专升本高数数学第二章导数与微分
第二章导数与微分(专升本微积分)

(e x ) e x , de x e xdx
(4)
(loga
x)
1, x lna
1
d (loga
x)
dx x lna
(ln x) 1 , x
d(ln x) 1 dx x
(5) (sin x) cos x, d(sin x) cos xdx
(6) (cos x) sin x, d(cos x) sin xdx
y
x0
x
(1) f ( x) x 在x 0不可导,f ( x)
y
x x0 在x x0不可导;
x0 x
1, x 0
(2)
f
(
x)
1, 0,
x x
0 ,
0
f
(x)
0, 1,
x x
0 0
在x 0处不可导.
2.函数在点 x0 处可导的充要条件是其左、右
导数存在且相等,求分段函数(包括含绝对值
符号的函数)在分段点处的导数要用左、右导
数法。即
f ( x0 )存在 f( x0 ) f( x0 ),其中
f (
x0
)
lim
x0
f ( x0 x) x
f ( x0 ) lim x x0
f ( x) f (x0 ) x x0
f (
x0
)
lim
x 0
f ( x0 x) x
f ( x0 ) lim x x0
t x0
x00 f (0) lim f ( x) f (0)
x0
x
特征:导数是两个改变量比的极限,分子是
两点 x0与x0 x 函数值的改变量,其中有一项是 f ( x0 ) ;分母是两点 x0与x0 x 自变量的改变量,
专升本 高数第二章

g ( x)
第二章 一元函数微分学
(二)微分中值定理 1.罗尔定理
a, b上连续 a, b 内可导
f (a) f (b) f ( ) 0, (a, b)
特例 f (a) f (b)
2.拉格朗日中值定理 a, b上连续 f ( )
Q p Q EQ lim / p p 0 Q Ep Q p
在 p0 点处的弹性: EQ
EQ Q 改 变 % 时, Ep
Ep
表示当
p p0
p 在 p0 点产生 1 %
的改变
.
第二章 一元函数微分学
需求弹性与总收益: EQ p R pQ Q pQ Q1 Q Q1 Q Ep EQ (1)当 Ep 1 时,需求变动幅度小于价格变动幅度称为需求 对价格缺乏弹性. (2)当 时,需求变动幅度等于价格变动幅度称该商 品具有单位弹性.这时 R 0,总收益最大. (3)当 时,需求变动幅度大于价格变动幅度称为需求 对价格富有弹性.
存在,则称 y f ( x) 在 x0 点可导,并称该极限值为 y 的导数,记作 f ( x ), y , dy , df ( x)
0 x x0
f ( x0 x) f ( x0 ) y lim x 0 x x 0 x lim
f ( x)
在
x0
点
dx x x0
第二章 一元函数微分学
(重点)
第二章 一元函数微分学
一元 函数 微分 学
• 知识结构
导数
微分
应用
导数 概念
导数 计算
高阶 导数
微分 概念
微分 计算
专升本内容导数与微分

二阶导数旳导数称为三阶导数,
f ( x),
y,
d3 dx
y
3
.
一般地,函数f ( x)的n 1阶导数的导数称为
函数f ( x)的n阶导数, 记作
f
(n) ( x),
y(n) ,
dn dx
y
n
或
d
n f( dx n
x
)
.
5、微分旳定义
若函数y f (x)的增量 y f (x0 x) f (x0) A x o(x) ( A与x无关),则称A x为函数y f (x)在点x0处 的微分,记作 dy xx0 A x. 微分dy叫做函数增量 y的线性主部 .(微分旳实质)
d
(u) v
vdu udv v2
无论x是自变量还是中间变量 ,函数y f ( x) 的微分形式总是 dy f ( x)dx
注:若x为中间变量,则dx x
导数的几何意义 :
(1) f (x0 ) 0 表示有不平行于x轴的切线
(2) f(x)在x0连续,f (x0 ) (此时f (x)在x0不可导) 切线 : x x0 ,法线 : y y0
(a 0且a 1)
(sin x)(n) sin(x n ) , (cos x)(n) cos( x n )
2
2
常见类型
导数旳概念;连续与可导旳关系、可导与 可微旳关系。变限积分旳导数。复合函数旳导 数(微分);隐函数旳导数(微分);参数方程旳 导数。分段函数旳可导性(待定常数)。简朴函 数旳n阶导数。求曲线旳切线与法线。
试卷题型分布
导数:约30分(选择、填空、计算)
3). f (x)、g (x)皆不可导时,不能推出 f (x) g(x)、f (x) g(x)不可导
专升本高等数学参考教材

专升本高等数学参考教材高等数学参考教材一、导数与微分在高等数学中,导数与微分是一个非常重要的概念,它们是微积分的基础。
导数描述了函数在某一点的变化率,而微分则描述了函数在某一点附近的近似线性变化。
在本章节中,我们将详细介绍导数与微分的概念、性质和计算方法,并且给出一些典型的应用示例。
1. 导数的定义导数的定义是函数的变化率的极限,即函数在某一点的切线斜率。
我们通过极限的定义来推导出导数的表达式,并讨论了导数存在的条件和导数的几何意义。
2. 导数的运算法则导数的运算法则包括常数法则、幂法则、乘积法则、商法则以及复合函数法则。
这些法则不仅可以用来计算简单函数的导数,也可以用来计算复合函数的导数。
3. 高阶导数高阶导数是指导数的导数,例如二阶导数、三阶导数等。
我们讨论了高阶导数的性质和计算方法,并给出了一些实际问题的应用。
4. 微分的定义微分是导数的近似,也可以看作是函数在某一点的线性变化。
微分具有线性性质和可加性,可以通过导数计算微分。
5. 微分的应用微分在实际问题中有广泛的应用。
我们介绍了微分的几何应用、物理应用和经济应用,并通过具体的例子来进行讲解。
二、积分与不定积分积分是导数运算的逆运算,它描述了函数的累积效应。
在高等数学中,积分是解决各种数学问题的重要工具,涉及到面积、长度、体积等概念的计算,以及微分方程的求解等内容。
1. 不定积分的定义不定积分即原函数,是积分问题中最常见的形式。
不定积分的求解需要掌握基本积分公式和换元法等常用的计算方法。
2. 定积分的定义定积分描述了函数在一定区间上的累积效应,也可以理解为函数与坐标轴围成的曲边梯形的面积。
我们介绍了定积分的定义和性质,以及计算定积分的方法,包括分部积分法和换元法等。
3. 定积分的几何应用定积分在几何学中有广泛的应用,可以计算曲线长度、曲线与坐标轴围成的面积以及曲面的体积等问题。
我们通过具体的例子来说明定积分在几何学中的应用。
4. 定积分的物理应用定积分在物理学中也有重要的应用,可以计算物体的质量、动量和功等物理量。
专升本《高等数学》易错题解析-第二章:导数与微分

第二章 导数与微分导数与微分这一章的基本思想是用极限理论来研究函数。
这一章内容是高等数学微积分部分的基础,因此必须牢固地掌握其基本理论、基本方法和常用解题技巧。
在研究生入学考试中,本章是所有《高等数学》课程的必考内容之一,一些综合考试题往往也要涉及到此章内容。
通过这一章的学习,我们认为同学们应达到如下要求:1、熟练掌握导数的定义,特别是左导数、右导数概念。
知道导数的几何意义(切线斜率)和物理意义(如速度、加速度等)以及经济意义(如边际成本、边际收入等)。
2、熟练掌握求导数的方法。
3、掌握高阶导数的定义,计算方法。
4、了解微分定义,可导与可微的关系,一阶微分不变性。
一、知识网络图⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧可微一定可导可导一定可微导数与微分的关系几何意义定义微分计算方法基本公式导数定义)数定义、右导数定义、定义(一般定义、左导导数Dini 注:Dini 导数在控制理论与应用中有广泛的应用。
虽然高等数学教材上没有介绍,但计算机专业、电子专业的后继课程中有所涉及,因此我们认为还是有必要让学生知道。
定义:函数)(x f 在定义域D 内连续,)(x f 的四种Dini 导数定义为(1)hx f h x f x f D h )()(sup lim )(0-+=+→+, (2)hx f h x f x f D h )()(sup lim )(0-+=-→-, (3)hx f h x f x f D h )()(inf lim )(0-+=+→+, (4)hx f h x f x f D h )()(sup lim )(0-+=-→-。
二、典型错误分析例1.设)()()(x g a x x f -=,其中)(x g 在a x =处连续,求)(a f '。
[错解] 因为)()()(x g a x x f -=,则)()()()(x g a x x g x f '-+='。
专升本高等数学【导数与微分】知识点及习题库

