v) 2 E
vV
证:∵每条边必关联两个结点,而一条边给于关联的每 个结点的度数为1。 故上述定理成立。
例:在一次10周年同学聚会上,想统计所有人握手的 次数之和,应该如何建立该问题的图论模型?
如下图,(a)和(b)互为补图。
v1
v1
v2
v5
v4
v3 (a)
v2 v3
v5 v4 (b)
例:对于n阶简单无向图G,若其边数为m,试计算G 的补图 的边数。
(12)子图:设图G =<V,E>,如果有图G=<V,E>, 且EE,VV,则称 G 为 G 的子图。
如下图, =<V,E>及图G=<V,E>,如果存在一双射函 数g:vi→vi且e=(vi,vj)是G的一条边,当且仅当 e=(g(vi ),g(vj))是 G 的一条边,则称G与G同 构,记作G≌G。
两个图同构的充要条件是:两个图的结点和边分别存在 着一一对应的关系,且保持关联关系。

离散数学的ppt课件

离散数学的ppt课件

科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。

连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。

《离散数学讲义》课件

《离散数学讲义》课件
离散概率分布的定义
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。

左孝凌离散数学课件

左孝凌离散数学课件

01
集合论
集合的基本概念
总结词
集合是离散数学中的基本概念,它是由一组确定的、不同的、互不相同的元素所组成的 。
详细描述
集合是离散数学中一个最基本的概念,它是由一组确定的、不同的、互不相同的元素所 组成的。这些元素可以是数字、字母、图形等,它们在集合中表示不同的个体或对象。
集合的运算和性质
总结词
详细描述
邻接矩阵是一种常用的图表示方法,通过二维矩阵表示节点之间的关系,矩阵中的元素表示边的权重 或连接状态;邻接表是一种更有效的图表示方法,通过链表或数组等数据结构表示节点和其相邻节点 之间的关系。
图的连通性
总结词
图的连通性是指图中任意两个节点之间是否 存在路径。
详细描述
图的连通性分为强连通和弱连通两种情况。 强连通是指图中任意两个节点之间都存在有 向路径;弱连通是指图中任意两个节点之间 都存在无向路径。判断图的连通性是图论中 的重要问题之一。
左孝凌离散数学课件
THE FIRST LESSON OF THE SCHOOL YEAR
• 离散数学简介 • 集合论 • 图论 • 逻辑学 • 离散概率论 • 离散统计学
目录CONTENTS
01
离散数学简介
离散数学的起源和定义
总结词
离散数学的起源可以追溯到古代数学,它与连续数学相对应,研究的是非连续的、分离的对象。
置信区间
置信区间是指根据样本数据估计 总体参数的可能范围,用于衡量 估计的准确性。
单侧检验和双侧检

单侧检验是指只检验一个方向的 假设,而双侧检验则是同时检验 两个方向的假设。
感谢观看
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR

数学离散数学PPT课件

数学离散数学PPT课件
(b) 对公式 A: F(x, y)∧M→F(u, x)中的 F, 欲代以 B: G(x1)∨H(x2, s)→H(t, x2), 则只需x , y , u不是B内的约 束变元, 而且s , t不是A内的约束变元。 代入结果为 (G(x)∨H(y, s)→H(t, y))∧M→(G(u)∨H(x, s)→H(t, x))
第22页/共41页
表 1.7 -1 含有量词的永真公式概要表
第23页/共41页
谓词演算规则
1、代入规则 2、替换规则 3、对偶原理
第24页/共41页
1. 代入规则
(i)自由个体变元的代入:在一公式中, 任一自由个体变元 可代以另一个体变元, 只需该个体变元出现的各处都同样代入, 且代入的变元不允许在原来公式中以约束变元出现。 例: 在公式xP(x, y)∨Q(w, y)中, 将y代以z, 则得xP(x, z)∨Q(w, z), 将y代以w, 则得xP(x, w)∨Q(w, w)。 所得公式称为原公式的代入实例。
1.后边的r个自由变元 不允许在原公式中以约束变元出现; 2. F(x1,x2, …, xn)中的变元也不允许在代入的公式中以约束变元 出现。
第26页/共41页
例: (a) 对公式(P→Q) (P∨Q)中的P代以xP(x), Q代以S(x), 得
(xP(x)→S(x)) (xP(x)∨S(x))
Q4
xP(x) xQ(x)
E14
第31页/共41页
(b) 证明
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
证: 根据CP规则, 上式等价于
x(P(x) Q(x)) x(R(x) Q(x)) (R(x) P(x))
而 x(P(x) Q(x)) x(R(x) Q(x))

