基于MPU6050的INS惯性导航和实时姿态检测系统方案

基于MPU6050的INS惯性导航和实时姿态检测系统方案
基于MPU6050的INS惯性导航和实时姿态检测系统方案

基于MPU6050的INS惯性导航和实时姿态检测系统

1.项目目标及功能说明

1.1项目目标

学习使用正点原子探索者开发板,并熟悉开发板上的MPU6050六轴传感器的工作原理和各函数的调用过程。同时学习开发板的扩展接口,尝试在开发板上扩展蓝牙模块,并实现开发板与手机等含有蓝牙模块的电子设备通过蓝牙连接并进行数据的传输。在完成上述内容的基础上,实现将MPU6050六轴传感器的加速度计和陀螺仪的数据传送到手机上,在手机上实现陀螺仪的变化效果展示。同时通过串口将MPU6050数据传送到电脑上,通过Matlab编程处理数据,实现惯性导航的简单展示。

1.2系统功能说明

系统最主要的功能有两个:一个是在手机端能够展示开发板上MPU6050陀螺仪的姿态变化,通过一个立方体的转动来表示陀螺仪的转动;另一个是在电脑端能够读取MPU6050的数据,并通过对数据的处理还原数据中存储的MPU6050的姿态变化,简单展现出惯性导航的效果。

在实现系统最主要的两个功能过程中,还需要实现一些基础功能。开发板能够通过蓝牙与手机连接并传输数据;开发板能够通过串口将数据发送出去;在电脑端能够读取开发板上串口输出的数据等。

2.需求分析

●惯性导航系统用于各种运动机具中,包括飞机、潜艇、航天飞机等运输工具及导弹,然而成本及复杂性限制了其可以应用的场合。但是,存在一种情形:

卫星一旦突然因故障、敌方打击或干扰(如太阳风暴)等原因无法提供服务,这对依赖GPS、北斗等卫星导航系统作为唯一PNT(Position、Navigation、Time)信息来源的系统来说可能是致命的灾难。

作为目前为止卫星导航系统最好的备援——惯性导航系统(INS),将于届时发挥出巨大的作用,其精度完全可以媲美GPS等卫星导航系统。并且它不需要外部参考就可确定当前位置、方向及速度,从而使它自然地不受外界的干扰和欺骗。

定位、导航和授时服务对军队而言就像氧气对人类一样不可或缺,因此通过研究新机理、研制新设备、开发新算法,以摆脱人员和系统设备对GPS的依赖,具有极大的战略意义。

●姿态监测系统可广泛应用于关键资产姿态变化的无线实时监控。由于目前移动智能终端设备的数量和质量逐步提升,因此,通过计算机上传统的上位机软件进行姿态监测,逐渐暴露出了自身的缺点——串口传输无法实现无线监测、计算机相比智能终端便携性极差。

因此,使用无线传输(蓝牙、红外、WIFI、GSM等)的技术,开发一款在移动智能终端可以实时显示物体姿态的应用,具有很高的实用价值和广泛的市场应用前景。

3.开发环境

移动终端操作系统:Android 4.4.4 KitKat

计算机操作系统:Windows 8.1 Pro x64

串口开发:MATLAB R2014a

开发板IDE:Keil uVision5

Android IDE: Eclipse Java EE IDE for Web Developers

Android Development Toolkit 23.0. 4.1468518

4.项目进展情况

到目前为止,我组已实现了以下功能:

1.STM32F4开发板上MPU6050六轴传感器的数据获取并显示在LCD屏幕上。

2.在LCD屏幕上绘出圆形图案,且圆形图案能根据MPU6050六轴传感器的

姿态变化而运动,传感器倾斜角度越大,图案运动速度越快。

3.扩展蓝牙模块,能通过蓝牙模块与手机连接并进行数据通信。

4.根据函数提供的帧格式定义数据帧,并通过USART接口将数据帧传给PC

端。

5.在手机端能根据蓝牙获取的MPU6050六轴传感器的陀螺仪数据绘出立方

体,立方体能在可接受的时间延迟内实时展现MPU6050的姿态变化(转动方向和角度)。

6.在PC端能通过对从USART接口获取的数据帧进行解析获取MPU6050加速

度传感器和陀螺仪的数据,并根据数据帧中设置的校验位进行数据校验。

7.在PC端能根据解析出的加速度传感器和陀螺仪数据,在可接受的误差范

围内还原MPU6050的姿态变化(包括位移、转动方向和角度),实现一个简单的惯性导航系统。

5.系统设计

5.1IIC总线工作原理

5.1.1总线的构成及信号类型

I2C总线是由数据线SDA和时钟SCL构成的串行总线,可发送和接收数据。在CPU与被控IC之间、IC与IC之间进行双向传送,最高传送速率100kbps。各种被控制电路均并联在这条总线上,但就像电话机一样只有拨通各自的号码才能工作,所以每个电路和模块都有唯一的地址,在信息的传输过程中,I2C总线上并接的每一模块电路既是主控器(或被控器),又是发送器(或接收器),这取决于它所要完成的功能。CPU发出的控制信号分为地址码和控制量两部分,地址码用来选址,即接通需要控制的电路,确定控制的种类;控制量决定该调整的类别(如对比度、亮度等)及需要调整的量。这样,各控制电路虽然挂在同一条总线上,却彼此独立,互不相关。

I2C总线在传送数据过程中共有三种类型信号,它们分别是:开始信号、结束信号和应答信号。

开始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。

结束信号:SCL为低电平时,SDA由低电平向高电平跳变,结束传送数据。

应答信号:接收数据的IC在接收到8bit数据后,向发送数据的IC发出特定的低电平脉冲,表示已收到数据。CPU向受控单元发出一个信号后,等待受控单元发出一个应答信号,CPU接收到应答信号后,根据实际情况做出是否继续传递信号的判断。若未收到应答信号,由判断为受控单元出现故障。

这些信号中,开始信号是必须的,结束信号和应答信号都可以不要,IIC总线时序图如图 5.1.1-1所示。

图 5.1-1 IIC总线时序图

探索者STM32F4开发板板载的EEPROM芯片型号为24C02。该芯片的总容量为256字节,通过IIC总线与外部连接。STM32F4开发板有硬件IIC,但是设计的比较复杂,而且稳定性不好,所以我组使用GPIO软件模拟IIC来对24C02进行读写。同时使用软件更具有移植性,只要有IO口,将软件移植过去就能使用

模拟的IIC,而硬件必须MCU的支持。

5.1.2硬件设计

实现模拟IIC需要用到的硬件资源有:串口(USMART)、GPIO、24C02。

图 5.1-2 STM32F4与24C02连接图

我组通过GPIO来模拟IIC,24C2的SCL和SDA分别连在GPIO_PB8和GPIO_PB9上,连接关系如图 5.1.2-1。

5.2MPU6050工作原理

5.2.1MPU6050引脚

图 5.2-1 MPU6050结构图

模块外观如图 5.2.1-2所示:

惯性导航技术的工作原理

惯性导航技术的工作原 理 Document number:PBGCG-0857-BTDO-0089-PTT1998

惯性导航系统基本工作原理 惯性导航系统是十分复杂的高精度机电综合系统,只有当科学技术发展到一定高度时工程上才能实现这种系统,但其基本工作原理却以经典的牛顿力学为基础。 设质量m受弹簧的约束,悬挂弹簧的壳体固定在载体上,载体以加速度a 作水平运动,则m处于平衡后,所受到的水平约束力F与a的关系满足牛顿第 二定律: F a m 。测量水平约束力F,求的a,对a积分一次,即得水平速 度,再积分一次即得水平位移。以上所述是简单化了的理性情况。由于运载体不可能只作水平运动,当有姿态变化时,必须测得沿固定坐标系的加速度,所以加速度计必须安装在惯性平台上,平台靠陀螺维持要求的空间角位置,导航计算和对平台的控制由计算机完成。 陀螺仪组件测取沿运载体坐标系3个轴的角速度信号,并被送入导航计算机,经误差补偿计算后进行姿态矩阵计算。加速度计组件测取沿运载体坐标系3个轴的加速度信号,并被送入导航计算机,经误差补偿计算后,进行由运载体坐标系至“平台坐标系”的坐标变换计算。他们沿机体坐标系三轴安装,并且与机体固连,它们所测得的都是机体坐标系下的物理量。 参与控制和测量的陀螺和加速度计称为惯性器件,这是因为陀螺和加速度计都是相对惯性空间测量的,也就是说加速度计输出的是运载体的绝对加速度,陀螺输出的是运载体相对惯性空间的角速度或角增量。而加速度和角速度或角增量包含了运载体全部的信息,所以惯导系统仅靠系统本身的惯性器件就能获得导航用的全部信息,它既不向外辐射任何信息,也不需要任何其他系统