第二章导数与微分【考试要求】关注公众号:学习吧同学获取更多升本资料1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数.2.会求曲线上一点处的切线方程与法线方程.3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法.4.掌握隐函数的求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数.5.理解高阶导数的概念,会求简单函数的n 阶导数.6.理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分.【考试内容】关注公众号:学习吧同学获取更多升本资料一、导数(一)导数的相关概念1.函数在一点处的导数的定义设函数()y f x =在点0x 的某个邻域内有定义,当自变量x 在0x 处取得增量x ∆(点0x x +∆仍在该邻域内)时,相应的函数取得增量00()()y f x x f x ∆=+∆-;如果y ∆与x ∆之比当0x ∆→时的极限存在,则称函数()y f x =在点0x 处可导,并称这个极限为函数()y f x =在点0x 处的导数,记为0()f x ',即00000()()()lim limx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆,也可记作x x y =',x x dy dx=或()x x df x dx=.说明:导数的定义式可取不同的形式,常见的有0000()()()limh f x h f x f x h→+-'=和000()()()limx x f x f x f x x x →-'=-;式中的h 即自变量的增量x ∆.2.导函数上述定义是函数在一点处可导.如果函数()y f x =在开区间I 内的每点处都可导,就称函数()f x 在区间I 内可导.这时,对于任一x I ∈,都对应着()f x 的一个确定的导数值,这样就构成了一个新的函数,这个函数就叫做原来函数()y f x =的导函数,记作y ',()f x ',dy dx 或()df x dx.显然,函数()f x 在点0x 处的导数0()f x '就是导函数()f x '在点0x x =处的函数值,即00()()x x f x f x =''=.3.单侧导数(即左右导数)根据函数()f x 在点0x 处的导数的定义,导数0000()()()lim h f x h f x f x h→+-'=是一个极限,而极限存在的充分必要条件是左右极限都存在并且相等,因此0()f x '存在(即()f x 在点0x 处可导)的充分必要条件是左右极限000()()lim h f x h f x h-→+-及000()()lim h f x h f x h+→+-都存在且相等.这两个极限分别称为函数()f x 在点0x 处的左导数和右导数,记作0()f x -'和0()f x +',即0000()()()lim h f x h f x f x h--→+-'=,0000()()()lim h f x h f x f x h ++→+-'=.现在可以说,函数()f x 在点0x 处可导的充分必要条件是左导数0()f x -'和右导数0()f x +'都存在并且相等.说明:如果函数()f x 在开区间(,)a b 内可导,且()f a +'及()f b -'都存在,就说()f x 在闭区间[,]a b 上可导.4.导数的几何意义函数()y f x =在点0x 处的导数0()f x '在几何上表示曲线()y f x =在点00(,())M x f x 处的切线的斜率,即0()tan f x α'=,其中α是切线的倾角.如果()y f x =在点0x 处的导数为无穷大,这时曲线()y f x =的割线以垂直于x 轴的直线0x x =为极限位置,即曲线()y f x =在点00(,())M x f x 处具有垂直于x 轴的切线0x x =.根据导数的几何意义及直线的点斜式方程,可得曲线()y f x =在点00(,)M x y 处的切线方程和法线方程分别为:切线方程:000()()y y f x x x '-=-;法线方程:0001()()y y x x f x -=--'.5.函数可导性与连续性的关系如果函数()y f x =在点0x 处可导,则()f x 在点0x 处必连续,但反之不一定成立,即函数()y f x =在点0x 处连续,它在该点不一定可导.(二)基本求导法则与导数公式1.常数和基本初等函数的导数公式(1)()0C '=;(2)1()xx μμμ-'=;(3)(sin )cos x x '=;(4)(cos )sin x x'=-;(5)2(tan)sec x x'=;(6)(cot)csc x x'=-;(7)(sec )sec tan x x x '=;(8)(csc )csc cot x x x'=-;(9)()ln xx aa a'=;(10)()xxee '=;(11)1(log )ln a x x a'=;(12)1(ln )x x'=;(13)(arcsin )x '=;(14)(arccos )x '=;(15)21(arctan )1x x '=+;(16)21(arccot )1x x '=-+.2.函数的和、差、积、商的求导法则设函数()u u x =,()v v x =都可导,则(1)()uv u v '''±=±;(2)()Cu Cu ''=(C 是常数);(3)()uv u v uv '''=+;(4)2(u u v uv v v ''-'=(0v ≠).3.复合函数的求导法则设()y f u =,而()u g x =且()f u 及()g x 都可导,则复合函数[()]y f g x =的导数为dy dy dudx du dx=⋅或()()()y x f u g x '''=⋅.(三)高阶导数1.定义一般的,函数()y f x =的导数()y f x ''=仍然是x 的函数.我们把()y f x ''=的导数叫做函数()y f x =的二阶导数,记作y ''或22d y dx ,即()y y ''''=或22d y d dy dx dx dx ⎛⎫= ⎪⎝⎭.相应地,把()y f x =的导数()f x '叫做函数()y f x =的一阶导数.类似地,二阶导数的导数叫做三阶导数,三阶导数的导数叫做四阶导数, ,一般的,(1)n -阶导数的导数叫做n 阶导数,分别记作y ''',(4)y , ,()n y 或33d y dx ,44d y dx , ,n nd ydx .函数()y f x =具有n 阶导数,也常说成函数()f x 为n 阶可导.如果函数()f x 在点x 处具有n 阶导数,那么()f x 在点x 的某一邻域内必定具有一切低于n 阶的导数.二阶及二阶以上的导数统称为高阶导数.(四)隐函数的导数函数的对应法则由方程(,)0F x y =所确定,即如果方程(,)0F x y =确定了一个函数关系()y f x =,则称()y f x =是由方程(,)0F x y =所确定的隐函数形式.隐函数的求导方法主要有以下两种:1.方程两边对x 求导,求导时要把y 看作中间变量.例如:求由方程0yexy e +-=所确定的隐函数的导数dy dx.解:方程两边分别对x 求导,()(0)yx xexy e ''+-=,得0ydy dy e y x dx dx ++=,从而ydy ydx x e =-+.2.一元隐函数存在定理x y F dydx F '=-'.例如:求由方程0yexy e +-=所确定的隐函数的导数dydx.解:设(,)y F x y e xy e =+-,则()()yx yy y e xy e F dy y x dx F e x e xy e y∂+-'∂=-=-=-∂'++-∂.(五)由参数方程所确定的函数的导数一般地,若参数方程()()x t y t ϕφ=⎧⎨=⎩确定y 是x 的函数,则称此函数关系所表达的函数为由该参数方程所确定的函数,其导数为()()dy t dx t φϕ'=',上式也可写成dy dy dt dxdx dt=.其二阶导函数公式为223()()()()()d y t t t t dx t φϕφϕϕ''''''-='.(六)幂指函数的导数一般地,对于形如()()v x u x (()0u x >,()1u x ≠)的函数,通常称为幂指函数.对于幂指函数的导数,通常有以下两种方法:1.复合函数求导法将幂指函数()()v x u x 利用指数函数和对数函数的性质化为()ln ()v x u x e的形式,然后利用复合函数求导法进行求导,最后再把结果中的()ln ()v x u x e 恢复为()()v x u x 的形式.例如:求幂指函数xy x =的导数dydx.解:因ln x x xx e =,故()ln ln (ln )(1ln )x xx x x dy d e e x x x x dx dx'==⋅=+.2.对数求导法对原函数两边取自然对数,然后看成隐函数来求y 对x 的导数.例如:求幂指函数x y x =的导数dy dx.解:对幂指函数x y x =两边取对数,得ln ln y x x =,该式两边对x 求导,其中y 是x的函数,得11ln dyx y dx⋅=+,故(1ln )(1ln )x dy y x x x dx =+=+.二、函数的微分1.定义:可导函数()y f x =在点0x 处的微分为00()x x dyf x dx='=;可导函数()y f x =在任意一点x 处的微分为()dy f x dx '=.2.可导与可微的关系函数()y f x =在点x 处可微的充分必要条件是()y f x =在点x 处可导,即可微必可导,可导必可微.3.基本初等函数的微分公式(1)()0d C dx=;(2)1()d xx dxμμμ-=;(3)(sin )cos d x xdx =;(4)(cos )sin d x xdx =-;(5)2(tan )sec d x xdx=;(6)(cot )csc d x xdx=-;(7)(sec )sec tan d x x xdx=;(8)(csc )csc cot d x x xdx=-;(9)()ln xx d aa adx =;(10)()xx d ee dx=;(11)1(log )ln ad x dx x a =;(12)1(ln )d x dx x=;(13)(arcsin )d x =;(14)(arccos )d x =-;(15)21(arctan )1d x dx x=+;(16)21(arccot )1d x dx x=-+.4.函数和、差、积、商的微分法则设函数()u u x =,()v v x =都可导,则(1)()d uv du dv±=±;(2)()d Cu Cdu =(C 是常数);(3)()d uv vdu udv=+;(4)2()u vdu udv d v v -=(0v≠).5.复合函数的微分法则设()y f u =及()u g x =都可导,则复合函数[()]y f g x =的微分为()()x dy y dx f u g x dx '''==.由于()g x dx du '=,所以复合函数[()]y f g x =的微分公式也可写成()dyf u du'=或udy y du '=.由此可见,无论u 是自变量还是中间变量,微分形式()dyf u du '=保持不变.这一性质称为微分形式的不变性.该性质表明,当变换自变量时,微分形式()dy f u du '=并不改变.【典型例题】关注公众号:学习吧同学获取更多升本资料【例2-1】以下各题中均假定0()f x '存在,指出A 表示什么.1.000()()limx f x x f x A x∆→-∆-=∆.解:根据导数的定义式,因0x∆→时,0x -∆→,故0000000()()()()limlim ()x x f x x f x f x x f x f x x x∆→∆→-∆--∆-'=-=-∆-∆,即0()A f x '=-.2.设0()limx f x A x→=,其中(0)0f =,且(0)f '存在.解:因(0)0f =,且(0)f '存在,故00()()(0)lim lim (0)0x x f x f x f f x x →→-'==-,即(0)A f '=.3.000()()limh f x h f x h A h→+--=.解:根据导数的定义式,因0h →时,0h -→,故00000000()()()()()()lim lim h h f x h f x h f x h f x f x f x h h h →→+--+-+--=00000()()[()()]limh f x h f x f x h f x h→+----=000000()()()()lim lim h h f x h f x f x h f x h h →→+---=+-000()()2()f x f x f x '''=+=,即02()A f x '=.【例2-2】分段函数在分界点处的导数问题.1.讨论函数322,1()3,1x x f x x x ⎧≤⎪=⎨⎪>⎩在1x =处的可导性.解:根据导数的定义式,3211122()(1)233(1)lim lim 1)2113x x x x f x f f x x x x ----→→→--'===++=--,2112()(1)3(1)lim lim11x x x f x f f x x +++→→--'===+∞--,故()f x 在1x =处的左导数(1)2f -'=,右导数不存在,所以()f x 在1x =处不可导.2.讨论函数21sin ,0()0,0x x f x xx ⎧≠⎪=⎨⎪=⎩在0x=处的可导性.解:因20001sin()(0)1(0)limlim lim sin 0x x x x f x f x f x x x x→→→--'====-,故函数()f x 在0x =处可导.3.已知函数2,1(),1x x f x ax b x ⎧≤=⎨+>⎩在1x =处连续且可导,求常数a 和b 的值.解:由连续性,因(1)1f =,211(1)lim ()lim 1x x f f x x ---→→===,11(1)lim ()lim()x x f f x ax b a b +++→→==+=+,从而1a b += ①再由可导性,2111()(1)1(1)lim lim lim(1)211x x x f x f x f x x x ----→→→--'===+=--,11()(1)1(1)lim lim 11x x f x f ax b f x x +++→→-+-'==--,而由①可得1b a =-,代入(1)f +',得11()(1)(1)lim lim 11x x f x f ax a f a x x +++→→--'===--,再由(1)(1)f f -+''=可得2a =,代入①式得1b =-.【例2-3】已知sin ,0(),0x x f x x x <⎧=⎨≥⎩,求()f x '.解:当0x <时,()(sin )cos f x x x ''==,当0x ≥时,()()1f x x ''==,当0x =时的导数需要用导数的定义来求.0()(0)sin (0)lim lim 10x x f x f x f x x ---→→-'===-,0()(0)0(0)lim lim 10x x f x f x f x x+++→→--'===-,(0)(0)1f f -+''==,故(0)1f '=,从而cos ,0()1,0x x f x x <⎧'=⎨≥⎩.【例2-4】求下列函数的导数.1.(sin cos )x y e x x =+.解:()(sin cos )(sin cos )x x y e x x e x x '''=+++(sin cos )(cos sin )x x e x x e x x =++-2cos x e x =.2.2sin1y x =+.解:222222sin cos 111x x x y x x x ''⎛⎫⎛⎫'==⋅ ⎪ +++⎝⎭⎝⎭2222222(1)(2)cos 1(1)x x x x x +-=⋅++22222(1)2cos (1)1x x x x -=++.3.ln cos()x y e =.解:1ln cos()cos()cos()xxx y e e e '''⎡⎤⎡⎤==⋅⎣⎦⎣⎦1sin()()cos()x xx e e e '⎡⎤=⋅-⋅⎣⎦1sin()cos()x x x e e e ⎡⎤=⋅-⋅⎣⎦tan()x x e e =-.4.ln(yx =+.解:ln((y x x '⎡⎤''=+=+⎣⎦21⎡⎤'=+⎢⎣1⎡⎤=+⎢⎣==.【例2-5】求下列幂指函数的导数.1.sin x y x =(0x >).解:sin sin ln sin ln ()()(sin ln )x x x x x y x e e x x ''''===⋅sin ln 1(cos ln sin )x xex x x x=⋅+⋅sin sin (cos ln )x xx x x x=+.说明:本题也可采用对数求导法,即:对幂指函数sin x y x =两边取对数,得ln sin ln y x x =,该式两边对x 求导,其中y 是x 的函数,得11cos ln sin y x x x y x'⋅=+⋅,故1(cos ln sin )y y x x x x '=+⋅sin sin (cos ln )xx x x x x =+.2.1xx yx ⎛⎫= ⎪+⎝⎭(0x >).解:ln ln 11ln 11x x x x x xx x x y e e x x x ++'''⎡⎤⎡⎤⎛⎫⎛⎫'===⋅⎢⎥ ⎪ ⎢⎥++⎝⎭⎝⎭⎢⎥⎣⎦⎣⎦ln 11ln 11xx xx x x ex xx x +⎡⎤'+⎛⎫⎢⎥=⋅+⋅⋅ ⎪++⎢⎥⎝⎭⎣⎦()ln1211ln 11x x xx x x x ex x x x +⎡⎤++-=⋅+⋅⋅⎢⎥++⎢⎥⎣⎦1ln 111xx x x x x ⎛⎫⎛⎫=+ ⎪ ⎪+++⎝⎭⎝⎭.说明:本题也可采用对数求导法,即:对幂指函数1xx y x ⎛⎫= ⎪+⎝⎭两边取对数,得ln ln 1xy x x=+,该式两边对x 求导,其中y 是x 的函数,得111ln ln 1111x x x x y x y x x x x x'+⎛⎫'⋅=+⋅⋅=+ ⎪++++⎝⎭,故11ln ln 11111xx x x y y x x x x x ⎛⎫⎛⎫⎛⎫'=+=+ ⎪ ⎪ ⎪+++++⎝⎭⎝⎭⎝⎭.【例2-6】用对数求导法求下列函数的导数.1.xy yx =(0x >).解:等式两边取对数,得lnln x y y x =,两边对x 求导,注意y 是x 的函数,得ln ln x y y y y x y x ''+⋅=+,整理得(ln )ln x yx y y y x'-=-,则22ln ln ln ln yy y xy yx y xx xy x x y --'==--.2.y=.解:等式两边取对数,得21ln lnln 2y ==,即2212ln ln(1)ln(2)5y x x =+-+,也即2210ln 5ln(1)ln(2)y x x =+-+,两边对x 求导,注意y 是x 的函数,得221010212x x y y x x '=-++,故222210*********y x x x x y x x x x ⎛⎫⎛⎫'=-=- ⎪ ⎪++++⎝⎭⎝⎭.【例2-7】求下列抽象函数的导数.1.已知函数()yf x =可导,求函数1sin ()xy f e=的导数dy dx.解:111sin sin sin ()()()x x x dy d f e f e e dx dx ⎡⎤'==⋅⎢⎥⎣⎦11sin sin 1()()sin x x f e e x '=⋅⋅1111sin sin sin sin 22cos cos ()()sin sin xxx x x x f eef e x x-=⋅⋅=-.2.设函数()f x 和()g x 可导,且22()()0f x g x +≠,试求函数y =的导数dy dx.解:22()()f x g x dy d dx dx '⎡⎤+==''''==.【例2-8】求由下列方程所确定的隐函数()y y x =的导数.1.220xxy y -+=.解:方程两边分别对x 求导,得220dy dyx y x y dx dx--⋅+⋅=,整理得(2)2dy x y x y dx -=-,故22dy x ydx x y-=-.说明:此题也可用隐函数存在定理来求解,即:设22(,)F x y x xy y =-+,则2222x y F dy x y x y dx F x y x y '--=-=-='-+-.2.1y yxe =+.解:方程两边分别对x 求导,得0y y dy dye xe dx dx=++⋅,整理的(1)y y dy xe e dx -=,故1yydy edx xe =-.说明:此题也可用隐函数存在定理来求解,即:设(,)1y F x y xe y =+-,则11y yx y yy F dy e e dx F xe xe '=-=-='--.【例2-9】求由下列参数方程所确定的函数()y y x =的导数.1.2t tx e y e -⎧=⎨=⎩.解:()()21222t t ttt dye dy e dt dx dx e e e dt--'-====-'.2.111x t t y t ⎧=⎪⎪+⎨⎪=⎪+⎩.解:()()2211111111t t t dy t dy t dt dx dx dt t t '+-⎛⎫ ⎪++⎝⎭====--'⎛⎫ ⎪++⎝⎭.【例2-10】求下列函数的微分.1.22()tan (12)f x x =+.解:因22222()tan (12)2tan(12)sec (12)4f x x x x x ''⎡⎤=+=+⋅+⋅⎣⎦,故222()8tan(12)sec (12)dy f x dx x x x dx '==++.2.()f x =.解:因()()f x ''==⋅=-故()dy f x dx '==-.3.2()arctan f x x =解:因(22()arctan 2arctan f x x x x ''==,故2()2arctan dy f x dx x dx ⎡'==⎢⎣.4.22()sin ln(1)f x x x =+.解:因222222()sin ln(1)2sin cos ln(1)sin 1xf x x x x x x x x ''⎡⎤=+=++⎣⎦+,故2222sin ()sin 2ln(1)1x x dy f x dx x x dx x ⎡⎤'==++⎢⎥+⎣⎦.【例2-11】求曲线x y xe -=在点(0,1)处的切线方程和法线方程.解:()x x x y xe e xe ---''==-,01x y ='=,故曲线在点(0,1)处的切线方程为11(0)y x -=⋅-,即10x y -+=;法线方程为11(0)y x -=-⋅-即10x y +-=.【例2-12】求曲线224xxy y ++=在点(2,2)-处的切线方程和法线方程.解:这是由隐函数所确定的曲线,按隐函数求导数,有220x y xy y y ''+++⋅=,即22x y y x y+'=-+;由导数的几何意义,曲线在点(2,2)-处的斜率为2222212x x y y x y y x y===-=-+'=-=+,故曲线在点(2,2)-处的切线方程为21(2)y x +=⋅-,即40x y --=;法线方程为21(2)y x +=-⋅-,即0x y +=.【例2-13】求椭圆2cos 4sin x t y t=⎧⎨=⎩在点4t π=处的切线方程和法线方程.解:将4t π=代入椭圆方程,得曲线上对应的点为,又4cos 2cot 2sin t t y t y t x t''===-'-,切线斜率为442cot 2t t y tππ=='=-=-,故所求切线方程为2(y x -=--,即20x y +-=;所求法线方程为1(2y x -=--,即20x y +-=.【历年真题】关注公众号:学习吧同学获取更多升本资料一、选择题1.(2010年,1分)已知(1)1f '=,则0(12)(1)limx f x f x∆→-∆-∆等于()(A )1(B )1-(C )2(D )2-解:根据导数的定义,00(12)(1)[1(2)](1)lim2lim2x x f x f f x f x x∆→∆→-∆-+-∆-=-∆-∆2(1)2f '=-=-,选(D ).2.(2010年,1分)曲线2y x =在点(1,1)处的法线方程为()(A )y x =(B )322x y =-+(C )322x y=+(D )322x y =--解:根据导数的几何意义,切线的斜率1122x x ky x =='===,故法线方程为11(1)2y x -=--,即322x y =-+,选(B ).3.(2010年,1分)设函数()f x 在点0x 处不连续,则()(A )0()f x '存在(B )0()f x '不存在(C )lim()x f x →∞必存在(D )()f x 在点0x 处可微解:根据“可导必连续”,则“不连续一定不可导”,选项(B )正确.4.(2009年,1分)若000()()lim h f x h f x h A h→+--=,则A =()(A )0()f x '(B )02()fx '(C )0(D )01()2f x '解:000()()limh f x h f x h A h→+--=00000()()[()()]limh f x h f x f x h f x h→+----=000000()()()()lim lim h h f x h f x f x h f x h h →→+---=+-000()()2()f x f x f x '''=+=,选项(B )正确.5.(2008年,3分)函数()f x x =,在点0x =处()f x ()(A )可导(B )间断(C )连续不可导(D )连续可导解:由()f x x =的图象可知,()f x 在点0x =处连续但不可导,选项(C )正确.说明:()f x x =的连续性和可导性,也可根据连续和导数的定义推得.6.(2008年,3分)设()f x 在0x 处可导,且0()0f x '≠,则0()f x '不等于()(A )000()()limx x f x f x x x →--(B )000()()limx f x x f x x∆→+∆-∆(C )000()()limx f x x f x x∆→-∆-∆(D )000()()lim()x f x x f x x ∆→-∆--∆解:根据导数的定义,选项(C )符合题意.7.(2007年,3分)下列选项中可作为函数()f x 在点0x 处的导数定义的选项是()(A )001lim [()()]n n f x f x n →∞+-(B )000()()limx x f x f x x x →--(C )000()()limx f x x f x x x ∆→+∆--∆∆(D )000(3)()limx f x x f x x x∆→+∆-+∆∆解:选项(A )000001(()1lim [()()]lim()1n n f x f x n n f x f x f x nn+→∞→∞+-'+-==,选项(C )0000()()lim2()x f x x f x x f x x∆→+∆--∆'=∆,选项(D )0000(3)()lim 2()x f x x f x x f x x∆→+∆-+∆'=∆,故选(B ).8.(2007年,3分)若()f u 可导,且(2)x y f =,则dy =()(A )(2)x f dx '(B )(2)2x x f d '(C )[(2)]2x xf d '(D )(2)2x x f dx'解:因(2)(2)2(2)2ln 2x x x x x dy df f d f dx''===,故选项(B )正确.9.(2006年,2分)设()u x ,()v x 为可导函数,则(ud v =()(A )du dv(B )2vdu udv u -(C )2udv vdu u +(D )2udv vdu u -解:222()(u u u v uv u vdx uv dx vdu udvd dx dx v v v v v ''''---'====,选(B ).10.(2005年,3分)设()(1)(2)(99)f x x x x x =--- ,则(0)f '=()(A )99!-(B )0(C )99!(D )99解:当0x=时,()f x '中除(1)(2)(99)x x x --- 项外,其他全为零,故(0)(01)(02)(099)99!f '=---=- ,选项(A )正确.11.(2005年,3分)设ln y x =,则()n y =()(A )(1)!nnn x --(B )2(1)(1)!nn n x ---(C )1(1)(1)!n nn x ----(D )11(1)!n n n x --+-解:由ln y x =可得,1y x '=,21y x''=-,433222!x y x x x-'''=-==,2(4)64233!x yx x⋅=-=-, ,对比可知,选项(C )正确.12.(2005年,3分)2sin ()d xd x =()(A )cos x(B )sinx-(C )cos 2x (D )cos 2x x解:2sin cos cos ()22d x xdx xd x xdx x==,选项(D )正确.二、填空题1.(2010年,2分)若曲线()yf x =在点00(,())x f x 处的切线平行于直线23y x =-,则0()f x '=.解:切线与直线平行,则切线的斜率与直线的斜率相等,故0()2f x '=.2.(2010年,2分)设cos(sin )y x =,则dy =.解:cos(sin )sin(sin )cos dyd x x xdx ==-.3.(2008年,4分)曲线21y x =+在点(1,2)的切线的斜率等于.解:由导数的几何意义可知,切线斜率(1,2)(1,2)22k y x'===.4.(2008年,4分)由参数方程cos sin x t y t=⎧⎨=⎩确定的dy dx=.解:(sin )cos cot (cos )sin t t y dy t t t dx t tx ''====-'-'.5.(2006年,2分)曲线2sin y x x =+在点(,1)22ππ+处的切线方程是.解:切线的斜率(,1)(,1)2222(12sin cos )1k y x x ππππ++'==+=,故切线方程为(11()22y x ππ-+=⋅-,即1y x =+.6.(2006年,2分)函数2()(1)f x x x x=-不可导点的个数是.解:2222(1),0()(1),0x x x f x x x x ⎧+≥=⎨-+<⎩,显然,当0x ≠时,()f x 可导;当0x=时,2200()(0)(1)(0)lim lim 00x x f x f x x f x x+++→→-+'===-,2200()(0)(1)(0)lim lim 00x x f x f x x f x x-+-→→--+'===-,故(0)0f '=.故函数()f x 的不可导点的个数为0.7.(2006年,2分)设1(1xy x=+,则dy =.解:因11ln(1)ln(1)21111[(1)][][ln(1)()]11x x x x x y e e x x x x x++'''=+==++⋅⋅-+111(1)[ln(1)]1x x x x =++-+,故111(1)[ln(1)]1x dy dx x x x =++-+.三、计算题1.(2010年,5分)设函数()y y x =由方程2xy x y =+所确定,求x dydx=.解:方程2xyx y =+两边对x 求导,考虑到y 是x 的函数,得2ln 2()1xy dy dy y xdx dx ⋅+=+,整理得2ln 22ln 21xy xydy dy y x dx dx+⋅=+,故2ln 2112ln 2xy xydy y dx x -=-.当0x =时,代入原方程可得1y =,所以0012ln 21ln 21ln 2112ln 21xy x x xy y dy y dx x ===--===--.说明:当得到2ln 2()1xydy dyy xdx dx⋅+=+后,也可直接将0x =,1y =代入,得ln 21dy dx =+,故0ln 21x dydx==-.2.(2010年,5分)求函数sin x y x =(0x >)的导数.解:sin sin ln sin ln sin ln 1()()()(cos ln sin )x x x x x x xy x e e e x x x x ''''====+⋅sin sin (cos ln )x xx x x x=+.3.(2009年,5分)设22sin1xy x =+,求dy dx.解:因22sin1x y x =+,故22(sin )1dy x dx x'=+2222222222(1)22222cos cos 1(1)(1)1x x x x x x x x x x +-⋅-=⋅=++++.4.(2006年,4分)设()f x可导,且()f x '=,求df dx .解:df f dx ''=⋅2x x==-.5.(2005年,5分)已知sin ,0(),0x tdtx f x xa x ⎧⎪≠=⎨⎪=⎩⎰.(1)()f x 在0x =处连续,求a ;(2)求()f x '.解:(1)因sin lim ()limlimsin 0xx x x tdt f x x x→→→===⎰,故由()f x 在0x =处连续可得,0lim()(0)x f x f →=,即0a =.(2)当0x ≠时,002sin sin sin ()x x tdt x x tdt f x x x '⎛⎫- ⎪'== ⎪⎝⎭⎰⎰;当0x =时,2000sin sin ()(0)(0)lim limlimxxx x x tdt tdt f x f xf x xx →→→-'===-⎰⎰0sin 1lim22x x x →==.故2sin sin,0 ()1,02xx x tdtxxf xx⎧-⎪≠⎪'=⎨⎪=⎪⎩⎰.关注公众号:学习吧同学获取更多升本资料。
第二章 (专升本)导数与微分

