高层建筑整体抗倾覆的验算

高层建筑整体抗倾覆的验算
高层建筑整体抗倾覆的验算

高层建筑整体抗倾覆的验算

高层与超高层建筑高宽比较大,在风荷载与地震荷载作用下,结构整体抗倾覆直接关系到结构安全,所以,高层与超高层建筑的抗倾覆验算至关重要。

一、规范要求:

《高规》第12、1、7条要求,高宽比大于4的高层建筑,基础底面不宜出

现零应力区;高宽比不大于4的高层建筑,零应力区面积不应超过基础底

面面积的15%。

二、结构整体抗倾覆验算方法:

图1与图2中符号的含义:

M0F-------倾覆力矩标准值;

H----------地面以上建筑高度,即房屋结构高度;

h----------地下室埋深;

F0--------总水平力标准值;

M W-------抗倾覆力矩标准值;

W---------上部结构及地下室基础总重力荷载代表值;

B----------地下室基础底面宽度;

倾覆力矩M0F就是指水平力对基础底面产生的力矩,M0F= F0(2H/3+h);

抗倾覆力矩M W就是指竖向力对基础边缘产生的力矩;假定竖向力合力中心与基础底面形心重合,因此M W=WB/2;

设X为地基反力的分布宽度,则零应力区长度为B-X,如图2所示;

偏心距E0=B/2-X/3;同时,E0= M0V/G;

因此,B/2-X/3= M0F/W,从而得到:

X=3B/2-3 M0F/W;

零应力区与基础底面积之比为:

(B-X)/B=(B-3B/2+3 M0F/W)/B=1-3/2+3 M0F/WB=3 M0F/WB-1/2;

由M W=WB/2可得, WB=2 M W;代入上式并整理可得:

(B-X)/B= =3 M0F/2 M W -1/2=(3 M0F/ M W -1)/2;

令k代表抗倾覆安全系数,k= M W/ M0W;

则零应力区与基础底面面积之比为:(B-X)/B=(3-k)/2k;

由此式可以求得抗倾覆安全度与零应力区面积比的对应关系,如下表。

抗倾覆安全系数与基底零应力区面积比的对应关系

从上表可以瞧出,对于高宽比>4的高层建筑,抗倾覆安全系数≥3时,基底不出现零应力区;高宽比不大于4的高层建筑,抗倾覆安全系数≥2、308时,零应力区面积比就不会超过15%;如果抗倾覆安全系数不满足要求,则可将弯矩作用方向的基础宽度加宽,直到满足为止;

需要说明的就是:

(1)在上述计算中,假定地下室及上部结构就是完全刚性的,地基反力就是

直线分布的;所以,对于整体刚度较弱的的高层建筑,或者风与地

震较强的地区,及地基刚度较弱时,抗倾覆安全度尚宜适当加大。

(2)抗倾覆力矩就是相对于基础边线计算的,该力矩不代表真实的抗倾覆

能力,而就是仅用于计算的虚拟值;

(3)上述计算中未考虑地下室周围土体约束的有利作用。

抗倾覆稳定性验算

*作品编号:DG13485201600078972981* 创作者: 玫霸* 五、施工计算 1、抗倾覆稳定性验算 本工程基坑最深11.0米左右,此处的土为粘性土,可以采用“等值梁 法”进行强度验算。 首先进行最小入土深度的确定: 首先确定土压力强度等于零的点离挖土面的距离y ,因为在此处的被动 土压力等于墙后的主动土压力即: ()a p b K K P y -=γ 式中:P b 挖土面处挡土结构的主动土压力强度值,按郎肯土压力理论进 行计算即 a a b K cH K H P 22 12-=γ γ 土的重力密度 此处取18KN/m 3 p K 修正过后的被动土压力系数(挡土结构变形后,挡土结构 后的土破坏棱柱体向下移动,使挡土结构对土产生向上的摩擦力,从而使 挡土结构后的被动土压力有所减小,因此在计算中考虑支撑结构与土的摩 擦作用,将支撑结构的被动土压力乘以修正系数,此处φ=28°则K=1.78 93.42452=??? ? ?+?=? tg K K p

