生物遗传和变异的资料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物遗传和变异的资料
遗传与变异,是生物界不断地普遍发生的现象,也是物种形成和生物进化的基础。微生物遗传学作为一门独立的学科诞生于40年代,病毒遗传学作为微生物遗传学的重要组成部分,对于生物遗传和变异的研究起到了重要的促进作用,也为分子遗传学的发展奠定了基础。病毒的许多生物学特性,包括结构简单、无性增殖方式、可经细胞培养、增殖迅速、便于纯化等,使其具有作为遗传学研究材料的独特优势。众所周知,包括病毒在内的各种生物遗传的物质基础是核酸。事实上,这一结论最初的直接证据正是来自于对病毒的研究。为了说明这一点,首先让我们回顾两个经典的实验:①噬菌体感染试验:T2是感染大肠杆菌的一种噬菌体,它由蛋白质外壳( 约60%)和DNA核芯(约40%)构成,蛋白质中含有硫,DNA 中含有磷。把32P和35S 标记T2,并用标记的噬菌体进行感染试验,就可以分别测定DNA 和蛋白质的功用。Hershey和 Chase(1952)在含有32P或35S的培养液中将T2感染大肠杆菌,得到标记的噬菌体,然后用标记的噬菌体感染常规培养的大肠杆菌,再测定宿主细胞的同位素标记,结果用 35S标记的噬菌体感染时,宿主细胞中很少有同位素标记,大多数的35S标记噬菌体蛋白附着在宿主细胞的外面,用32P标记的噬菌体感染时,大多数的放射性标记在宿主细胞内。显然感染过程中进入细胞的主要是DNA。②病毒重建实验:烟草花叶病病毒(tobacco mosaic virus,TMV)由蛋白质外壳和RNA核芯组成。可以从TMV分别抽提得到它的蛋白质部分和RNA部分。
Fraenkel Courat(1956)实验证明,用这两种成分分别接种烟草,只有病毒RNA可引起感染。虽然感染效率较低,但足以说明遗传物质为RNA。Fraenkel Courat利用分离后再聚合的方法,先取得TMV的蛋白质外壳和车前病毒(Holmes Rib Grass Virus,HRV)的RNA,然后把它们结合起来形成杂合病毒,这种杂合病毒有着普通TMV的外壳,可被抗TMV抗体所灭活,但不受抗HRV抗体的影响。当用杂合病毒感染烟草时,却产生HRV感染的特有病斑,从中分离的病毒可被抗HRV抗体灭活。反过来将HRV的蛋白质和TMV的RNA结合起来也得到类似的结果。目前已经能够由许多小型RNA病毒和某些DNA病毒提取感染性核酸。如第四章所述,这些感染性核酸在感染细胞以后,可以产生具有蛋白质衣壳和脂质囊膜的完整子代病毒。由脊髓灰质炎病毒的RNA与柯萨奇病毒的衣壳构成的杂合病毒,在感染细胞后产生的子代病毒将是完全的脊髓灰质炎病毒。以上事实说明,核酸是病毒遗传的决定机构,而蛋白质衣壳和脂质囊膜不过是在病毒核酸遗传信息控制下合成或由细胞“抢来”的成分。这些成分虽然决定着病毒的抗原特性,而且与病毒对细胞的吸附有关,在一定程度上影响着病毒与宿主细胞或机体的相互关系,例如感染与免疫,但从病毒生物学的本质来看,它们只是病毒粒子中附属的或辅助的结构。核酸传递遗传信息的基础在于其碱基的排列顺序,病毒核酸复制时能够产生完全同于原核酸的新的核酸分子,从而保持遗传的稳定性。但是,病毒没有细胞结构,缺乏独立的酶系统,故其遗传机构所受周围环境的影响,尤其是宿主细胞内环境的
影响特别深刻;加之病毒增殖迅速,突变的机率相应增高,这又决定了病毒遗传的较大的动摇性——变异性。采用适当的选育手段,常可较快获得许多变异株。应用各种理化学和生物学因子进行诱变,也能较快看到结果。而病毒粒子之间以及病毒核酸之间的杂交或重组,又为病毒遗传变异的研究,开辟了广阔前景。这些便利条件使病毒遗传变异的研究远远超出了病毒学本身的范围,成为人类认识生命本质和规律的一个重要的模型和侧面。遗传和变异是对立的统一体,遗传使物种得以延续,变异则使物种不断进化。本章主要论述病毒的变异现象、变异机理以及研究变异的方法和诱变因素等,关于病毒的遗传学理论请参阅有关的专业书籍。病毒的遗传变异常常是“群体”,也就是无数病毒粒子的共同表现。而病毒成分,特别是病毒编码的酶和蛋白质,又常与细胞的正常酶类和蛋白质混杂在一起。这显然增加了病毒遗传变异特性鉴定上的复杂性。
变异是生物的一般特性。甚至在人类尚未发现病毒以前,就已开始运用变异现象制造疫苗。例如1884年,巴斯德利用兔脑内连续传代的方法,将狂犬病的街毒(强毒)转变为固定毒。这种固定毒保留了原有的免疫原性,但毒力发生了变异——非脑内接种时,对人和犬等的毒力明显降低,因而成功地用作狂犬病的预防制剂。此后,在许多动物病毒方面,应用相同或类似的方法获得了弱毒株,创制了许多优质的疫苗。选育自然弱毒变异株的工作,也取得了巨大成就。但是有关病毒遗传变异机理的认识,则只在最近几十年来才有显著的进展。这不仅是病毒学本身的跃进,也是其它学科,特别是生物化学、分子生物学、免疫学以及电子显微镜、同位素标记等新技术飞速发展的结果。