第二章 导数与微分第一讲:导数的概念一、是非题1.])([)(00'='x f x f ; ( )2.曲线)(x f y =在点))(,(00x f x 处有切线,则)(0x f '一定存在; ( )3.若)()(x g x f '>',则)()(x g x f >; ( )4.周期函数的导函数仍为周期函数; ( )5.偶函数的导数为奇函数,奇函数的导数为偶函数; ( )6.)(x f y =在0x x =处连续,则)(0x f '一定存在。
( ) 二、填空题1.设)(x f 在0x 处可导,则______________)()(lim000=∆-∆-→∆xx f x x f x ,___________)()(lim000=--+→hh x f h x f h ;2.若)0(f '存在且0)0(=f ,则_______________)(lim=→xx f x ; 3.已知⎩⎨⎧-=,,)(22x x x f ,0,0<≥x x 则)0(f '= ; 4.当物体的温度高于周围介质的温度时,物体就不断冷却,若物体的温度T 与时间t 的函数关系为)(t T T =,则该物体在时刻t 的冷却速度为 ;5.物体作直线运动,运动方程为t t s 532-=,则物体在s 2到s t )2(∆+的平均速度为 ,物体在s 2时的速度为 。
三、选择题1.函数)(x f 的)(0x f '存在等价于( );A 、)]()1([lim 00x f nx f n n -+∞→存在 B 、h x f h x f h )()(lim000--→存在 C 、x x x f x x f x ∆∆--∆+→∆)()(lim000存在 D 、xx x f x x f x ∆∆+-∆+→∆)()3(lim 000存在2.若函数)(x f 在点0x 处可导,则)(x f 在点0x 处( ); A 、可导 B 、不可导 C 、连续但未必可导 D 、不连续四、利用定义求下列函数的导数1.21x y = 2.x y cos =3.),(为常数b a b ax y +=五、设)(x ϕ在a x =处连续,)()()(x a x x f ϕ-=,求)(a f '。
专升本高数2PPT课件