a K 主动土压力系数 361.02452=??? ? ?-=? tg K a 经计算y=1.5m 挡土结构的最小入土深度t 0: x y t +=0 x 可以根据P 0和墙前被动土压力对挡土结构底端的力矩相等来进行计算 ()m K K P y t a p 9.2600=-+=γ 挡土结构下端的实际埋深应位于x 之下,所以挡土结构的实际埋深应为 m t K t 5.302=?=(k 2 经验系数此处取1.2) 经计算:根据抗倾覆稳定的验算,36号工字钢需入土深度为3.5米,实际入土深度为3.7米,故:能满足滑动稳定性的要求 2、支撑结构内力验算 主动土压力:a a a K cH K H P 22 12-=γ 被动土压力:p p p cK K H P 22 12+=γ 最后一部支撑支在距管顶0.5m 的地方,36b 工字钢所承受的最大剪应力 d I Q d I Q S S z x x z ???? ??==*max max *max max max τ ,3.30* max cm I S z x = d=12mm,经计算 []ττ<=a MP 6.26max 36b 工字钢所承受的最大正应力 []σσ<==a MP W M 9.78max 经过计算可知此支撑结构是安全的 3、管涌验算: 基坑开挖后,基坑周围打大口井两眼,在进出洞口的位置,可降低

(新)搅拌站基础承载力验算书

拌合站基础计算书 梁场混凝土拌合站,配备HZS120拌合机两套,每套搅拌楼设有5个储料罐,单个罐在装满材料时均按照200吨计算。经过现场开挖检查,在地表往下0.5~3米均为粉质黏土。 一.计算公式 1 .地基承载力 P/A=σ≤σ0 P—储蓄罐重量KN A—基础作用于地基上有效面积mm2 σ—地基受到的压应力MPa σ0—地基容许承载力MPa 通过查资料得出该处地基容许承载力σ0=0.18 Mpa 2.风荷载强度 W=K1K2K3W0= K1K2K31/1.6V2 W —风荷载强度Pa,W=V2/1600 V—风速m/s,取28.4m/s(按10级风考虑) 3.基础抗倾覆计算 K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×力矩≥2即满足要求 M1—抵抗弯距KN?M M2—抵抗弯距KN?M P1—储蓄罐自重KN P’—基础自重KN P2—风荷载KN 二、储料罐地基承载力验算 1.储料罐地基开挖及浇筑 根据厂家提供的拌合站安装施工图,现场平面尺寸如下: 地基开挖尺寸为半径为8.19m圆的1/4的范围,宽4.42m,基础浇注厚度为

2m。基底处理方式为:压路机碾压两遍,填筑30cm建筑砖碴、混凝土块并碾压两遍。查《路桥计算手册》,密实粗砂地基容许承载力为0.55Mpa。 2.计算方案 开挖深度为2米,根据规范,不考虑摩擦力的影响,计算时按整体受力考虑,每个水泥罐集中力P=2000KN,水泥罐整体基础受力面积为95.48m2,基础浇注C25混凝土,自重P’=4774KN,承载力计算示意见下图: 粉质黏土 根据历年气象资料,考虑最大风力为28.4m/s(10级风),风的动压力P2=V2/1600=504.1N/m,储蓄罐顶至地表面距离为20米,罐身长17m,5个罐基本并排竖立,受风面积306m2,在最不利风力下计算基础的抗倾覆性。计算示意图如下 P2 罐与基础自重P1+P’ 3.储料罐基础验算过程 3.1 地基承载力 根据上面公式,已知P+P’=14774KN,计算面积A=95.48×106mm2, P/A= 14774KN/95.48×106mm2=0.15MPa ≤σ0=0.55 MPa 地基承载力满足承载要求。

抗浮验算计算书

地下室抗浮验算 一、整体抗浮 (一)主楼部分 底板板底相对标高为- 4.700,地坪相对标高为:-0.300,抗浮设防水位相对标高为- 1.5m,即抗浮设计水位高度为: 3.2m。 裙房部分抗浮荷载: ①地上四层裙房板自重: ②地上四层xx折算自重: ③地下顶板自重: ④地下室xx折算自重: ⑤底板自重:25× 0.48= 12.0kN/m2 25× 0.50= 12.5kN/m2 25× 0.18= 4.5kN/m2