离散数学讲义ppt课件

离散数学讲义ppt课件

课程概况
教材:
《离散数学(第三版)》,耿素云等编著 清华大学出版社,2004年3月
参考书:
(1) 《离散数学(第二版)》及其配套参考书《离散 数学题解》作者:屈婉玲,耿素云,张立昂 清华大学出版社
(2) 《离散数学》焦占亚主编 电子工业出版社 2005年1月
2
课程概况
选修课/必修课:选修 周学时:3(学时) 上课周:1-16周 总学时:48(学时)
3
课程内容及学时安排
第一篇 数理逻辑(14学时)
第一章 命题逻辑(8) 第二章 谓词逻辑(6)
第二篇 集合论(12学时)
第三章 集合(4) 第四章 二元关系与函数(8)
第四篇 图论(14学时)
第七章 图论(8) 第八章 一些特殊图(4) 第九章 树 (2)
4
课程考核
第四篇 代数系统(8学时)
第5、6章 图论(8)
所以,伊勒克持拉既知道并且又不知道这个人是她的 哥哥。
20
NO.3 M:著名的理发师悖论是伯特纳德·罗素提出的。一个理发 师的招牌上写着: 告示:城里所有不自己刮脸的男人都由我给他们刮脸,我 也只给这些人刮脸。 M:谁给这位理发师刮脸呢? M:如果他自己刮脸,那他就属于自己刮脸的那类人。但 是,他的招牌说明他不给这类人刮脸,因此他不能自己来 刮。 M:如果另外一个人来给他刮脸,那他就是不自己刮脸的 人。但是,他的招牌说他要给所有这类人刮脸。因此其他 任何人也不能给他刮脸。看来,没有任何人能给这位理发 师刮脸了!
P
Q
PQ
P
0
0
0
1
0
1
0
1
1
0
0
0
1
1
1

离散数学课件ppt

离散数学课件ppt

随机性与概率
随机性表示试验结果的不 确定性,概率则表示随机 事件发生的可能性大小。
统计数据的收集和整理
数据来源
数据质量
数据可以来源于调查、实验、观测、 查阅文献等多种途径。
数据质量包括数据的准确性、可靠性 、完整性等方面,是数据分析的前提 和基础。
数据整理
数据整理包括数据的分类、排序、分 组、编码等步骤,以便更好地进行数 据分析。
必然事件
概率值为1的事件。
03
04
不可能事件
概率值为0的事件。
互斥事件
两个或多个事件不能同时发生 。
概率的加法原理和乘法原理
加法原理
对于任意两个互斥事件A和B,有 P(A∪B)=P(A)+P(B)。
乘法原理
对于任意两个事件A和B,有 P(A∩B)=P(A)×P(B|A)。
条件概率和独立性
要点一
条件概率
离散数学课件
目录 CONTENTS
• 离散数学简介 • 集合论基础 • 图论基础 • 离散概率论基础 • 离散统计学基础 • 离散数学中的问题求解方法
01
离散数学简介
离散数学的起源
19世纪初
集合论的提出为离散数学的起源 奠定了基础。
20世纪中叶
随着计算机科学的兴起,离散数 学逐渐受到重视和应用。
子集、超集和补集
总结词
子集、超集和补集是集合论中的重要概念,它们描述了集合之间的关系。
详细描述
子集是指一个集合中的所有元素都属于另一个集合,超集是指一个集合包含另一 个集合的所有元素,补集是指属于某个集合但不属于其子集的元素组成的集合。
集合的运算性质
总结词
集合的运算性质包括并集、交集、差集等,这些运算描述了 集合之间的组合关系。