f (4) (x) ________.
34.
设
参
数
方
程
x
y
2t 1 3t2 1
所
确
定
的
函
数
为
y
y(x) ,则
d2 y dx2
________.
42 . 设 由 方 程 e y xy2 e2 确 定 的 函 数 为
y y(x) ,求 dy . dx x0
2011年河南专升本
2.1 导数的概念
本章重点考核的知识点
• 1.导数的定义; • 2.导数的几何意义; • 3.导数的四则运算法则; • 4.反函数求导法则; • 5.复合求导法则; • 6.简单函数的高阶导数; • 7.隐函数求导; • 8.对数求导法; • 9.幂指函数求导; • 10.参数方程求导; • 11.一元函数一阶微分形式的不变性。
2010年河南专升本
6.
函数
f (x) 在点 x
x0 处可导,且
f
(x0 )
1,则 lim h0
f (x0 ) f (x0 3h) 2h
A. 2 3
B. 2 3
C. 3 2
D. 3 2
8. 设函数 y 1 x2 2sin π ,则 y 5
A. x 2 cos π
1 x2
5
B. x 1 x2
0
00 0
为
y f (x ) f (x )(x x );
0
0
0
曲线 y f (x)在点M (x , y )处的法线方程为 00 0
y f (x ) 1 (x x ) ,( f (x ) 0).
0
f (x0 )
0
0
专升本高数第二章导数-PPT课件

左、右导数
设函数 y f (x )在点 x 如果 0的某个邻域内有定义
f (x x ) f (x y 0 0) 左极限 lim lim 存在,那 x 0 x 0 x x 称此极限值为函数 y f (x )在点 x 0 处的左导数。
2 x e b( 1 b ) f ( 0 ) l i m 2 x 0 x
f ( 0 ) f ( 0 ) , a 2
(二) 曲线的切线方程及法线方程
设 曲 线 的 方 程 为 y f() x , 若 f() x在 x 处 可 导 , 0 则 曲 线 在 点 M ( x ,y ) 处 的 切 线 方 程 为 0 0 y y f ( x ) ( x x ) 0 0 0
仍是 x 的函数,称为 f (x)的导函数。
1. 基本导数表
x x
1 c 0 , ( x ) x
x x
( aa ) l n a , ( e ) e
1 1 ( l o g x ) , ( l n x ) a x l n a x
( s i n x ) c o s( x , c o s x )s i n x 2 2 ( t a n x ) s e c x , ( c o t x ) c s c x ( s e c x ) s e c x t a n x , ( c s c x ) c s c x c o t x
第二章 一元函数微分学
§2.1. 导数与微分
(一) 导数的概念
我们再用极限来研究变量变化 的快慢程度,这即是微分学中 的重要概念—导数。
专升本高等数学课件 第二章

4. 可导一定连续,但连续不一定可导(两者关系)
5. 求导数最基本的方法: 由定义求导数. 已学求导公式
(C) 0;
( x ) x1 ;
(sin x) cos x; (cos x) sin x;
(a x ) a x ln a ;
(ex ) ex ;
(log
x a
)
1 x ln a
;
(ln x) 1
第一节 导数与微分
一元函数 微分学:导数与微分 微积分学 积分学:不定积分、定积分
一、问题的提出 二、导数的定义 三、导数的几何意义与物理意义 四、可导与连续的关系 五、小结 思考题
一、问题的提出
1.【自由落体运动的瞬时速度问题】
如图, 求 t0时刻的瞬时速度,
s
f
(t)
1 2
gt
2
取一邻近于 t0的时刻 t, 运动时间t,
lim
h0
log
a
(1
h
)
x h
x
1 x
loga
e
1. x ln a
即
(loga
x)
1 x ln a
.
(ln x) 1 . x
【例6 】证明函数
在 x = 0 不可导.
【证】 y f (0 h) f (0) h
x
h
h
|h|
h
lim lim 1,
h h h0
h0
|h|
h
lim lim 1
【解】 由导数的几何意义,得切线斜率为
k y x1 2
( 1 ) x
x1 2
1 x2
x1 2
4.
切线方程为 y 2 4( x 1), 即 4x y 4 0.
2024重庆专升本高数考纲

2024重庆专升本高数考纲考试科目:高等数学考试时间:3小时考试形式:闭卷考试考试范围:根据2024年重庆专升本高数考纲的要求,考试范围涵盖以下内容:第一章:函数与极限1. 函数的概念与性质2. 三角函数与反三角函数3. 极限的概念与性质4. 极限计算5. 极限存在准则第二章:导数与微分1. 导数的概念与性质2. 基本导数公式3. 已知函数及其导数求其他函数导数4. 高阶导数5. 微分的概念与性质第三章:积分与不定积分1. 定积分与不定积分的概念与性质2. 不定积分的计算3. 定积分的计算4. 牛顿—莱布尼茨公式5. 曲线的面积与弧长第四章:微分方程1. 微分方程的基本概念与解法2. 一阶线性微分方程3. 可分离变量的微分方程4. 高阶线性微分方程第五章:级数1. 级数的概念与性质2. 正项级数的审敛法3. 收敛级数的性质4. 幂级数的收敛域与展开式5. 泰勒展开与函数的应用考试要求:1. 考生需熟练掌握每个章节的基本概念、定理和公式,具备基本的计算能力和问题解决能力。
2. 考生需要理解数学概念的几何意义和实际应用,并能够将数学知识应用到实际问题中。
3. 考试重点关注对基本概念的理解与应用能力,能够熟练计算各种题型,并正确使用公式和定理解决问题。
4. 考试中会出现应用题,要求考生能够将数学知识与实际情况结合,并能清晰表达解题思路和方法。
5. 考试要求考生在规定时间内完成试卷,要求答案准确、清晰、简洁。
答案中需要有必要的计算过程和推理过程。
考试评分:1. 考试总分为150分,按照难易程度和题型的权重划分分值。
2. 题型包括选择题、计算题和应用题,每种题型的分值占比根据考试题目而定。
3. 考试评分以答案的准确性、清晰度和完整度为主要评判标准。
考生在答题时应严格按照要求书写答案,注意排版整洁美观,并标明计算过程和推理过程。
希望广大考生能够充分准备,理解并掌握2024年重庆专升本高数考纲的要求,提前复习并解决潜在的问题,以取得优异的成绩。
2山东专升本高等数学第二章导数与微分