25× 0.11= 2.75kN/m2 25× 0.4= 10.0kN/m2 41.75kN/m2 合计: 水浮荷载: 3.2×10=32 kN/m2, 根据地基基础设计规范GB 5007-2011第 5.4.3条,> 1.05,满足抗浮要求。 二、整体抗浮 (二)仅一层车库部位 J-1基础高度改为800,仅一层地下室位置防水板板底标高与J-1底平,上部采用C15素混凝土回填至设计标高(- 4.200)。抗浮计算如下: 图纸修改见结构05 底板板底相对标高为- 5.100,地坪相对标高为:-0.300,抗浮设防水位相对标高为-

1.5m,即抗浮设计水位高度为:3.6m。 地下室部分抗浮荷载: ①顶板覆土自重: ②地下顶板自重: ③xx折算自重: ④底板及回填自重: 考虑设备自重20× 0.30= 6.0kN/m2 25× 0.25= 6.25kN/m2 25× 0.11= 2.75kN/m2 25×( 0.4+ 0.5)= 22.5kN/m2 0.5 kN/m2

38kN/m2 水浮荷载: 3.6×10=36kN/m2>1.05,满足抗浮要求。合计:

抗倾覆验算

一、便桥墩身抗倾覆检算 说明:1#墩为已完成墩身,且新建线路中线与1#墩身中线偏移0.19m,详见平面图所示。1#墩为最不利墩身,故以1#墩来检验墩身的抗倾覆安全性。 1、竖向力 竖向恒载: N1=95.75+39.2ⅹ9.2=456.39KN(桥跨上部结构自重) N2=562.5KN(墩身自重) N3=687.5KN(基础自重) 竖向活载: N4=1045.884KN(支点反力)Mx=18.068KN·m(支点反力对基底长边中心轴x-x轴力之矩) 2、水平力 制动力的大小均按竖向静活载(不包括冲击力)的10%计算,作用点在轨顶2m;离心力等于离心力率乘以支座的静活载反力N4,作用点在轨顶2m。 制动力T1: T1=(N1+N2+N3+N4)ⅹ10%=275.227KN 离心力T2: T2=CⅹN4 离心力率通过C=V2/(127R)计算,其中V为设计行车速度5Km/h,R为曲线半径400m,代入可得:C=52/(127ⅹ400)=0.0005 T2=0.0005ⅹ1045.884=0.523KN 3、风荷载(作用在墩身上的风力T墩、作用在列车上的风力T列车): 作用在桥梁受风面上的静压力,按《桥规》规定的标准求出最大风速后,通过风速与风压 1

关系公式Wo=γv2/(2q)求出基本风压值, 式中Wo为基本风压值(Pa) q为重力加速度(m/s2) γ为空气重度(N/m3) v为平均最大风速(m/s) 取标准大气压下,常温为15摄氏度时的空气重度12.255N/m3、纬度45度处重力加速度为9.8m/s2, 代入公式可以得出Wo=v2/1.6,查表v取12m/s计算得出Wo=90Pa 作用于桥梁上的风荷载强度W(Pa)按下式计算W=K1·K2·K3·Wo,查表取K1=1.0,K2=1.0,K3=0.8代入公式 可得W=72Pa 墩风压计算取横向迎风面积S=aⅹh,其中1#墩的a值为1.8m,h为墩高度5m代入可得墩迎风面积为9m2,T墩=9ⅹ72=0.65KN。 计算风力时,标准规矩列车横向受风面积等于受风面积按3m搞的长方带计算,作用点在轨面上2m高度处。 桥上有车时:W=K1·K2·800=800Pa≮1250Pa,列车迎风面积为3ⅹ(12.5+9.5+9+10)=96m2。T列车=96ⅹ800=76.8KN。 设基底截面重心至压力最大一边的边缘的距离为y(荷载作用在重心轴上的矩形基础且y=b/2),外力合力偏心距为e0,则两者的比值Ko可反映基础倾覆稳定性的安全度,Ko 称为抗倾覆稳定系数。 即Ko=y/ e0e0=(ΣPiei十ΣTihi)/ΣPi y=b/2=5/2=2.5m e=0.19m 2