捷联式惯性导航系统

1 绪论 随着计算机和微电子技术的迅猛发展,利用计算机的强大解算和控制功能代替机电稳定系统成为可能。于是,一种新型惯导系统--捷联惯导系统从20世纪60年代初开始发展起来,尤其在1969年,捷联惯导系统作为"阿波罗"-13号登月飞船的应急备份装置,在其服务舱发生爆炸时将飞船成功地引导到返回地球的轨道上时起到了决定性作用,成为捷联式惯导系统发展中的一个里程碑。 捷联式惯性导航(strap-down inertial navigation),捷联(strap-down)的英语原义是“捆绑”的意思。因此捷联式惯性导航也就是将惯性测量元件(陀螺仪和加速度计)直接装在飞行器、舰艇、导弹等需要诸如姿态、速度、航向等导航信息的主体上,用计算机把测量信号变换为导航参数的一种导航技术。现代电子计算机技术的迅速发展为捷联式惯性导航系统创造了条件。惯性导航系统是利用惯性敏感器、基准方向及最初的位置信息来确定运载体的方位、位置和速度的自主式航位推算导航系统。在工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰破坏。它完全是依靠载体自身设备独立自主地进行导航,它与外界不发生任何光、声、磁、电的联系,从而实现了与外界条件隔绝的假想的“封闭”空间内实现精确导航。所以它具有隐蔽性好,工作不受气象条件和人为的外界干扰等一系列的优点,这些优点使得惯性导航在航天、航空、航海和测量上都得到了广泛的运用[1] 1.1 捷联惯导系统工作原理及特点 惯导系统主要分为平台式惯导系统和捷联式惯导系统两大类。惯导系统(INS)是一种不依赖于任何外部信息、也不向外部辐射能量的自主式导航系统,具有隐蔽性好,可在空中、地面、水下等各种复杂环境下工作的特点。 捷联惯导系统(SINS)是在平台式惯导系统基础上发展而来的,它是一种无框架系统,由三个速率陀螺、三个线加速度计和微型计算机组成。平台式惯导系统和捷联式惯导系统的主要区别是:前者有实体的物理平台,陀螺和加速度计置于陀螺稳定的平台上,该平台跟踪导航坐标系,以实现速度和位置解算,姿态数据直接取自于平台的环架;后者的陀螺和加速度计直接固连在载体上作

辅助惯性导航系统的方法和算法发展

2008年8月 第36卷第4期 现代防御技术 M ODERN DEFENCE TECHNOLOGY Aug.2008 Vo.l36No.4 导航、制导与控制 辅助惯性导航系统的方法和算法发展* 武虎子,南英,付莹珍 (南昌航空大学航空与机械工程学院,江西南昌330063) 摘要:综述了辅助惯导的一些主要算法和方法,主要有:重力辅助的匹配方法、基于衰减记忆的匹配算法、基于贝叶斯算法、基于神经网络算法、基于迭代最近点算法、无线电高度与数字地图辅助方法、粒子滤波算法、声呐技术辅助方法、概率数据关联算法、成像激光雷达辅助方法。分别对各类辅助算法和方法的基本原理、主要优缺点进行了简要介绍,展望了辅助算法和方法的发展趋势。 关键词:惯性导航系统;辅助算法;辅助方法;发展趋势 中图分类号:V448122+4;U66611文献标识码:A文章编号:10092086X(2008)20420062206 The Developm en t of A i ded A l gor ithm and M ethods i n Iner ti a l N avi ga ti on Syste m WU H u2z,i NAN Y i n g,F U Y ing2z hen (Nanchang Un i versity of Aeronautics,School of Aero nauti c and M echanical Engi neeri ng,Ji angxi Nanchang330063,Ch i na) A bstra ct:So me main a l g orithms and methods i n a i d ed2inertial navi g ati o n are summ ar iz ed.They can be c lassified as f ollo ws:gravity a i d ed matchingm ethod,match i n g algorithm based on FadingMe mory,a l2 gorithm based on Bayes Rule,a l g orit h m based on A rtificial Neura lN et w ork,algorith m based on iterative closest poin,t a i d ed method of w ire less he i g ht and d i g italmap,partic le filter algorithm,aided m et h od of sonar technology,probab ilistic data association filter algorith m,a i d ed method of i m agi n g laser radar.The main pri n ciple and ma i n advantages and disadvan tages of a ll k i n ds of a l g orit h ms and methods are i n tro2 duced si m p l y and separately.The develop men t trend of the m is prospected. K ey words:i n ertial navi g ati o n syste m(I N S);a i d ed a l g orithm;a i d ed m et h ods;deve lopment trend 0引言 随着导航技术的逐渐成熟,飞行器对自主导航精度的要求也越来越高,因而辅助惯性导航方法与算法也快速兴起。所谓辅助惯性导航系统(i n erti a l navi g ation syste m,I N S)的方法与算法,就是一种能提高惯导导航精度的方式和途径(如导航精度参数CEP,S EP,R,R MS等达到规定的范围内)。采用这些方法与算法可以重调和校正单一的惯导系统(如位置和方位的重新调整、陀螺漂移的校正)。 在过去的几十年里,辅助惯性导航技术已经有了很大的发展。其辅助算法都可以通过建立数学模 *收稿日期:2007-12-01;修回日期:2008-02-12 作者简介:武虎子(1981-),男,陕西富平人。硕士生,研究方向为飞行控制与导航。 通信地址:330063南昌市丰和南大道696号南昌航空大学航空与机械工程学院