离散数学PPT【共34张PPT】

离散数学PPT【共34张PPT】
15
18.4 点着色
定义17.9 (1) 图G的一种点着色——给图G的每个顶点涂上一种颜色,
使相邻顶点具有不同颜色 (2) 对G进行k着色(G是k-可着色的)——能用k种颜色给G
的顶点着色 (3) G的色数(G)=k——G是k-可着色的,但不是(k1)-可着色
的.
16
关于顶点着色的几个简单结果
定理17.19 (G)=1当且仅当G为零图 定理17.20 (Kn)=n 定理17.21 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮 图,则(G)=4. 定理17.22 若G的边集非空,则(G)=2当且仅当G为二部图.
路径 (7) M的交错圈——由M与EM中的边交替出现构成的G中圈
上图中,只有第一个图存在完美匹配
8
可增广路径及交错圈
(1)
(2)
(3)
设红色边在匹配M中,绿色边不在M中,则图(1)中的两条路 径均为可增广的交错路径;(2)中的全不是可增广的交错路 径;(3)中是一个交错圈. 不难看出,可增广交错路径中,不在M中的边比在M中的边 多一条. 交错圈一定为偶圈.
立集 (3) 最大点独立集——元素最多的点独立集 (4) 点独立数——最大点独立集中的元素个数,记为0
(1)
(2)
在图中,点独立数依次为2, 2, 3.
(3)
2
极大独立集与极小支配集
定理18.1 设G=<V,E>中无孤立点,则G的极大点独立集都是 极小支配集. 证明线索: (1) 设V*为G的极大点独立集,证明它也是支配集.
定理17.28 偶圈边色数为2,奇圈边色数为3. 定理17.29 (Wn) = n1, n4. 定理17.30 二部图的边色数等于最大度. 定理17.31 n为奇数(n1)时,(Kn)=n;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13
1-1 命题及其表示法(续)

习惯上,命题用小写字母p,q,r,…, 或用带下标小写字母表示。
例如:
命题p:中国人是伟大的。 命题q:别的星球上有生物。 命题p1:1+101=102(在十进制或二进制数范围内)。 命题P2:今天下雨。 命题r:我去看电影。
14
1-1 命题及其表示法(续)
判断下列句子哪些是命题?
离散数学讲义
课程概况
教材:
《离散数学(第四版)》,耿素云等编著
清华大学出版社,2008年3月
参考书:
(1) 《离散数学(第二版)》及其配套参考书《离散 数学题解》作者:屈婉玲,耿素云,张立昂 清华大学出版社 (2) 《离散数学》焦占亚主编 电子工业出版社
2005年1月
2
课程概况
选修课/必修课:选修 周学时:3(学时)
paradox来自希腊语“para+dokein”,意思是“多想一 想”。
悖论是属于领域广阔、定义严格的数学分支的一个组成部 分,这一分支以“趣味数学”知名于世。这就是说它带有 强烈的游戏色彩。然而,切莫以为大数学家都看不起“趣 味数学”问题。欧拉就是通过对bridge-crossing之谜的分 析打下了拓扑学的基础。莱布尼茨也写到过他在独自玩插 棍游戏(一种在小方格中插小木条的游戏)时分析问题的 乐趣。
11

第一章 命题逻辑

命题演算是数理逻辑的基本组成部分,是谓词演算的基础。 数理逻辑包含:逻辑演算、证明论、公理集合论、递归论和 模型论。本章包括以下内容:
1-1 命题及其表示法 1-2 连结词 1-3 命题公式及翻译 1-4 真值表与等价公式
1-5 其它连结词
1-6 对偶与范式 1-7 重言式与蕴涵式
其内容较广,主要包括数理逻辑、 集合 论、图论、代数结构等四个基本部分。
7
什么是离散数学?
离散数学将日常的概念、判断、 推理用数学符号来表示,用数学方法 进行思维。其目标是掌握严密的思维 方法、严格证明的推理能力和演算能 力,掌握处理各种具有离散结构的事 物的描述工具与方法,适应学习其他 专业课程的各种需要,为学习其它计 算机课程提供必要的数学工具。
17
希尔伯特证明了切割几何图形中的许多重要定理。冯·纽 曼奠基了博弈论。曾经广受大众欢迎的计算机游戏—生命 是英国著名数学家康威发明的。爱因斯坦也收藏了整整一 书架关于数学游戏和数学谜的书。 古今中外有不少著名的悖论,它们奠定了逻辑和数学的基 础,激发了人们求知和精密的思考,吸引了古往今来许多 思想家和爱好者的注意力。解决悖论难题需要创造性的思 考,悖论的解决又往往可以给人带来全新的观念。
第四篇 代数系统(8学时)
第5、6章 图论(8)
考核方式:
闭卷笔试
5
课程要求
(1)上课认真听讲
(2)课后及时复习
(3)独立、认真地完成作业
(4)有问题及时提出,不要积累问题
6
什么是离散数学?
• 是研究离散对象和它们之间的关系 的现代数学分支。
• 它为计算机科学中的数据结构、编 译理论、操作系统、算法分析、人 工智能等提供了必要的数学知识。 也是建模时常用的工具。
8
什么是离散数学?
本课程将学习数理逻辑、集合论以 及图论、代数系统的部分内容。 数理逻辑的重点是公式演 算 与推理证明;集合论的重点是关系 理论与映射的描述;图论则着重于 讨论结点之间的关系以及图论方法 的各种实际应用。
9
课程内容
第一篇
数理逻辑
10
第一篇 数理逻辑