搅拌站罐仓抗倾覆计算书

七分部搅拌站罐仓抗倾覆计算书 七分部搅拌站,位于主线ZK148+000左侧约200m,配备HZS75搅拌机2台台,每台搅拌机设有2个100吨级储料罐仓。本搅拌站混凝土供应主要结构物包括混凝土方量约9万m3。 一.相关计算公式 1.风荷载强度W=K1K2K3W0= K1K2K3V2/1.6 W —风荷载强度Pa W0—基本风压值Pa K1、K2、K3—风荷载系数,查表分别取0.8、1.13、1.0 V—风速m/s,本次按照扎鲁特地区最大风速19.3m/s计算 2.抗倾覆计算 Kc=M1/ M2=[(P1*0.5*基础宽)/(14*P2*受风面)] Kc≥1.5 即满足抗倾覆要求 M1—抵抗弯距KN?M M2—抵抗弯距KN?M P1—储蓄罐与基础自重KN P2—风荷载KN 二、罐仓抗倾覆验算 1.罐仓及基础尺寸根据厂家提供的拌和站安装施工图,现场平面尺寸如下 地基开挖尺寸如图所示(两站基础及罐仓相同),浇筑深度为2m,平面尺寸

8.5m*4.5m 2.计算方案基础采用整体开挖,开挖深度为2米,根据规范,不考虑摩擦力的影响,储蓄罐与基础自重P1=1000KN*2+基础自身重量,基础自身重量=76.5m3*24kN/m3=1836kN 则P1=1000KN*2+76.5m3*24kN/m3=2000+1836=3836kN 根据历年气象资料,考虑最大风力为19.3m/s 则W=K1K2K3W0=K1K2K3V2/1.6=0.8*1.13*1.0*19.32/1.6=201.69pa P2=W/1000=0.20169kN 储蓄罐顶至地表面距离为15米,罐身长12m,2个罐基本并排竖立,受风面80m2,整体受风力抵抗风载,在最不利风力下计算基础的抗倾覆性。计算示意图如下 抗倾覆计算如下 Kc=M1/M2=[(P1*0.5*基础宽)/(14*P2*受风面)] =(3836*0.5*4.5)/(14*0.20169×80) =38.21≥1.5 满足抗倾覆要求经过验算,储料罐基础满足抗倾覆要求。

脚手架的抗倾覆验算与稳定性计算

脚手架的抗倾覆验算与稳定性计算[摘要]当模板支架、施工用操作架等脚手架不设连墙杆时,必须首先对脚手架进行抗倾覆验算,然后才是强度、刚度和稳定性计算。而现行的国家标准中没有倾覆验算和稳定性验算内容。根据国家有关标准导出了脚手架倾覆验算公式,并有2个算例辅以说明。最后指出脚手架高宽比与脚手架的倾覆有关,与脚手架稳定性承载能力无关。 [关键词]脚手架;倾覆;稳定性;验算 结构设计中,“倾覆”与“稳定”这两个含义是不相同的,设计时都应考虑。《建筑结构可靠度设计统一标准》gb50068-2001第3.0.2条第一款规定承载能力极限状态包括:“①整个结构或结构的一部分作为刚体失去平衡(如倾覆等)……。④结构或结构构件丧失稳定(如压屈等)”。可见它们同属于承载能力极限状态,但应分别考虑。《建筑结构设计术语和符号标准》gb/t 50083-97,对“倾覆”和“稳定”分别作出了定义,并称“倾覆验算”和“稳定计算”。《建筑地基基础设计规范》gb50007-2002,关于地基稳定性计算就是防止地基整体(刚体)滑动的计算。《砌体结构设计规范》gb50003-2001对悬挑梁及雨篷的倾覆验算都有专门规定。施工现场的起重机械在起吊重物时也要做倾覆验算。对于脚手架,由于浮搁在地基上,更应该做倾覆验算。 《建筑施工扣件式钢管脚手架安全技术规范》jgj130-2001及《建筑施工门式钢管脚手架安全技术规范》jgj128-2000中都没有