惯性导航系统

惯性导航系统 以下是为大家整理的惯性导航系统的相关范文,本文关键词为惯性,导航,系统,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在教育文库中查看更多范文。 目录 1.惯性导航系统的概念.........................22.惯导系统的发展历史及发展趋势 (3)

惯性导航系统的发展.......................3我国的惯性导航系统.......................5捷联惯导系统现状及发展趋势...............63.惯性导航系统的组成........................104、惯性导航系统的工作原理....................145、惯性导航系统的功能.......................186、惯性导航系统的服务模式与应用模式..........207、惯性导航系统当前的应用情况................218、惯性导航系统的特点 (23) 系统的主要优点......................23系统的主要缺点.....................249、惯性导航系统给我们的启示. (24) 1 惯性导航系统 一、惯性导航系统的概念 什么是惯性导航或惯性制导呢?惯性导航系统(Ins)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。在给定的运动初始条件(初始地理坐标和初始速度)下,利用惯性敏感元件测量飞机相对惯性空间的线运动和角运动参数,用计算机推算出飞机的速度、位置和姿态等参数,从而引导飞机航行。 推算的方法是在运载体上安装加速度计,经过计算(一次积分和二次积分),从而求得运动轨道(载体的运动速度和距离),进而进行导航。在运载体上安装加速度计,用它来敏感、测量运载体运动的加速

捷联惯导详细讲解

捷联惯导系统从20世纪60年代初开始发展起来,在1969年,捷联惯导系统作为"阿波罗"-13号登月飞船的应急备份装臵,在其服务舱发生爆炸时将飞船成功地引导到返回地球的轨道上时起到了决定性作用,成为捷联式惯导系统发展中的一个里程碑。 捷联式惯性导航(strap-downinertialnavigation),捷联(strap-down)的英语原义是“捆绑”的意思。因此捷联式惯性导航也就是将惯性测量元件(陀螺仪和加速度计)直接装在导弹需要诸如姿态、速度、航向等导航信息的主体上,用计算机把测量信号变换为导航参数的一种导航技术。 一、捷联惯导系统工作原理及特点 惯导系统基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,之后将其变换到导航坐标系,得到在导航坐标系中的速度、偏航角和位臵信息等。 捷联惯导系统(SINS)是一种无框架系统,由三个速率陀螺、三个线加速度计和微型计算机组成。由于惯性元器件有固定漂移率,会造成导航误差,因此导弹通常采用指令、GPS或其组合等方式对惯导进行定时修正,以获取持续准确的位臵参数。如采用指令+捷联式惯导 捷联惯导系统能精确提供载体的姿态、地速、经纬度等导航参数,是利用惯性敏感器、基准方向及最初的位臵信息