数理逻辑是用数学方法来研究推理 过程的科学。主要是指引进一套符 号体系的方法,因此数理逻辑一般 又叫符号逻辑。 基本内容是:命题逻辑(演算)和 谓词逻辑(演算)。
18
例如比较有名的理发师悖论:某乡村有一位理发师,一天 他宣布:只给不自己刮胡子的人刮胡子。这里就产生了问 题:理发师给不给自己刮胡子?如果他给自己刮胡子,他 就是自己刮胡子的人,按照他的原则,他不能给自己刮胡 子;如果他不给自己刮胡子,他就是不自己刮胡子的人, 按照他的原则,他就应该给自己刮胡子。这就产生了矛盾 历史上著名的悖论 NO.1 说谎者悖论(1iar paradox or Epimenides’ paradox) 最古老的语义悖论。公元前6世纪古希腊哲学家伊壁孟德 所创的四个悖论之一。是关于“我正在撒谎”的悖论。具 体为:如果他的确正在撒谎,那么这句话是真的,所以伊 壁孟德不在撤谎;如果他不在撒谎,那么这句话是假的, 因而伊壁孟德正在撒谎。
1-8 推理理论
1-9 应用
12
1-1 命题及其表示法

命题proposition:能够判断真假的陈述 语句。
例:‘中国是一个国家’, ‘9为素数’。

原子命题:不能分解成更简单的陈述语 句的命题。 复合命题:由连结词、标点符号和原子 命题复合构成的命题。

一般用字母“T”表示“真示“假”。
19
NO.2 伊勒克特拉悖论(Eletra paradox) 逻辑史上最早的内涵悖 论。由古希腊斯多亚学派提出。它的基本内容是:伊勒克 特拉有位哥哥奥列斯特回家了.尽管伊勒支持拉知道奥列 斯特是她的哥哥.但她并不认识站在她面前的这个男人。 写成一个推理.即: 伊勒克持拉不知道站在她面前的这个人是她的哥哥。 伊勒克持拉知道奥列期特是她的哥哥。 站在她面前的人是奥列期特。 所以,伊勒克持拉既知道并且又不知道这个人是她的 哥哥。
上课周:1-16周
总学时:48(学时)
3
课程内容及学时安排
第一篇 数理逻辑(14学时)
第一章 命题逻辑(8) 第二章 谓词逻辑(6)
第二篇 集合论(12学时)
第三章 集合(4)
第四章 二元关系与函数(8)
第三篇 图论(14学时)
第七章 图论(8) 第八章 一些特殊图(4) 第九章 树 (2)
4
课程考核
• 地球是圆的。 • 2+3=5 • 2+3=6
是命题,真值为T 是命题,真值为T 是命题,真值为F 不是命题(疑问句不是命题)。 不是命题,它的真值不确定。
15
• 你会讲英语吗?
• 3-x=5
1-1 命题及其表示法(续)
判断下列句子哪些是命题(续)?
• 请关上门! • 除地球外的星球 有生物。 • 太阳明天会出来。 • 我说的这句话是错的
不是命题,祈使句不是命题。 是命题,它的真值是唯一确 定的,只是目前人们不知道 是命题,它的真值是唯一确 定的,到明天就知道了。
再次注意:命题是具有唯一真值的陈述句。
16
我正在说谎 悖论(paradox)是一种矛盾命题。悖论是自相矛盾的命题。 即如果承认这个命题成立,就可推出它的否定命题成立; 反之,如果承认这个命题的否定命题成立,又可推出这个 命题成立。
相关文档
最新文档