倾覆验算的内容,这是因为这两本规范规定的脚手架都设置了“连墙杆”,倾覆力矩由墙体抵抗,因此就免去了倾覆验算。如果不设连墙杆,则脚手架的倾覆验算在这两本规范中就成为不可缺少的内容了。所以,对于模板支架、施工用的操作架等无连墙杆的脚手架,首先应保证脚手架不倾覆而进行倾覆验算,然后才是强度、刚度和稳定性计算。如果需要,还可进行正常使用极限状态计算。 1脚手架的倾覆验算 1.1通用的验算公式推导 无连墙杆的脚手架,作为一个刚体应按如下表达式进行倾覆验算: (1)式中:γg1、cg1、g1 k分别为起有利作用的永久荷载的分项系数、效应系数、荷载标准值;γg2、cg2、g2 k分别为起不利作用的永久荷载的荷载分项系数、效应系数、荷载标准值;cq1、q1 k 分别为第一个可变荷载的荷载效应系数、荷载标准值;cqi、qik分别为第i个可变荷载的荷载效应系数、荷载标准值;ψci为第i个可变荷载的组合值系数。当风荷载与一个以上的其它可变荷载组合时采用0.9;当风荷载仅与永久荷载组合时采用1.0。 对于平、立面无突出凹凸不平的脚手架,以下简称为规整脚手架,其倾覆验算应按如下表达式进行: (2)式中:0.9为起有利作用的永久荷载的荷载分顶系数;cw、wk为风荷载的效应系数、风荷载的标准值。 对于规整脚手架,其上作用的永久荷载、可变荷载是抗倾覆的,

抗浮锚杆计算书

抗浮锚杆深化设计计算书 一、工程质地情况: 地下水位标高 -1.00 m 地下室底板标高 -6.52 m 浮力 55.2 kN/m 2 二、抗浮验算特征点受力分析: 1.原底板砂垫层厚 0.10m 自重 0.10X20=2kN/m 2 2.原砼底板厚 0.40m : 自重 0.4X25=10 kN/m 2 3.新加砼配重层厚 0.30m 自重 0.3X25=7.5 kN/m 2 抗浮验算 55.20-19.50=35.70 kN/m 2 三、计算过程 由受力情况,将锚杆分为A 、B 、C 三类,A 类为图中○A 轴至○E 轴区 域,地面与中风化板岩之间有8米粘性土层;B 类为有○E 轴至○L 轴区域,地面与中风化板岩之间有4米粘性土层; C 类为图中○L 轴至○Q 轴区域,地面与中风化板岩之间无粘性土层。 锚杆间距取3m ×3m 。 1. 锚杆杆体的截面面积计算: yk t t s f N K A ≥ t K ——锚杆杆体的抗拉安全系数,取1.6; t N ——锚杆的轴向拉力设计值(kN ),锚杆的拉力设计值=特征值×1.3,A 类锚杆取35.70×3.0×3.0×1.3=438.75kN 。 yk f ——钢筋的抗拉强度标准值(kPa ),HRB400取400 kPa 。 As ≥fyk KtNt =4001075.4386.13??=17552m m 总计 19.5 kN/m 2

选取三根HRB400 直径28mm 钢筋,钢筋截面积满足规范要求 2. 锚杆锚固长度 锚杆锚固长度按下式估算,并取其中较大者: ψπmg t a Df KN L > ψ πεms t a df n KN L > 式中:K ——锚杆锚固体的抗拔安全系数,取2.0; t N ——锚杆的轴向拉力设计值(kN ),取438.75kN ; a L ——锚杆锚固段长度(m ); mg f ——锚固段注浆体与地层间的粘结强度标准值(kPa ),按表7.5.1-1取粘 性土层65kpa ,中风化板岩层0.25Mpa ; ms f ——锚固段注浆体与筋体间的粘结强度标准值(kPa ),按表7.5.1-3取2.5MPa ; D ——锚杆锚固段的钻孔直径(m ),取0.15m d ——钢筋的直径(m ); ε——采用2根以上钢筋时,界面的粘结强度降低系数,取0.6~0.85,本例 取0.7; ψ——锚固长度对粘结强度的影响系数,按表7.5.2取1.0; n ——钢筋根数。 (1)锚固段注浆体与地层间的粘结强度(全风化泥质粉砂岩、强风化泥质粉砂岩q sik 分别为55kpa 、140kpa) A 类:pa 46.1220 .28 16515.014.3M K l Df N a mg t =????= = ψπ土 pa 29.36146.122-75.483-M N N N t t t ===土岩 m Df KN l mg t a 14.61 25015.014.329 .3610.2=????== ψπ