来确定运载体的方位、位臵和速度的自主式航位推算导航系统。在工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰破坏。它完全是依靠载体自身设备独立自主地进行导航,它与外界不发生任何光、声、磁、电的联系,从而实现了与外界条件隔绝的假想的“封闭”空间内实现精确导航。所以它具有隐蔽性好,工作不受气象条件和人为的外界干扰等一系列的优点。 除此以外捷联惯导系统的最大特点是没有实体平台,即将陀螺仪和加速度计直接安装在机动载体上,在计算机中实时的计算姿态矩阵,通过姿态矩阵把导航加速度计测量的载体沿机体坐标系轴向的加速度信息变换到导航坐标系,然后进行导航计算。同时,从姿态矩阵的元素中提取姿态和航向信息.由此可见,在捷联惯导系统中平台的作用已由计算机及其软件的作用代替了,捷联式惯导系统采用的是数学平台。力学编排就是按照合适的数学模型由观测量计算出导航定位参数。具体地讲,利用陀螺仪测得的载体相对于惯性参照系的旋转角速度,计算出载体坐标系至导航计算坐标系之问的坐标转换矩阵;将测量的比力(加速度计测量载体相对于惯性空间的线加速度)变换至导航坐标系,并经过两次积分得到所需的速度位臵信息。 二、捷联惯导系统有以下独特优点: (1)去掉了复杂的平台机械系统,系统结构极为简单,

《惯性导航简介》

惯性导航简介 ——《导航概论》课程论文 专业:测绘工程A组姓名:师嘉奇学号:2015301610091 一.摘要与关键字 1.本文摘要:本文主要对导航工程的基本内涵,方法与原理进行简单介绍,主要介绍有关惯性导航的相关内容,并且根据在本学期《导航概论》这门课程上所学习的内容谈一谈自己对导航应用的设想以及对本课程教学的建议。 2.关键字:惯性导航,定位技术,应用与服务,发展与前景 二.导航工程基本内涵 导航定位的历史与人类自身发展的历史一样久远。人类的导航定位活动源自于其生活和生产的需要。陆地上的导航定位最早发生在人类祖先外出寻找食物或狩猎的过程中,那时,他们通常在沿途设置一些特殊的“标记”来解决回家迷路的问题。随着探索遥远地域的愿望与行动的出现,他们则通过观察和利用自然地标(如山峰、河流、树木、岩石等)以及自然天体(恒星)来解决导航定位问题这也使得他们能够翻越高山、跨越河流。谈到导航,很多人会认为这是一个在近现代才提出的词汇,但是,导航的历史已经非常久远了。从古代黄帝作战使用的指南车,到战国时期的司南,从近代航海使用的指南针,再到当今社会人手一部的智能手机,导航已经有了很悠久的历史。那么,导航工程的基本内涵到底是什么呢?

首先,我们可以通过两个英文的句子来大概了解一下到底什么是导航“when am I?”和“How and when to get there?”,这两个问题问的是我现在在哪?我要怎么到那里去?它们也指出了导航的内涵,那就是在哪,怎样去,多久到达。因此,通过科学的定义,将航行载体从起始点引导到目的地的过程称为导航,导航系统给出的基本参数是载体在空间的即时位置、速度和姿态、航向等,导航参数的确定由导航仪或导航系统完成。通过这种技术引导载体方向的过程即为导航。导航是解决人,事件,目标相互位置动态关系随时间变化的科学,技术,工程问题。 在室外或者自然环境中的导航,按照载体运动的范围,可分为海陆空天(海洋、陆地、空中、空间)导航四类;按照所采用的技术,常用的导航方法有,天文导航、惯性导航、陆基无线电导航、卫星导航、特征匹配辅助导航(如地形匹配、地磁匹配、重力匹配)等,以及上述导航方法之间的不同组合(组合导航)。室内定位导航作为当今导航技术发展的个重要分支,它借鉴室外导航的相关技术,同时结合现代通信技术、网络技术传感器技术以及计算机技术的最新发展,已经成为一个重要的研究热点并在人们日常工作和生活中逐步得到应用。室内导航与自然环境中的导航既有联系又有其自身的特点,其主要差异是来自于应用环境及所采用的技术方法不同。 导航系统有两种工作状态:指示状态和自动导航状态。如导航设备提供的导航信息仅供驾驶员操纵和引导载体用,则导航系统工作为指示状态,在指示状态下,导航系统不直接对载体进行控制,如果导