第二章 导数与微分【考试要求】1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数.2.会求曲线上一点处的切线方程与法线方程.3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法.4.掌握隐函数的求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数.5.理解高阶导数的概念,会求简单函数的n 阶导数.6.理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分.【考试内容】一、导数(一)导数的相关概念1.函数在一点处的导数的定义设函数()yf x =在点0x 的某个邻域内有定义,当自变量x 在0x 处取得增量x ∆(点0x x +∆仍在该邻域内)时,相应的函数取得增量00()()y f x x f x ∆=+∆-;如果y ∆与x ∆之比当0x ∆→时的极限存在,则称函数()y f x =在点0x 处可导,并称这个极限为函数()yf x =在点0x 处的导数,记为0()f x ',即00000()()()limlimx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆, 也可记作0x x y =',x x dydx=或()x x df x dx=.说明:导数的定义式可取不同的形式,常见的有0000()()()limh f x h f x f x h→+-'=和000()()()limx x f x f x f x x x →-'=- ;式中的h 即自变量的增量x ∆.2.导函数上述定义是函数在一点处可导.如果函数()y f x =在开区间I 内的每点处都可导,就称函数()f x 在区间I 内可导.这时,对于任一x I ∈,都对应着()f x 的一个确定的导数值,这样就构成了一个新的函数,这个函数就叫做原来函数()y f x =的导函数,记作y ',()f x ',dy dx 或()df x dx.显然,函数()f x 在点0x 处的导数0()f x '就是导函数()f x '在点0x x =处的函数值,即00()()x x f x f x =''=.3.单侧导数(即左右导数)根据函数()f x 在点0x 处的导数的定义,导数0000()()()limh f x h f x f x h→+-'=是一个极限,而极限存在的充分必要条件是左右极限都存在并且相等,因此0()f x '存在(即()f x 在点0x 处可导)的充分必要条件是左右极限 000()()lim h f x h f x h-→+- 及000()()lim h f x h f x h+→+- 都存在且相等.这两个极限分别称为函数()f x 在点0x 处的左导数和右导数,记作0()f x -'和0()f x +',即0000()()()lim h f x h f x f x h--→+-'=,0000()()()lim h f x h f x f x h++→+-'=.现在可以说,函数()f x 在点0x 处可导的充分必要条件是左导数0()f x -'和右导数0()f x +'都存在并且相等.说明:如果函数()f x 在开区间(,)a b 内可导,且()f a +'及()f b -'都存在,就说()f x 在闭区间[,]a b 上可导. 4.导数的几何意义函数()y f x =在点0x 处的导数0()f x '在几何上表示曲线()y f x =在点00(,())M x f x 处的切线的斜率,即0()tan f x α'=,其中α是切线的倾角.如果()y f x =在点0x 处的导数为无穷大,这时曲线()y f x =的割线以垂直于x 轴的直线0x x =为极限位置,即曲线()y f x =在点00(,())M x f x 处具有垂直于x 轴的切线0x x =.根据导数的几何意义及直线的点斜式方程,可得曲线()y f x =在点00(,)M x y 处的切线方程和法线方程分别为: 切线方程:000()()y y f x x x '-=-;法线方程:0001()()y y x x f x -=--'. 5.函数可导性与连续性的关系 如果函数()y f x =在点0x 处可导,则()f x 在点0x 处必连续,但反之不一定成立,即函数()yf x =在点0x 处连续,它在该点不一定可导.(二)基本求导法则与导数公式1.常数和基本初等函数的导数公式(1)()0C '= ; (2)1()xx μμμ-'= ;(3)(sin )cos x x '= ; (4)(cos )sin x x '=- ;(5)2(tan )secx x '= ; (6)(cot )csc x x '=- ;(7)(sec )sec tan x x x '= ; (8)(csc )csc cot x x x '=- ;(9)()ln xx aa a '= ; (10)()x x e e '= ;(11)1(log )ln a x x a '= ; (12)1(ln )x x'= ;(13)(arcsin )x '=; (14)(arccos )x '= ;(15)21(arctan )1x x '=+ ; (16)21(arccot )1x x'=-+ . 2.函数的和、差、积、商的求导法则设函数()uu x =,()v v x =都可导,则(1)()u v u v '''±=± ; (2)()Cu Cu ''=(C 是常数); (3)()uv u v uv '''=+ ;(4)2()u u v uv v v''-'= (0v ≠). 3.复合函数的求导法则 设()yf u =,而()ug x =且()f u 及()g x 都可导,则复合函数[()]y f g x =的导数为dy dy dudx du dx=⋅ 或 ()()()y x f u g x '''=⋅. (三)高阶导数1.定义一般的,函数()yf x =的导数()y f x ''=仍然是x 的函数.我们把()y f x ''=的导数叫做函数()y f x =的二阶导数,记作y ''或22d ydx ,即()y y ''''=或22d y d dy dx dx dx ⎛⎫= ⎪⎝⎭.相应地,把()y f x =的导数()f x '叫做函数()y f x =的一阶导数.类似地,二阶导数的导数叫做三阶导数,三阶导数的导数叫做四阶导数,,一般的,(1)n -阶导数的导数叫做n 阶导数,分别记作y ''',(4)y ,,()n y 或33d y dx ,44d ydx ,,n nd ydx. 函数()yf x =具有n 阶导数,也常说成函数()f x 为n 阶可导.如果函数()f x 在点x 处具有n 阶导数,那么()f x 在点x 的某一邻域内必定具有一切低于n 阶的导数.二阶及二阶以上的导数统称为高阶导数.(四)隐函数的导数函数的对应法则由方程(,)0F x y =所确定,即如果方程(,)0F x y =确定了一个函数关系()y f x =,则称()y f x =是由方程(,)0F x y =所确定的隐函数形式.隐函数的求导方法主要有以下两种:1.方程两边对x 求导,求导时要把y 看作中间变量.例如:求由方程0yexy e +-=所确定的隐函数的导数dy dx. 解:方程两边分别对x 求导,()(0)yx x exy e ''+-= ,得0ydy dy e y x dx dx ++= , 从而 ydy y dx x e =-+.2.一元隐函数存在定理x y F dydx F '=-'. 例如:求由方程0yexy e +-=所确定的隐函数的导数dydx. 解:设(,)y F x y e xy e =+-,则()()yx yy y e xy e F dy yx dx F e x e xy e y∂+-'∂=-=-=-∂'++-∂ . (五)由参数方程所确定的函数的导数一般地,若参数方程()()x t y t ϕφ=⎧⎨=⎩ 确定y 是x 的函数,则称此函数关系所表达的函数为由该参数方程所确定的函数,其导数为()()dy t dx t φϕ'=',上式也可写成 dy dy dt dxdx dt=.其二阶导函数公式为223()()()()()d y t t t t dx t φϕφϕϕ''''''-=' . (六)幂指函数的导数一般地,对于形如()()v x u x (()0u x >,()1u x ≠)的函数,通常称为幂指函数.对于幂指函数的导数,通常有以下两种方法: 1.复合函数求导法将幂指函数()()v x u x 利用指数函数和对数函数的性质化为()ln ()v x u x e的形式,然后利用复合函数求导法进行求导,最后再把结果中的()ln ()v x u x e 恢复为()()v x u x 的形式.例如:求幂指函数xy x =的导数dydx.解:因ln x x x x e = ,故()ln ln (ln )(1ln )x xx x x dy d e e x x x x dx dx'==⋅=+. 2.对数求导法对原函数两边取自然对数,然后看成隐函数来求y 对x 的导数.例如:求幂指函数x y x =的导数dy dx. 解:对幂指函数x y x =两边取对数,得 ln ln y x x =,该式两边对x 求导,其中y 是x的函数,得11ln dy x y dx ⋅=+,故 (1ln )(1ln )x dy y x x x dx=+=+. 二、函数的微分1.定义:可导函数()y f x =在点0x 处的微分为00()x x dyf x dx ='= ;可导函数()y f x =在任意一点x 处的微分为()dy f x dx '=.2.可导与可微的关系函数()yf x =在点x 处可微的充分必要条件是()y f x =在点x 处可导,即可微必可导,可导必可微. 3.基本初等函数的微分公式 (1)()0d C dx = ; (2)1()d x x dx μμμ-= ;(3)(sin )cos d x xdx = ; (4)(cos )sin d x xdx =- ;(5)2(tan )sec d x xdx = ; (6)(cot )csc d x xdx =- ; (7)(sec )sec tan d x x xdx = ; (8)(csc )csc cot d x x xdx =- ;(9)()ln xx d aa adx = ; (10)()x x d e e dx = ;(11)1(log )ln ad x dx x a =; (12)1(ln )d x dx x = ;(13)(arcsin )d x dx =; (14)(arccos )d x = ;(15)21(arctan )1d x dx x =+ ; (16)21(arccot )1d x dx x=-+ . 4.函数和、差、积、商的微分法则设函数()u u x =,()v v x =都可导,则(1)()d uv du dv ±=± ;(2)()d Cu Cdu =(C 是常数);(3)()d uv vdu udv =+ ;(4)2()u vdu udvd v v-= (0v ≠). 5.复合函数的微分法则设()y f u =及()u g x =都可导,则复合函数[()]y f g x =的微分为()()x dy y dx f u g x dx'''==.由于()g x dx du '=,所以复合函数[()]y f g x =的微分公式也可写成()dyf u du '= 或 udy y du '=. 由此可见,无论u 是自变量还是中间变量,微分形式()dyf u du '=保持不变.这一性质称为微分形式的不变性.该性质表明,当变换自变量时,微分形式()dy f u du '=并不改变.【典型例题】【例2-1】以下各题中均假定0()f x '存在,指出A 表示什么.1.000()()limx f x x f x A x∆→-∆-=∆.解:根据导数的定义式,因0x ∆→时,0x -∆→,故0000000()()()()lim lim ()x x f x x f x f x x f x f x x x∆→∆→-∆--∆-'=-=-∆-∆, 即0()A f x '=-.2.设0()limx f x A x→=,其中(0)0f =,且(0)f '存在. 解:因(0)0f =,且(0)f '存在,故00()()(0)lim lim (0)0x x f x f x f f x x →→-'==-,即(0)A f '=. 3.000()()limh f x h f x h A h→+--=.解:根据导数的定义式,因0h →时,0h -→,故00000000()()()()()()lim limh h f x h f x h f x h f x f x f x h h h →→+--+-+--= 00000()()[()()]limh f x h f x f x h f x h→+----=000000()()()()lim limh h f x h f x f x h f x h h→→+---=+- 000()()2()f x f x f x '''=+=,即 02()A f x '=.【例2-2】分段函数在分界点处的导数问题.1.讨论函数322,1()3,1x x f x x x ⎧≤⎪=⎨⎪>⎩ 在1x =处的可导性.解:根据导数的定义式,3211122()(1)233(1)lim lim lim(1)2113x x x x f x f f x x x x ----→→→--'===++=--,2112()(1)3(1)lim lim11x x x f x f f x x +++→→--'===+∞--,故()f x 在1x =处的左导数(1)2f -'=,右导数不存在,所以()f x 在1x =处不可导.2.讨论函数21sin ,0()0,0x x f x xx ⎧≠⎪=⎨⎪=⎩ 在0x =处的可导性. 解:因20001sin 0()(0)1(0)lim lim lim sin 00x x x x f x f x f x x x x →→→--'====-, 故函数()f x 在0x =处可导.3.已知函数2,1(),1x x f x ax b x ⎧≤=⎨+>⎩ 在1x =处连续且可导,求常数a 和b 的值.解:由连续性,因(1)1f =,211(1)lim ()lim 1x x f f x x ---→→===,11(1)lim ()lim()x x f f x ax b a b +++→→==+=+,从而1a b +=①再由可导性,2111()(1)1(1)lim lim lim(1)211x x x f x f x f x x x ----→→→--'===+=--,11()(1)1(1)lim lim 11x x f x f ax b f x x +++→→-+-'==--,而由①可得1b a =-,代入(1)f +',得11()(1)(1)lim lim 11x x f x f ax a f a x x +++→→--'===--,再由(1)(1)f f -+''=可得2a =,代入①式得1b =-.【例2-3】已知sin ,0(),0x x f x x x <⎧=⎨≥⎩ ,求()f x '. 解:当0x <时,()(sin )cos fx x x ''==,当0x ≥时,()()1f x x ''==,当0x =时的导数需要用导数的定义来求.0()(0)sin (0)lim lim 10x x f x f x f x x---→→-'===-,00()(0)0(0)lim lim 10x x f x f x f x x+++→→--'===-,(0)(0)1f f -+''==,故 (0)1f '=,从而cos ,0()1,0x x f x x <⎧'=⎨≥⎩ . 【例2-4】求下列函数的导数. 1.(sin cos )x ye x x =+.解:()(sin cos )(sin cos )x x y e x x e x x '''=+++ (sin cos )(cos sin )x x e x x e x x =++-2cos x e x =.2.22sin1x y x =+.解:222222sin cos 111x x x y x x x ''⎛⎫⎛⎫'==⋅ ⎪ ⎪+++⎝⎭⎝⎭2222222(1)(2)cos 1(1)x x x x x +-=⋅++22222(1)2cos (1)1x xx x -=++.3.ln cos()x ye =. 解:1ln cos()cos()cos()xxx y e e e '''⎡⎤⎡⎤==⋅⎣⎦⎣⎦ 1sin()()cos()x xx e e e '⎡⎤=⋅-⋅⎣⎦1sin()cos()x x x e e e ⎡⎤=⋅-⋅⎣⎦ tan()x x e e =-.4.ln(yx =+.解:ln((y x x '⎡⎤''=+=⋅+⎣⎦21⎡⎤'=+⎢⎣1⎡⎤=+⎢⎣==.【例2-5】求下列幂指函数的导数. 1.sin x yx = (0x >). 解:sin sin ln sin ln ()()(sin ln )x x x x x y x e e x x ''''===⋅sin ln 1(cos ln sin )x xex x x x=⋅+⋅sin sin (cos ln )x xx x x x=+. 说明:本题也可采用对数求导法,即:对幂指函数sin x y x =两边取对数,得ln sin ln y x x =,该式两边对x 求导,其中y 是x 的函数,得11cos ln sin y x x x y x'⋅=+⋅, 故1(cos ln sin )y y x x x x '=+⋅sin sin (cos ln )xx x x x x=+.2.1xx yx ⎛⎫= ⎪+⎝⎭(0x >).解:ln ln 11ln 11x x x x x xx x x y e e x x x ++'''⎡⎤⎡⎤⎛⎫⎛⎫'===⋅⎢⎥ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎢⎥⎣⎦⎣⎦ln11ln 11xx xx x x ex xx x +⎡⎤'+⎛⎫⎢⎥=⋅+⋅⋅ ⎪++⎢⎥⎝⎭⎣⎦()ln1211ln 11x x xx x x x ex x x x +⎡⎤++-=⋅+⋅⋅⎢⎥++⎢⎥⎣⎦1ln 111xx x x x x ⎛⎫⎛⎫=+ ⎪ ⎪+++⎝⎭⎝⎭.说明:本题也可采用对数求导法,即:对幂指函数1xx y x ⎛⎫= ⎪+⎝⎭两边取对数,得ln ln 1xy x x=+,该式两边对x 求导,其中y 是x 的函数,得 111ln ln 1111x x x x y x y x x x x x'+⎛⎫'⋅=+⋅⋅=+ ⎪++++⎝⎭ , 故11ln ln 11111xx x x y y x x x x x ⎛⎫⎛⎫⎛⎫'=+=+ ⎪ ⎪ ⎪+++++⎝⎭⎝⎭⎝⎭.【例2-6】用对数求导法求下列函数的导数. 1.xy yx = (0x >). 解:等式两边取对数,得ln ln x y y x =,两边对x 求导,注意y 是x 的函数,得ln ln x y y y y x y x ''+⋅=+ ,整理得 (ln )ln x yx y y y x'-=-, 则22ln ln ln ln yyy xy y x y xx xy x x y --'==-- . 2.y =.解:等式两边取对数,得21ln lnln 2y ==,即 2212ln ln(1)ln(2)5y x x =+-+,也即 2210ln 5ln(1)ln(2)y x x =+-+,两边对x 求导,注意y 是x 的函数,得221010212x x y y x x '=-++ ,故222210*********y x x x x y x x x x ⎛⎫⎛'=-=- ⎪ ++++⎝⎭⎝.【例2-7】求下列抽象函数的导数. 1.已知函数()yf x =可导,求函数1sin ()xy f e=的导数dy dx. 解:111sin sin sin ()()()x x x dy d f e f e e dx dx ⎡⎤'==⋅⎢⎥⎣⎦11sin sin 1()()sin x x f e e x '=⋅⋅1111sin sin sin sin 22cos cos ()()sin sin xxx x x x f e ee f e x x-=⋅⋅=- . 2.设函数()f x 和()g x 可导,且22()()0f xg x +≠,试求函数y =dy dx. 解:22()()f x g x dy d dx dx'⎡⎤+==''''==.【例2-8】求由下列方程所确定的隐函数()y y x =的导数.1.220xxy y -+=.解:方程两边分别对x 求导,得 220dy dyx y x y dx dx--⋅+⋅=, 整理得 (2)2dyx y x y dx-=-,故22dy x y dx x y -=- . 说明:此题也可用隐函数存在定理来求解,即:设22(,)F x y x xy y =-+,则2222x y F dy x y x ydx F x y x y '--=-=-='-+- . 2.1y yxe =+.解:方程两边分别对x 求导,得0y y dy dye xe dx dx=++⋅, 整理的 (1)yy dy xe e dx-=,故1yy dy e dx xe =- .说明:此题也可用隐函数存在定理来求解,即:设(,)1y F x y xe y =+-,则11y yx y yy F dy e e dx F xe xe'=-=-='-- . 【例2-9】求由下列参数方程所确定的函数()yy x =的导数.1.2t tx e y e-⎧=⎨=⎩ .解:()()21222t t t t t dye dy e dt dx dx e e e dt --'-====-' .2.111x t t y t ⎧=⎪⎪+⎨⎪=⎪+⎩.解:()()2211111111t t t dy t dy t dt dx dx dt t t '+-⎛⎫ ⎪++⎝⎭====--'⎛⎫ ⎪++⎝⎭.【例2-10】求下列函数的微分. 1.22()tan (12)f x x =+.解:因22222()tan (12)2tan(12)sec (12)4f x x x x x ''⎡⎤=+=+⋅+⋅⎣⎦, 故222()8tan(12)sec (12)dy f x dx x x x dx '==++.2.()f x =.解:因()()f x ''==⋅=,故()dy f x dx '==.3.2()arctan f x x =解:因(22()arctan 211f x x x x x ''==++-,故2()2arctan dy f x dx x dx ⎡'==+⎢⎣.4.22()sin ln(1)f x x x =+.解:因222222()sin ln(1)2sin cos ln(1)sin 1x f x x x x x x x x''⎡⎤=+=++⎣⎦+, 故 2222sin ()sin 2ln(1)1x x dy f x dx x x dx x ⎡⎤'==++⎢⎥+⎣⎦. 【例2-11】求曲线x y xe -=在点(0,1)处的切线方程和法线方程.解:()x x x y xe e xe ---''==-,01x y ='=,故曲线在点(0,1)处的切线方程为11(0)y x -=⋅-,即10x y -+=;法线方程为11(0)y x -=-⋅-即10x y +-=.【例2-12】求曲线224xxy y ++=在点(2,2)-处的切线方程和法线方程.解:这是由隐函数所确定的曲线,按隐函数求导数,有220x y xy y y ''+++⋅=,即22x y y x y+'=-+ ;由导数的几何意义,曲线在点(2,2)-处的斜率为2222212x x y y x y y x y===-=-+'=-=+,故曲线在点(2,2)-处的切线方程为21(2)y x +=⋅-,即 40x y --=;法线方程为 21(2)y x +=-⋅-,即0x y +=.【例2-13】求椭圆2cos 4sin x t y t=⎧⎨=⎩在点4t π=处的切线方程和法线方程.解:将4t π=代入椭圆方程,得曲线上对应的点为,又4cos 2cot 2sin t t y ty t x t''===-'-,切线斜率为 442cot 2t t y tππ=='=-=-,故所求切线方程为2(y x -=--,即20x y +-=;所求法线方程为1(2y x -=--,即20x y +-=.【历年真题】一、选择题1.(2010年,1分)已知(1)1f '=,则0(12)(1)limx f x f x∆→-∆-∆等于( )(A )1 (B )1- (C )2 (D )2- 解:根据导数的定义,00(12)(1)[1(2)](1)lim2lim2x x f x f f x f x x∆→∆→-∆-+-∆-=-∆-∆ 2(1)2f '=-=-,选(D ).2.(2010年,1分)曲线2y x =在点(1,1)处的法线方程为( )(A )y x = (B )322x y =-+(C )322x y=+ (D )322x y =--解:根据导数的几何意义,切线的斜率1122x x k y x=='===,故法线方程为11(1)2y x -=--,即 322x y =-+,选(B ). 3.(2010年,1分)设函数()f x 在点0x 处不连续,则( )(A )0()f x '存在 (B )0()f x '不存在(C )lim()x f x →∞必存在 (D )()f x 在点0x 处可微解:根据“可导必连续”,则“不连续一定不可导”,选项(B )正确.4.(2009年,1分)若000()()lim h f x h f x h A h→+--=,则A =( )(A )0()f x ' (B )02()f x ' (C )0 (D )01()2f x ' 解:000()()lim h f x h f x h A h→+--=00000()()[()()]limh f x h f x f x h f x h→+----=000000()()()()lim limh h f x h f x f x h f x h h→→+---=+- 000()()2()f x f x f x '''=+=,选项(B )正确.5.(2008年,3分)函数()f x x =,在点0x =处()f x ( )(A )可导 (B )间断 (C )连续不可导 (D )连续可导 解:由()f x x =的图象可知,()f x 在点0x =处连续但不可导,选项(C )正确.说明:()f x x =的连续性和可导性,也可根据连续和导数的定义推得.6.(2008年,3分)设()f x 在0x 处可导,且0()0f x '≠,则0()f x '不等于( )(A )000()()limx x f x f x x x →-- (B )000()()lim x f x x f x x∆→+∆-∆(C )000()()lim x f x x f x x∆→-∆-∆ (D )000()()lim ()x f x x f x x ∆→-∆--∆解:根据导数的定义,选项(C )符合题意. 7.(2007年,3分)下列选项中可作为函数()f x 在点0x 处的导数定义的选项是( )(A )001lim [()()]n n f x f x n →∞+-(B )000()()lim x x f x f x x x →--(C )000()()lim x f x x f x x x ∆→+∆--∆∆(D )000(3)()lim x f x x f x x x∆→+∆-+∆∆解:选项(A )000001()()1lim [()()]lim()1n n f x f x n n f x f x f x nn+→∞→∞+-'+-==,选项(C )0000()()lim2()x f x x f x x f x x∆→+∆--∆'=∆,选项(D )0000(3)()lim 2()x f x x f x x f x x∆→+∆-+∆'=∆,故选(B ). 8.(2007年,3分)若()f u 可导,且(2)x y f =,则dy =( )(A )(2)x f dx ' (B )(2)2x x f d ' (C )[(2)]2x x fd ' (D )(2)2x x f dx '解:因(2)(2)2(2)2ln 2x x x x x dydf f d f dx ''===,故选项(B )正确.9.(2006年,2分)设()u x ,()v x 为可导函数,则()ud v=( ) (A )du dv (B )2vdu udv u- (C )2udv vdu u + (D )2udv vduu- 解:222()()u u u v uv u vdx uv dx vdu udvd dx dx v v v v v''''---'====,选(B ). 10.(2005年,3分)设()(1)(2)(99)f x x x x x =---,则(0)f '=( )(A )99!- (B )0 (C )99! (D )99 解:当0x=时,()f x '中除(1)(2)(99)x x x ---项外,其他全为零,故(0)(01)(02)(099)99!f '=---=-,选项(A )正确. 11.(2005年,3分)设ln y x =,则()n y =( )(A )(1)!nn n x -- (B )2(1)(1)!n n n x --- (C )1(1)(1)!n n n x ---- (D )11(1)!n n n x --+-解:由ln yx =可得,1y x '=,21y x''=-,433222!x y x x x-'''=-==, 2(4)64233!x yx x⋅=-=-,,对比可知,选项(C )正确.12.(2005年,3分)2sin ()d xd x =( ) (A )cos x (B )sin x - (C )cos 2x (D )cos 2xx解:2sin cos cos ()22d x xdx xd x xdx x==,选项(D )正确. 二、填空题1.(2010年,2分)若曲线()yf x =在点00(,())x f x 处的切线平行于直线23y x =-,则0()f x '= .解:切线与直线平行,则切线的斜率与直线的斜率相等,故0()2f x '=.2.(2010年,2分)设cos(sin )y x =,则dy = .解:cos(sin )sin(sin )cos dyd x x xdx ==-.3.(2008年,4分)曲线21y x =+在点(1,2)的切线的斜率等于 .解:由导数的几何意义可知,切线斜率(1,2)(1,2)22k y x'===.4.(2008年,4分)由参数方程cos sin x t y t =⎧⎨=⎩ 确定的dy dx = .解:(sin )cos cot (cos )sin t t y dy t tt dx t tx ''====-'-'. 5.(2006年,2分)曲线2sin yx x =+在点(,1)22ππ+处的切线方程是 .解:切线的斜率(,1)(,1)2222(12sin cos )1k y x x ππππ++'==+=,故切线方程为(1)1()22y x ππ-+=⋅-,即 1y x =+.6.(2006年,2分)函数2()(1)f x x x x =-不可导点的个数是 .解:2222(1),0()(1),0x x x f x x x x ⎧+≥=⎨-+<⎩ ,显然,当0x ≠时,()f x 可导;当0x =时,2200()(0)(1)(0)lim lim 00x x f x f x x f x x +++→→-+'===-,2200()(0)(1)(0)lim lim 00x x f x f x x f x x-+-→→--+'===-,故 (0)0f '=.故函数()f x 的不可导点的个数为0.7.(2006年,2分)设1(1)xy x=+,则dy = .解:因11ln(1)ln(1)21111[(1)][][ln(1)()]11x x x x x y e e x x x x x++'''=+==++⋅⋅-+111(1)[ln(1)]1x x x x =++-+,故 111(1)[ln(1)]1x dy dx x x x =++-+.三、计算题1.(2010年,5分)设函数()y y x =由方程2xy x y =+所确定,求x dydx=.解:方程2xyx y =+两边对x 求导,考虑到y 是x 的函数,得2ln 2()1xy dy dy y xdx dx ⋅+=+,整理得 2ln 22ln 21xy xy dy dy y x dx dx+⋅=+, 故2ln 2112ln 2xy xydy y dx x -=-.当0x =时,代入原方程可得1y =,所以 0012ln 21ln 21ln 2112ln 21xy x x xy y dy y dx x ===--===--. 说明:当得到2ln 2()1xydy dyy xdx dx⋅+=+后,也可直接将0x =,1y =代入,得 ln 21dydx=+,故ln 21x dy dx ==-.2.(2010年,5分)求函数sin x y x =(0x >)的导数.解:sin sin ln sin ln sin ln 1()()()(cos ln sin )x x x x x x xy x e e e x x x x ''''====+⋅sin sin (cos ln )x xx x x x=+. 3.(2009年,5分)设22sin1xy x =+,求dy dx.解:因22sin1x y x =+,故22(sin )1dy x dx x'=+2222222222(1)22222cos cos 1(1)(1)1x x x x x x x x x x+-⋅-=⋅=++++. 4.(2006年,4分)设()f x可导,且()f x '=d f dx .解:df f dx ''=⋅2x x==-. 5.(2005年,5分)已知0sin ,0(),0x tdt x f x xa x ⎧⎪≠=⎨⎪=⎩⎰ .(1)()f x 在0x =处连续,求a ; (2)求()f x '.解:(1)因 0sin lim ()limlimsin 0xx x x tdt f x x x→→→===⎰,故由()f x 在0x =处连续可得,0lim()(0)x f x f →=,即 0a =.(2)当0x ≠时,002sin sin sin ()x x tdt x x tdt f x x x '⎛⎫- ⎪'== ⎪⎝⎭⎰⎰; 当0x =时,02000sin sin ()(0)(0)limlim limxxx x x tdt tdt f x f xf x xx→→→-'===-⎰⎰0sin 1lim22x x x →==.故2sin sin,0 ()1,02xx x tdtxxf xx⎧-⎪≠⎪'=⎨⎪=⎪⎩⎰.。
专升本高数数学第二章导数与微分