水泥罐稳定性计算书.docx

水泥罐稳定性计算书 一、编制说明 本验算编制是根据施工现场土质情况及水泥罐特点而进行的,为确保有足够的水泥储藏量,保证工程顺利进行,工程计划投入50t,100t两种水泥罐进行施工作业。 二、编制依据 1、施工现场平面布置; 2、水泥罐平面示意图及基础参数(华新水泥鄂州分厂提供); 3、工程周边建筑情况。 三、水泥罐定位 水泥罐定位布置见下图: 四、水泥罐基础及承台设计 1、本水泥罐基础根据现场实际情况,采用强夯处理过后地基,且经静力触探检测承载力大于150Kpa; 2、基础承载设计为:承载砼为C25等级,承台尺寸为4500*4500*500mm,承台采取开挖半米浇筑混凝土布置。 五、水泥罐基础,承载验算,抗倾覆验算: 1、基础竖向承载力验算,根据现场地基处理后土体检测,该层土的承载力特征值为150KN/㎡。 水泥罐自重根据水泥厂提供数据,50t罐取10t计算,100t罐取15t计算; 分两种情况进行验算 (1)50t水泥罐 V=600KN G=4.5*4.5*0.5*25=254KN =(G+V)/A=(600+254)/(4.5*4.5)=42.12KN/㎡<〔〕=150KN/㎡ (2)100t水泥罐 V=1150KN

G=4.5*4.5*0.5*25=254KN =(G+V)/A=(1150+254)/(4.5*4.5)=69.33KN/㎡<〔〕=150KN/㎡ 即承载能力满足要求; 其中式中: V——为水泥罐满载时总重量,取水泥罐说明书; G——为基础承载重量; A——为基础承载接触面积。 2、基础抗倾覆验算: 分两种情况进行验算 按照抗倾覆验算公式 0.95-S>0即满足要求 其中式中: ——自重及压重产生的稳定力矩KNm; ——风荷载标准值,此处为平原地带,根据设计图纸总说明,历史最大风速17m/s,根据风速与风压通用公式取=/1600,计算得0.18; H ——风荷载计算力矩高度; S ——水泥罐侧面受力面积。 (1)50t水泥罐 空罐: 0.95-SH=0.95*(4.5*4.5*0.5*25+100)*(4.5/2)-0.18*3*4.35*(3.714+4.35/2)=742.84KNm>0 满罐: 0.95-SH=0.95*(4.5*4.5*0.5*25+600)*(4.5/2)-0.18*3*4.35*(3.714+4.35/2)=1811.59KNm>0 (2)100t水泥罐 空罐: 0.95-SH=0.95*(4.5*4.5*0.5*25+150)*(4.5/2)-0.18*3*8.7*(3.714+8.7/2)=2963.16KNm>0 满罐: 0.95-SH=0.95*(4.5*4.5*0.5*25+1150)*(4.5/2)-0.18*3*8.7*(3.714+8.7/2)=825.66KNm>0 抗倾覆均能满足要求,现场为防止突发情况,在罐体四周沿三个方向拉设缆风绳,保证稳定,且在罐体周围布置护栏防撞。知识改变命运

抗倾覆稳定性验算

五、施工计算 1、抗倾覆稳定性验算 本工程基坑最深11、0米左右,此处得土为粘性土,可以采用“等值梁法”进行强度验算。 首先进行最小入土深度得确定: 首先确定土压力强度等于零得点离挖土面得距离y,因为在此处得被动土压 式中:P 挖土面处挡土结构得主动土压力强度值,按郎肯土压力理论进行计 b 算即 土得重力密度此处取18KN/m3 修正过后得被动土压力系数(挡土结构变形后,挡土结构后得土破坏棱柱体向下移动,使挡土结构对土产生向上得摩擦力,从而使挡土结构后得被动土压力有所减小,因此在计算中考虑支撑结构与土得摩擦作用,将支撑结构得被动土压力乘以修正系数,此处φ=28°则K=1、78 主动土压力系数 经计算y=1、5m : 挡土结构得最小入土深度t 与墙前被动土压力对挡土结构底端得力矩相等来进行计算x可以根据P 0 挡土结构下端得实际埋深应位于x之下,所以挡土结构得实际埋深应为(k 经验系数此处取1、2) 2 经计算:根据抗倾覆稳定得验算,36号工字钢需入土深度为3、5米,实际入土深度为3、7米,故:能满足滑动稳定性得要求