惯性导航系统

惯性导航系统 一、惯性导航系统(Inertial Navigation System,INS) 1、基本概念 惯性导航系统(INS)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。其工作环境不仅包括空中、地面,还可以在水下。 惯性导航系统目前已经发展出挠性惯导、光纤惯导、激光惯导、微固 态惯性仪表等多种方式。陀螺仪由传统的绕线陀螺发展到静电陀螺、激光 陀螺、光纤陀螺、微机械陀螺等。激光陀螺测量动态范围宽,线性度好, 性能稳定,具有良好的温度稳定性和重复性,在高精度的应用领域中一直 占据着主导位置。由于科技进步,成本较低的光纤陀螺(FOG)和微机械陀螺(MEMS)精度越来越高,是未来陀螺技术发展的方向。我国的惯导技术 近年来已经取得了长足进步,液浮陀螺平台惯性导航系统、动力调谐陀螺 四轴平台系统已相继应用于长征系列运载火箭。其他各类小型化捷联惯导、光纤陀螺惯导、激光陀螺惯导以及匹配GPS修正的惯导装置等也已经大量应用于战术制导武器、飞机、舰艇、运载火箭、宇宙飞船等。如漂移率 0.01°-0.02°/h 的新型激光陀螺捷联系统在新型战机上试飞,漂移率 0.05°/h 以下的光纤陀螺、捷联惯导在舰艇、潜艇上的应用,以及小型化挠性捷联惯导在各类导弹制导武器上的应用,都极大的改善了我军装备的 性能。 惯性导航系统有如下主要优点:(1)由于它是不依赖于任何外部信息,也不向外部辐射能量的自主式系统,故隐蔽性好,也不受外界电磁干扰的 影响;(2)可全天流全球、全时间地工作于空中、地球表面乃至水下;(3)能提供位置、速度、航向和姿态角数据,所产生的导航信息连续性好而且 噪声低;(4)数据更新率高、短期精度和稳定性好。其缺点是:(1)由 于导航信息经过积分而产生,定位误差随时间而增大,长期精度差;(2)每次使用之前需要较长的初始对准时间;(3)设备的价格较昂贵;(4) 不能给出时间信息。但惯导有固定的漂移率,这样会造成物体运动的误差,因此射程远的武器通常会采用指令、GPS等对惯导进行定时修正,以获取持续准确的位置参数。 2、惯性导航原理 目前,惯性导航分为两大类:平台式惯导和捷联式惯导。它们的主要区别在于,前者有实体的物理平台,陀螺和加速度计置于由陀螺定的平台上,该平台跟踪导航坐标系,以实现速度和位置解算,姿态数据直接取自于平台的环架;在捷联式惯导中,陀螺和加速度计直接固连在载体上。惯性平台的功能由计算机完成,