3
弹性力学
在弹性力学中,导数可以用来描述应力和应变的 关系。
微分在近似计算中的应用
线性近似
微分可以用来进行线性近似计算,例如在求函数在某点的切线时, 可以用微分来近似计算切线的斜率。
中值定理
微分可以用来证明中值定理,例如拉格朗日中值定理和柯西中值 定理等。
误差估计
微分可以用来估计误差的大小,例如在泰勒展开式中,可以用微 分来估计高阶无穷小的误差大小。
专升本高数数学第二 章导数与微分
目录
• 导数概念 • 导数的计算 • 微分概念 • 导数与微分的应用
01
导数概念
导数的定义
总结词
导数是描述函数在某一点附近的变化 率的重要概念。
详细描述
导数定义为函数在某一点处的切线的 斜率,即函数在该点的变化率。通过 极限的概念,我们可以计算出函数在 某一点的导数值,从而了解函数在该 点的变化趋势。
VS
详细描述
微分在物理学中有重要的应用,它可以表 示物理量随时间变化的速率。例如,物体 的速度是位置对时间的变化率,加速度是 速度对时间的变化率。通过微分,我们可 以分析物理量随时间的变化规律,从而更 好地理解物理现象。
04
导数与微分的应用
导数在几何中的应用
切线斜率
导数可以用来求曲线上某一点的切线斜率,从而了解 曲线在该点的变化趋势。
单调性判断
通过导数的符号变化,可以判断函数在某区间上的单 调性。
极值问题
导数可以用来研究函数的极值问题,确定函数的最大 值和最小值点。
导数在物理中的应用
1 2
速度与加速度
导数可以用来描述物理中的速度和加速度,例如 物体运动的速度和加速度可以通过对位置函数求 导得到。
山东专升本高等数学二考试大纲