2、支撑结构内力验算 主动土压力: 被动土压力: 最后一部支撑支在距管顶0、5m得地方,36b工字钢所承受得最大剪应力 d=12mm,经计算 36b工字钢所承受得最大正应力 经过计算可知此支撑结构就是安全得 3、管涌验算: 基坑开挖后,基坑周围打大口井两眼,在进出洞口得位置,可降低 经计算 因此此处不会发生管涌现象 4、顶力得计算 工程采取注浆减阻得方式来降低顶力. φ1800注浆后总顶力为: F=fo、S*0、3=25*667/10*0、3*1、1=550t fo—土得摩擦阻力,一般为25KN/m2 S-土与管外皮得摩擦面积 0。3-注浆减阻系数 1。1—顶力系数 5、后背得计算 E=1、5×0、5×Υ×H2×tg2(45+φ/2)+2chtg(45+φ/2) (式中Υ土得重度(18KN/m3)c土得粘聚力10kpa,φ摩擦角28o)计算得每米588吨,后背工作宽度为4米,后背承载力为2354吨。(参照最

拌合站拌合楼基础承载力、储料罐基础验算、拌合楼基础验算计算书

拌合站拌合楼基础承载力、储料罐基础验算、拌合楼基础验算计算书

目录 一.计算公式 (3) 1.地基承载力 (3) 2.风荷载强度 (3) 3.基础抗倾覆计算 (3) 4.基础抗滑稳定性验算 (4) 5.基础承载力 (4) 二、储料罐基础验算 (4) 1.储料罐地基开挖及浇筑 (4) 2.计算方案 (4) 3.储料罐基础验算过程 (5) 3.1 地基承载力 (5) 3.2 基础抗倾覆 (5) 3.3 基础滑动稳定性 (6) 3.4 储蓄罐支腿处混凝土承压性 (6) 三、拌合楼基础验算 (6) 1.拌合楼地基开挖及浇筑 (6) 2.计算方案 (7) 3.拌合楼基础验算过程 (7) 3.1 地基承载力 (7) 3.2 基础抗倾覆 (8) 3.3 基础滑动稳定性 (8) 3.4 储蓄罐支腿处混凝土承压性 (8)

拌合站拌合楼基础承载力计算书 3号拌合站为先锋村拌和站,配备HZS90拌和机,设有4个储料罐,单个罐在装满材料时均按照100吨计算。拌合楼处于先锋村内,在103国道右侧180m ,对应新建线路里程桩号DK208+100。经过现场开挖检查,在地表往下0.5~1.5米均为粉质粘土,1.5米以下为卵石土。 一.计算公式 1 .地基承载力 P/A=σ≤σ0 P — 储蓄罐重量 KN A — 基础作用于地基上有效面积mm2 σ— 土基受到的压应力 MPa σ0— 土基容许的应力 MPa 通过地质钻探并经过计算得出土基容许的应力σ0=0.108 Mpa (雨天实测允许应力) 2.风荷载强度 W=K 1K 2K 3W0= K 1K 2K 31/1.6v2 W — 风荷载强度 Pa W0— 基本风压值 Pa K 1、K 2、K 3—风荷载系数,查表分别取0.8、1.13、1.0 v— 风速 m/s,取17m/s σ— 土基受到的压应力 MPa σ0— 土基容许的应力 MPa 3.基础抗倾覆计算 K c =M 1/ M 2=P1×1/2×基础宽/ P2×受风面×(7+7)≥1.5 即满足要求 M 1— 抵抗弯距 KN ?M M 2— 抵抗弯距 KN ?M P1—储蓄罐与基础自重 KN