捷联惯性导航系统在矿井机车定位中应用研究袁小平

煤矿机械Coal Mine Machinery Vol.34No.01 Jan.2013 第34卷第01期2013年01月 0引言 矿井机车通常用于井下生产资料、设备、人员的运输工作。与地面机车调度系统相比,井下空间有限,巷道狭窄,很难进行快速地错车;再加上调度手段相对简单、信息化程度较低,很容易造成道路拥挤、货物积压,从而对生产一线的采掘工作造成不良的影响。因此,有必要利用现代化的手段对矿井机车进行定位和管理,以降低事故发生率、提高煤矿生产效率。 目前,我国煤矿矿井机车监控系统多采用信号、集中、闭塞控制系统。该系统利用传统的点式传感技术测量机车位置并发送至调度中心,从而使调度员清楚地掌握机车位置,以便对道岔和信号机的开放进行集中控制。信集闭系统可以实现对机车的识别、定位,大大减少了机车碰撞事故的发生,提高了机车的运输效率,但是需要在机车轨道附近布置大量传感器,由于井下环境恶劣,电磁干扰严重,传感器容易出现故障,维护工作量较大;点式传感技术定位精确度较低,甚至会丢失机车位置。 视频测速技术可以按照摄像机安装的位置分为2种情况。 (1)摄像机安装在巷道内的固定位置为便于信息的处理,一般为矿机机车安装车牌,将地面常用的车牌识别技术应用于井下,通过对车牌进行图像处理,计算其在背景图像中的像素差来获取机车的速度,利用实时速度信息计算出机车所在位置。由于煤矿工作环境恶劣,湿度大、粉尘多,机车车牌很有可能处于被煤屑覆盖的状态,从而使得信息获取和处理的难度增大,因此,虽然该方法在理论上具有可行性,但其实用价值有待商榷。此外,由于摄像机价格相对较高,分布密度不会很大,必然会造成视频信息丢失的现象,从而降低了机车位置信息的实时性; (2)利用车载摄像机进行定位在机车上安装2台相同的摄像机用于采集巷道视频,然后分析图像特征,利用双目立体视觉测距技术来计算机车运行的实时速度。利用机载设备进行信息采集时,需要使用无线设备将采集到的信息传递至井下局域网,并利用光纤传递至地面调度室对视频信息进行处理,计算出机车的运行速度和所在位置。该方法减少了所使用摄像机的数量,并且能够获取可视化的视频信息,具有较好的发展前景。然而,该方法需要利用无线网络传输视频信息,这在无线通信环境极其恶劣的煤矿井下无疑是十分具有挑战性的。 通过以上分析可以发现,上述常用的机车定位方法不论是在理论上还是在实现上都存在一定的缺陷,因而有必要利用其他技术实现机车的定位,鉴于此,本文将捷联惯性导航系统(SINS)应用到井下机车的定位当中。SINS利用机载的加速度传感器、陀螺仪等设备获取机车的三维加速度、角速度信息,利用无线网络将信息传递至井下局域网,通过有线网络传递至地面调度室,使用SINS数学平台计算出机车的速度、位置、行驶方向和姿态信息。 捷联惯性导航系统在矿井机车定位中应用研究 袁小平,陈羲梅,鲍捷,池庆 (中国矿业大学信息与电气工程学院,江苏徐州221116) 摘要:介绍煤矿机车定位常用的信集闭系统以及2种视频测速定位技术,分析3种方法的优点和缺陷,并针对其所分析出的缺陷,提出将捷联式惯性导航系统引入到煤矿机车定位系统中。以SINS为核心的定位系统有较好的实时性,定位精度好,且易于实现。 关键词:捷联惯性导航;煤矿;机车定位 中图分类号:TP334;TD524文献标志码:B文章编号:1003-0794(2013)01-0208-02 Research of Step-down Inertial Navigation System Used in Mine Locomotive Localization YUAN Xiao-ping,CHEN Xi-mei,BAO Jie,CHI Qing (Information and Electrical Engineering Institute of China University of Mining and Technology,Xuzhou221116,China)Abstract:The article introduced the mine locomotive localization commonly used technologies block signals system and two speed measurements through video,analyzed the advantages and disadvantages of the three methods,and for the founding defects,put up that the step-down inertial navigation system is introduced into the coal mine locomotive localization system.Localization system taking SINS as the core has real-time performance,well location accuracy and easy to implement. Key words:step-down inertial navigation;coal mines;locomotive localization 208