山东专升本高等数学二考试大纲如下:一、考试要求1. 理解极限、连续、微积分(导数和微分、定积分和不定积分)等基本概念;2. 掌握函数求导、积分运算及微积分的实际应用;3. 了解微积分的思想,掌握导数和不定积分的基本性质;4. 了解数列的极限和函数的极限;5. 了解无穷级数的基本概念和性质;6. 掌握常数列的性质和判别法,掌握函数项级数的收敛性和和函数的概念,掌握幂级数展开式的应用;7. 能够使用微积分定理进行简单的运算;8. 能够解决与微积分概念有关的简单应用问题。
二、考试内容第一章函数、极限与连续1. 理解函数的概念及函数的几种常见性质(有界性、单调性、奇偶性等);2. 掌握函数的极限定义及极限的性质;3. 掌握函数连续的概念,理解初等函数的连续性;4. 能够根据函数的性质,判断一个函数是否适合微积分的运算。
第二章导数与微分1. 理解导数的概念,掌握导数的运算公式,能够进行简单函数的求导运算;2. 理解微分的概念,掌握微分的运算公式,能够进行简单函数的微分运算;3. 了解函数的单调性和极值的概念及求法,会判断函数的凹凸性。
第三章定积分与不定积分1. 理解定积分的概念,掌握定积分的运算公式,能够进行简单函数的积分运算;2. 掌握不定积分的概念,能够进行简单函数的积分运算;3. 能够根据微积分定理进行简单的积分运算;4. 了解广义积分的概念。
第四章级数1. 了解数项级数和函数项级数的概念;2. 掌握级数的性质和判别法,能够判断一个级数是否收敛;3. 了解傅里叶级数及其在信号分析中的应用。
第五章微积分的实际应用1. 能够利用微积分定理解决物理、经济、几何等领域的问题;2. 能够利用导数和不定积分解决函数的极值问题;3. 能够利用定积分解决面积和旋转体体积等问题。
三、考试题型及要求选择题:每题3分,共20分。
主要考查对基本概念、性质、运算法则的掌握情况。
填空题:每题4分,共20分。
主要考查对基本运算技能的掌握情况。
高等数学2专升本教材目录

高等数学2专升本教材目录一、导数与微分1.1 函数的定义及性质1.2 无穷小与无穷大1.3 极限与连续1.4 导数的定义与性质1.5 高阶导数与复合函数的求导法则1.6 隐函数与参数方程的导数1.7 微分的定义与性质二、微分中值定理与导数的应用2.1 罗尔中值定理2.2 拉格朗日中值定理2.3 克莱罗中值定理2.4 泰勒公式及应用2.5 霍尔德定理2.6 函数的极值与最值2.7 函数图形的描绘三、不定积分与定积分3.1 不定积分的定义与性质3.2 微元法与换元法3.3 分部积分法及辅助函数法 3.4 定积分的定义与性质3.5 定积分的计算方法3.6 营养与生物量的计算3.7 定积分的应用四、多元函数微分学4.1 二元函数与偏导数的定义 4.2 偏导数的计算与性质4.3 隐函数的求导与高阶导数 4.4 李氏条件及其应用4.5 多元函数的极值与最值4.6 多元函数的泰勒公式与应用4.7 多元函数的积分五、常微分方程5.1 常微分方程的基本概念及解的存在唯一性定理 5.2 一阶线性微分方程5.3 可降阶的高阶微分方程5.4 齐次线性微分方程与非齐次线性微分方程5.5 可分离变量型微分方程5.6 常系数线性微分方程5.7 变量可分离微分方程六、二元函数积分学6.1 二重积分的定义与性质6.2 二重积分的计算方法6.3 二重积分的应用6.4 三重积分的定义与性质6.5 三重积分的计算方法6.6 三重积分的应用七、曲线积分与曲面积分7.1 第一类曲线积分7.2 第二类曲线积分7.3 曲线积分的应用7.4 第一类曲面积分7.5 第二类曲面积分7.6 曲面积分的应用7.7 广义积分与负积分八、向量场与散度8.1 向量场的概念与运算8.2 散度与无源场8.3 散度的计算方法与应用8.4 散度定理九、旋度与斯托克斯公式9.1 旋度的定义与性质9.2 旋度定理9.3 梯度、散度与旋度的关系9.4 斯托克斯公式及其应用十、拉普拉斯方程与调和函数10.1 拉普拉斯方程与调和函数的概念10.2 边界上的泊松问题10.3 球坐标系与柱坐标系中的拉普拉斯方程10.4 调和函数的展开与应用十一、傅里叶级数与傅里叶变换11.1 傅里叶级数的定义与性质11.2 奇偶函数的傅里叶级数展开11.3 傅里叶级数的收敛性11.4 傅里叶级数的应用与展开函数的逼近11.5 傅里叶变换的定义与性质11.6 傅里叶变换的逆变换11.7 傅里叶变换的应用与卷积定理十二、偏微分方程与特殊函数12.1 偏微分方程的基本概念及解的存在唯一性定理 12.2 热传导方程12.3 波动方程12.4 拉普拉斯方程12.5 结束语以上是《高等数学2专升本教材》的目录,涵盖了导数与微分、微分中值定理与导数的应用、不定积分与定积分、多元函数微分学、常微分方程、二元函数积分学、曲线积分与曲面积分、向量场与散度、旋度与斯托克斯公式、拉普拉斯方程与调和函数、傅里叶级数与傅里叶变换、偏微分方程与特殊函数等内容。
专升本高数二总复习参考题笫2章

笫二章 一元函数微分学一. 求导数、微分与二阶导数1. 基本求导表重点记住 11()'0,()',()',(ln )',x x C x x e e x xααα-====21(sin )'cos ,(cos )'sin ,(arcsin )'(arctan )'1x x x x x x x ==-==+ 11-3. 设函数21()f x x =, 则'y = A. 31x - B. 32x- C. 31x D. 1x [ ] 【11-3、B 】10-2. 设函数()f x e =, 则'(1)f =A. 2e +B. 1e +C.12 D. 12- [ ] 【10-2、C 】 09-2. 设2sin ln 2y x x =++, 则'y =A. 2sin x x +B. 2cos x x +C. 12cos 2x x ++D. 2x 【09-2、B 】 08-22. 设函数3sin 3y x x =++, 求'y . 【08-22. 32'()'(sin )'3'3cos y x x x x =++=+】 08-3. 设函数ln y x =, 则'y = A.1x B. 1x- C. ln x D. xe [ ] 【08-3. A 】 07-3. 设函数y x =, 则'y =A. 1B. xC. 22x D. 2x [ ] 【07-3. 1】06-3. 巳知()3xf x x e =+,则'(0)f =A.1B. 2C. 3D. 4 [ ] 【06-3. D 】 05-2. 设33y x-=+,则'y 等于A.43x -- B. 23x -- C. 43x - D. 433x --+ [ ]【05-2. A 】04-9. 设函数21y x π=-,则'y = ____________ . 【04-9. 32x 】 03-9. 设函数2arcsin e x y +=,则'y = ____________ . 【03-9.211x-】00-8.设函数xx y 22sin 2++=,则dx dy=______________ . 【00-8. 2ln 22x x +】2.乘除求导法则:2''()''',()'u u v uv uv u v uv vv-=+= 11-22. 设函数1sin x y x+=, 求'y . 【11-22.2(1)'sin (1)(sin )''(sin )x x x x y x +-+=2sin (1)cos sin x x xx-+=】 09-3. 设函数()ln xf x e x =, 则'(1)f =A. 0B. 1C. eD. 2e 【09-3、C 】 08-13. 设函数cos y x x = 则'_______y =. 【08-13. cos sin x x x -】07-13. 设函数ln x y x = 则'_______y = 【07-13. 2ln 1ln x x-】 04-19. 设函数ln y x x =,求'y . 【04-19. 1'ln ln 1y x x x x=+⋅=+】03-10. 设函数x exy =,则)0('f = ____________ . 【03-10. 1】02-10. 设函数x y cos 11+=,则'y =_____________. 【02-10. 2)cos 1(sin x x +】 02-3. 设函数)(),(x v x u 可导,若)()(x v x u y ⋅=,则'y 等于 A. )(')()()('x v x u x v x u + B. )(')()()('x v x u x v x u -C. )()()(')('x v x u x v x u +D. )(')('x v x u [ ] 【02-3. A 】 01-22. 设函数1cos 2-=x xy ,求'y . 【01-22. 2222222)1(cos 2sin )1()1(cos 2)1(sin )'1cos ('----=---⋅-=-=x xx x x x x x x x x x y 】 00-18. 设函数x xxx f ln sin 1)(--=, 求)('πf .【00-18. x x x x x x x x x x x f 1)sin 1(cos sin 11)sin 1()cos (sin 1)(22'--+-=-----=ππππππππ111)sin 1()cos (sin 1)(2'--=-----=f 】3. 复合函数求导法则(简单型)(由外到里逐层处理) 10-3. 设函数()cos 2f x x =, 则'()f x =A. 2sin 2xB. 2sin 2x -C. sin 2xD. sin 2x - [ ]【10-3、B 】06-2. 设函数25xy e=+, 则'y =A. 2xe B. 22xe C. 225xe+ D. 25x e + [ ] 【06-2. B 】05-3. 设()cos 2f x x =, 则'(0)f 等于A. 2-B. 1-C. 0D. 2 [ ] 【05-3. 0】 04-18. 设函数()1sin 2f x x =+,求'(0)f .【04-18. '()0cos 2(2)'2cos 2,f x x x x =+⋅= '(0)2f =】02-10. 设函数xy cos 11+=,则'y =_____________.【02-10. 11,1cos ,,1cos y x u y x u=+==+令则''2211sin '()(1cos )(sin )(1cos )u x xy x x u u x =⋅+=--=+】 00-10.设函数x y arcsin ln =,则'y =________________________.【00-10.xx x arcsin )1(21-】00-2. 下列函数中,在点0=x 处导数等于零的是A. )1(x x y -=B. xex y 2sin 2-+=C. x x y arctan cos -=D. )1ln(x y += [ ] 【00-2. B 】 样题-12. 设函数cos()xy e -=,则'(0)y = ____________ .【样题-12. 00'sin (1)sin ,'(0)sin sin1xx x x y ee e e y e e ------=-⋅⋅-===】样题-23. 设函数(sin 2)f x y e=,其中()f u 可导,求'y .【样题-23. (sin 2)(sin 2)''(sin 2)cos 222cos 2'(sin 2)f x f x y ef x x x e f x =⋅⋅⋅=⋅⋅】(与复合函数记号有关的题型)要点:巳知x x f sin )(=,怎样求出()f x ?(见01-9)t =,解出2x t =,原式为2()sin f t t =,把t 更名为x ,得2()sin f x x =,04-20. 设函数3(cos )1cos f x x =+,求'()f x .【04-20. 33cos ,1cos 1,x t x t =+=+设则332()1,()1,'()3f t t f x x f x x =+=+=所以故则】02-23. 设函数x x g e x f xsin )(,)(==,且)]('[x g f y =,求dxdy. 【02-23. 因为x x g cos )('=,所以xex f y cos )(cos ==,则x e dxdyx sin cos -=】02-11. 设函数x x f ln )2(=,则)('x f =___________. 【02-11. x1】01-9. 设函数x x f sin )(=,则)('x f = ________________ . 【01-9. )cos(22x x 】 样题-13. 设函数211()1f x xx=++,则)('x f = ____________ . 【样题-13. 22311112,,()1,()1,'()1t x f t t f x x f x x t t x x-===++=++=+令得于是】4. 复合函数与四则运算混合型(由外到里逐层处理) 07-22.设函数ln(y x =, 求'y 【07-22. 'y x =+=+】03-18. 设函数x x y +=,求'y .【03-18. xx x x xx xxx x x y ++=++=++=242122112)'('】02-17. 设函数21xx y +=,求'y . 【02-17. 2322222)1(111221'x xx x x y +=++-+=】5. 二阶导数(连续求二次导数)11-14. 设函数sin y x =,则 '''______y =. 【11-14. cos x -】 10-15. 设函数ln(1)y x =+ 则''_______y =. 【10-15.21(1)x -+ 】 09-15. 函数sin y x x = 则''_______y =. 【09-15.2cos sin x x x - 】 08-14. 设函数5y x = 则''_______y =. 【08-14. 320x 】 07-14. 设函数x y e -= 则'''_______y =. 【07-14. xe -】 06-15. 设函数sin 2y x = 则'''_______y =. 【06-15. 4sin 2x -】 05-14. 设函数2x y e = 则''(0)_______y =. 【05-14. 4】 04-21. 设函数11y x=+,求''y . 【04-21. 2332'(1)(1),''(1)(2)(1)(1)y x y x x --=-+=--+=+】03-11. 设函数xex y 22+=,则y 的50阶导数)50(y=___________. 【03-11. xe 2502】02-12. 设函数xxe y =,则)0(''y =___________. 【02-12. 2】 01-8. 设函数x x x f ln )(3=,则)1("f =_____________________ . 【01-8. 5】 00-20. 若 x x y arctan )1(2+=, 求"y . 98-10. 设 a a x n a x a y++=-)2( (其中 )1,0≠>a a , 则 )(n y = ______________ .【98-10. ()(2)[]"()''n n x a a yy a x a -==++=22)1(ln --+a x x a a a a 】【00-20. 1arctan 2)1(1)1(arctan 222'+=+++=x x x x x x y ,2"12arctan 2xx x y ++=】样题-15. 设函数y 的2n -阶导数(2)n x yxe -=, 则()(0)_______n y =【样题-15. ()(2)()[]''()''()'n n x x x yx y xe e xe -===+()2,x x x x x e e xe e xe =++=+()(0)2n y =】6. 变限积分求导(参见第三章相应条款)7. 微分计算(先求导,然后乘上dx :'dy y dx =)11-5. 设函数cos 1y x =+, 则dy = [ ] A. (sin 1)x dx + B. (cos 1)x dx +C. sin xdx -D. sin xdx【11-5、C 】10-22. 设函数3cos x y x=, 求dy .【10-22. 332()'cos (cos )''(cos )x x x x y x -=2323cos sin (cos )x x x xx += 则2323cos sin '(cos )x x x xdy y dx dx x +===】09-22. 设函数sin xy e=, 求dy .【09-22. s i n'(s i n )'x y ex =s i nc o s x e x =则s i n c o s xd y ex d x =】 08-5. 设函数2xy e =+, 则dy = [ ] A. (2)xe dx + B. (2)x e x dx + C. (1)x e dx + D. xe dx 【08-5. D 】07-5. 设函数2s i n (1)y x =-,则dy = [ ] A. 2c o s (1)xd x - B. 2c o s (1)x d x -- C. 22c o s (1)x xd x - D. 22c o s (1)x x d x--【07-5. C 】 06-22. 设函数4s i n y x x =, 求dy =【06-22. 34'4sin cos y x x x x =+, 34(4sin cos )dy x x x x dx =+】 05-22. 设函数3c o s y x x =, 求dy .【05-22. 3323'()'c o s(c o s )'3c o s s i ny x x x x x x x x =+=-, 23(3cos sin )dy x x x x dx =-.】03-19. 设函数2arctan x y =,求dy .【03-19. dx x x dy x x x x y 442412,12)'(11'+=+=+=】01-7. 设函数21x y +=,则dy =____________ . 【01-7. dx xx 21+】00-9.设函数)(cos 2x y -=,则dy = ____________________ .【00-9. 2sin cos x xdx -, 也可写成sin 2xdx -. 注意cos()cos x x -=】8.** 幂指函数求导(对数求导法或e-ln 法) **01-23. 设函数xxx y +=sin ,求'y .【01-23. sin y x =+'(sin )'(cos ((*)y x x =+=+笫2项那个导数属幂指函数求导问题,采用对数求导法,先记2y =,两边取对数2ln ln y x ==,然后对x 求导,得2211'y x x y x ==+22'y y x x =+=即(x =+,代回(*)式,得'cos y x x =++. 】二. 隐函数求导数与微分 (做法分两步:(1)原式两边对x 求导,注意把y 视为x 的抽象函数;(2)解出y')注:一元隐函数求导数与微分的题目在2000-2011年中皆没有出现,这里只找了94-99年的3个题目作参考. 学员务必把精力集中到第四章二元隐函数求偏导数和全微分上,因为连续多年都有一个这样的大题目。
完整版专升本高等数学知识点汇总3篇