惯性导航系统

惯性导航系统 惯性导航系统(INS,以下简称惯导)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。其工作环境不仅包括空中、地面,还可以在水下。惯导的基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置等信息。 惯性导航系统(英语:INS )惯性导航系统是以陀螺和加速度计为敏感器件的导航参数解算系统,该系统根据陀螺的输出建立导航坐标系,根据加速度计输出解算出运载体在导航坐标系中的速度和位置。 惯性导航系统(INS,Inertial Navigation System)也称作惯性参考系统,是一种不依赖于外部信息、也不向外部辐射能量(如无线电导航那样)的自主式导航系统。其工作环境不仅包括空中、地面,还可以在水下。惯性导航的基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置等信息。 惯性导航系统属于推算导航方式,即从一已知点的位置根据连续测得的运动体航向角和速度推算出其下一点的位置,因而可连续测出运动体的当前位置。惯性导航系统中的陀螺仪用来形成一个导航坐标系,使加速度计的测量轴稳定在该坐标系中,并给出航向和姿态角;加速度计用来测量运动体的加速度,经过对时间的一次积分得到速度,速度再经过对时间的一次积分即可得到距离。 惯性导航系统有如下优点:1、由于它是不依赖于任何外部信息,也不向外部辐射能量的自主式系统,故隐蔽性好,也不受外界电磁干扰的影响;2、可全天候、全时间地工作于空中、地球表面乃至水下;3、能提供位置、速度、航向和姿态角数据,所产生的导航信息连续性好而且噪声低;4、数据更新率高、短期精度和稳定性好。 其缺点是:1、由于导航信息经过积分而产生,定位误差随时间而增大,长期精度差;2、每次使用之前需要较长的初始对准时间;3、设备的价格较昂贵;4、不能给出时间信息。[1]但惯导有固定的漂移率,这样会造成物体运动的误差,因此射程远的武器通常会采用指令、GPS等对惯导进行定时修正,以获取持续准确的位置参数。惯导系统目前已经发展出挠性惯导、光纤惯导、激光惯导、微固态惯性仪表等多种方式。陀螺仪由传统的绕线陀螺发展到静电陀螺、激光陀螺、光纤陀螺、微机械陀螺等。激光陀螺测量动态范围宽,线性度好,性能稳定,具有良好的温度稳定性和重复性,在高精度的应用领域中一直占据着主导位置。由于科技进步,成本较低的光纤陀螺(FOG)和微机械陀螺(MEMS)精度越来越高,是未来陀螺技术发展的方向。 分类捷联式惯性导航系统 解析式惯性导航系统 半解析式惯性导航系 编辑本段应用惯性导航系统用于各种运动机具中,包括飞机、潜[2]艇、航天飞机等运输工具及导弹,然而成本及复杂性限制了其可以应用的场合。 惯性系统最先应用于火箭制导,美国火箭先驱罗伯特.戈达尔(ROBERT GODDARD )试验了早期的陀螺系统。二战期间经德国人冯布劳恩改进应后,应用于V-2火箭制导。战后美国麻省理工学院等研究机构及人员对惯性制导进行深入研究,从而发展成应用飞机、火箭、航天飞机、潜艇的现代惯性导航系统。 编辑本段惯性技术的重要性惯性技术是对载体进行导航的关键技术之一,惯性技术是利用惯性原理或其它有关原理,自主测量和控制运载体运动过程的技术,它是惯性导航、惯性制导、惯性测量和惯性敏感器技术的总称。现代惯性技术在各国政府雄厚资金的支持下,

2捷联惯性导航系统初始对准原理

第二章 捷联惯导系统的初试对准 2.1引言 惯导系统是一种自主式导航系统。它不需要任何人为的外部信息,只要给定导航的初始条件(例如初始速度、位置等),便可根据系统中的惯性敏感元件测量的比力和角速率通过计算机实时地计算出各种导航参数。由于“平台”是测量比力的基准,因此“平台”的初始对准就非常重要。对于平台惯导系统,初试对准的任务就是要将平台调整在给定的导航坐标系的方向上。若采用游动方位系统,则需要将平台调水平---称为水平对准,并将平台的方位角调至某个方位角处---称为方位对准。对于捷联惯导系统,由于捷联矩阵T 起到了平台的作用,因此导航工作一开始就需要获得捷联矩阵T 的初始值,以便完成导航的任务。显然捷联惯导系统的初始对准就是确定捷联矩阵的初始值。在静基座条件下,捷联惯导系统的加速度计的输入量为---b g ,陀螺的输入量为地球自转角速率b ie ω。因此b g 与 b ie ω就成为初始对准的基准。将陀螺与加速度计的输入引出计算机,通过计算机 就可以计算出捷联矩阵T 的初始值。 由以上的分析可以看出,陀螺与加速度计的误差会导致对准误差;对准飞行器的干扰运动也是产生对准误差的重要因素。因此滤波技术对捷联系统尤其重要。由于初始对准的误差将会对捷联惯导系统的工作造成难以消除的影响,因此研究初始对准的误差传播方程也是非常必要的。 2.2 捷联惯导系统的基本工作原理 捷联式惯性导航系统,陀螺仪和加速度计直接与载体固联,加速度计测量是载体坐标系轴向比力,只要把这个比力转换到导航坐标系上,则其它计算就与平台式惯性导航系统一样,而比力转换的关键就是要实时地进行姿态基准计算来提供数学平台,即实时更新姿态矩阵n b C ,姿态矩阵也称为捷联矩阵。一般选择地理坐标系为导航坐标系,那么捷联矩阵n b C 也可表示为t b C , 其导航原理图如图2.1所示。

相关文档
最新文档