完整版专升本高等数学知识点汇总第一篇:导数与微分导数:是用来研究函数在某一点的变化率的一种工具。
其代表的是函数在该点的微小变化与自变数的微小变化之比的极限值。
微分:是由函数的导数所定义的另一种函数。
微分是利用导数对自变数进行微小的变化而得到的函数值的变化量,即函数的微分为函数在某一点的导数与自变数的微小变化值的乘积。
导数的定义公式:$\Large f'(x)= \lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}= \lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$微分的定义公式:$\Large dy=f'(x)dx$常用导数公式:常数函数的导数为0:$\large (\mathrm{C})'=0$幂函数的导数为其幂次减一倍的函数值:$\large(x^n)'=nx^{n-1}$指数函数的导数是其自身的函数值再乘以以e为底数的指数,即:$\large (e^x)'=e^x$常数倍的函数的导数,等于常数倍和该函数的导数之积:$\large (k f(x))'=k f'(x)$和差函数的导数等于其各自的导数之和:$\large(f(x)\pm g(x))'=f'(x)\pm g'(x)$常用微分公式:$\large dy=(\frac{d}{dx}f(x))dx$$\largedy=\frac{d}{dx}(f(x)g(x))dx=f'(x)g(x)+f(x)g'(x)dx$ $\largedy=\frac{d}{dx}(\frac{f(x)}{g(x)})dx=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}dx$高阶导数:如果函数的一阶导数存在,可以对其再进行一次导数运算,得到函数的二阶导数;继续运算,可以得到函数的三、四、五……n阶导数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/7/27
可导一定连续,但是连续不一定可导。
连续一定有极限,但是有极限不一定连续。
例
函数
y|x|
x,x0, x,x0
在x=0连续但不可导,
因为 y |0 x| |0 | | x|, 于是有
limy lim|x| limx1, x0x x0 x x0x limy lim|x| limx1. x0x x0 x x0 x
f (x0) 0.5
2020/7/27
导数定义的本质:
f(x0)自l变 im 量 0增 f(x量 0自 自变 变量 量 )f(增 增 x0) 量 量
练习:P43 第3题
2020/7/27
2、单侧导数 左导数与右导数:
f ( x 0 ) x lx 0 i 0 f m ( x x ) x f 0 ( x 0 ) l x i 0 f ( m x 0 x x ) f ( x 0 ) ;
f(x0)f(x) xx0.
例题1.设
f ( x ) 存在,且 limf(x02x)f(x0)1
x 0
x
则 f ( x 0 ) 等于
A. 1, B. 0, C. 2, D. 0.5
分析: limf(x02x)f(x0)
x0
x
2 2 l ix m 0f(x 0 2 2 x x ) f(x 0 ) 2 f(x 0 ) 1
因此 f(1 )f (1 )f (1 )2
从而 f ( x ) 在 x 1 处可导。
2020/7/27
3、导数的几何意义:
函数 y f (x) 在点 x x 0 处的导数 f ( x 0 )
表示曲线在点 (x0, f (x0)) 处切线的斜率。 曲线在点 (x0, f (x0)) 处的切线方程为
所求法线斜率为
11
于是所求法线方程为k2y8k1 112(x, 2), 12
x12y980.
2020/7/27
4、导数与连续的关系 :
定理(函数可导的必要条件) :
y f (x) 在点 x x 0 处可导
y f (x) 在点 x x 0 处连续。
可导→连续,反之不一定 即函数连续是函数可导的必要条件, 但不是充分条件。
yf(x0)f'(x0)(xx0)
法线方程为: yf(x0)f'(1x0)(xx0)
2020/7/27
例 求曲线 y x 3 在点(2,8)处得切线方程和法线方程。
解 在点(2,8)处的切线斜率为 k 1y'|x 23x2|x 212
所以,所求切线方程为 y812 ( x2) ,
12xy160.
所以 因此 2020/7/27
f(1 )f (1 )f (1 )2
f ( x ) 在 x 1 处可导。
判断可导性的另一种方法:
当
x
1
时,
f
(x)
2x
2
x 1 x 1
所以 f (1 )x li m 1 f(x)lx i m 1 2 x 2
f (1 )x li m 1 f(x)lxi m 1 22
(csc x ) csc xctgx
(e x ) e x
(ln x ) 1 x
(arccos x )
1 1 x2
( arcoct x )
1
1 x2
6、求导法则
(1) 函数的和、差、积、商的求导法则
设 uu(x)v,v(x)可 导 , 则 ( 1) (uv)uv, ( 2) (cu )cuc( 是 常 数 ), ( 3) (u)vuvuv, ( 4) (u v)uvv2uv(v0). (2) 反函数的求导法则
2020/7/27
1、导数的定义
y x x 0 lx i 0 x y m lx i 0 f( m x 0 x x ) f( x 0 ) .
记为
f(x0),yxx0,
dy 或 df(x) ,
dxxx0
dx xx0
导函数 注意:
2020/7/27
f(x), y, dy或df(x), dx dx
y y x
o
x
即 f (0 )f (0 ), 函y数 f(x)在 x0点不 . 可导
2020/7/27
例
讨论函数f (x)xsin1x, x0,
0, x0
在x0处的连续性与可. 导性
解
sin1 x
是有界函,
数lxim 0xsin1x0
f(0 )lif m (x )0 f(x)在 x0处连 . 续
在讨论分段函数在分段点的可导时,由于在分段点两侧表达式 可能不同,因此一般应从定义出发讨论其左、右导数。
例. 见教材 P42 页例6
2020/7/27
例题2. 讨论
在 x 1
x2 1 x 1 f (x)
2x x 1
处的连续性与可导性.
分析:limf(x)lim (x21)2
x 1
x 1
limf(x)lim (2x)2
f ( x 0 ) x lx 0 i 0 f m ( x x ) x f 0 ( x 0 ) l x i 0 f ( m x 0 x x ) f ( x 0 ) ;
函 数 f(x )在 点 x 0处 可 导 左 导 数 f (x 0)和 右 导 数 f (x 0)都 存 在 且 相 等 .
x 1
x 1
f(1)2x x12
所以 f ( x ) 在 x 1 处连续
2020/7/27
x2 1 x 1
题目的函数为:
f (x)
2x
x 1
f (1 )x li m 1f(xx ) 1 f(1 )x li m 1x2x 11 2
x21
lim lim(x1)2
x1 x 1
x 1
f ( 1 ) x li m 1 f(x x ) 1 f( 1 ) x li m 1 2 x x 1 2 x li m 1 2 2
x 0
lim f (x) f (0)
x sin 1
lim
x
x0 x 0
x 0 x
lim sin 1
x 0
x
因为limsin1不存在 f(x)在x0处不可 . 导 x0 x
2020/练7/27习:P43页第7题
5、基本导数公式(常数和基本初等函数的导数公式)
(C ) 0
(sin x ) cos x
(tan x ) sec 2 x
(sec x ) sec xtgx
( a x ) a x ln a
(log
a x )
1 x ln
a
(arcsin
x ) 1
1 x2
(arctan
x )
1
1 x
2
2020/7/27
(ቤተ መጻሕፍቲ ባይዱx ) x 1
(cos x ) sin x
(cot x ) csc 2 x