地下室抗浮计算

地下室抗浮计算 整体抗浮计算: 抗浮设计水头:7.4m,底板厚0.5m,底板上覆土1.9m,地下室顶板厚0.16m(梁板柱折算厚度0.4m),地下室顶板覆土1.5m。 单位面积水浮力:6.5x10=65KN 单位面积抗力:0.4x25+0.9x18+0.2x25+1.6x18+0.4x25=70KN>67 整体抗浮满足要求, 底板局部抗浮计算: 抗浮设计水头:6.5m,底板厚0.4m,底板上覆土1.1m。 单位面积水浮力:6.5x10=65KN 单位面积抗力:[0.4x25+0.9x18+0.2x25]x0.9=31.2KN 局部抗浮不满足。防水底板需计算配筋。 单位面积净浮力q为:65x1.2-31.2x1.2=40.56KN 按经验系数法计算:Mx=q*Ly*(Lx-2b/3)*(Lx-2b/3)/8 =40.56*8.4*(8.1-2*5/3)*(8.1-2*5/3)/8 =967.6KNm 柱下板带支座最大负弯矩M1为:M1=0.5*Mx=483.8KNm(跨中板带最大为0.17)柱下板带跨中最大正弯矩M2为:M2=0.22*Mx=212.9KNm(跨中板带最大为0.22)配筋为:下部为:As1=M1/(0.9*fy*h1*3.9) =483.8/(0.9*360*1150*3.9) =332.9mm <Ф16@200 As1’=M1/(0.9*fy*h1’*3.9) =483.8/(0.9*360*350* 3.9) =1039mm 基本等于Ф16@200 上部为:As2=M2/(0.9*fy*h2* 3.9) =212.9/(0.9*360*350* 3.9) =481.4mm <Ф16@200 上式配筋计算中分母3.9为柱下板带宽度。 原设计防水底板配筋满足要求。 独立基础计算 阶梯基础计算 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、设计依据 《建筑地基基础设计规范》 (GB50007-2002)① 《混凝土结构设计规范》 (GB50010-2002)② 二、示意图

塔式起重机抗倾覆计算及基础设计

塔式起重机抗倾覆计算 及基础设计 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

塔式起重机抗倾覆计算及基础设计 一、基础的设置:根据塔式起重机说明书基础设置要求的技术参数及对地基的要求 选用基础设计图,基础尺寸采用××,基础砼标号为C35(7天和28天期龄各一组), 要有砼检测报告,基础表面砼平整度要求≤1/1000,塔式起重机预埋螺栓材料选用40Cr 钢,承重板高出基础砼面5~8㎜左右,要有排水设施。 二、塔式起重机抗倾覆计算 ①、塔式起重机的地基为天然地基,必须稳妥可靠,在表面上平整夯实,夯实后的 基础的承压能力不小于200kPa,基础的总重量不得小于80T,砼标号不得小于 C35,砼的捣 制应密实,塔式起重机采用预埋螺栓固定式。 ②、参数信息:塔吊型号:QTZ5510,塔吊起升高度H:,塔身宽度B:,自重F K :453kN,基础承台厚度h:,最大起重荷载Q:60kN,基础承台宽度b:,混凝土强度等级:C35。 ③、塔式起重机在安装附着前,处于非工作状况时为最不利工况,按此工况进行设计计算。塔式起重机受力分析图如下: 根据《塔式起重机说明书》,作用在塔吊底座荷载标准值为:M K =1654kn·m, F K = 530KN,Fv K =,砼基础重量G K = 835KN ④、塔式起重机抗倾覆稳定性验算: 为防止塔机倾覆需满足下列条件: 式中e----- 偏心距,即地基反力的合力至基础中心的距离; M K ------ 相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的力矩值; Fv K ------相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的水平荷载; F K -------塔机作用于基础顶面的竖向荷载标准值; h ---------基础的高度(h=); G K ----------基础自重; b---------矩形基础底面的短边长度。(b= 将上述塔式起重机各项数值M K 、Fv K 、F K 、h、G K 、b代入式①得: e =< b/3= 偏心距满足要求,抗倾覆满足要求。 三、塔式起重机地基承载力验算:根据岩土工程详细勘察报告资料,1#塔吊基础底板处承载力特征值为372Kpa。取塔式起重机基础底土层的承载力标准值为372Kpa,根据《TCT5613塔式起重机使用说明书》,采用塔式起重机基础:长×

脚手架抗倾覆计算书

脚手架结构的设计规定和计算方法 摘要:《编制建筑施工脚手架安全技术标准的统一规定》(修订稿)对建筑脚手架的荷载计算、设计表达式等计算方法作出了规定。脚手架的主要验算项目应包括单、双排脚手架的整体稳定性验算,非单、双排脚手架结构和单肢立杆的稳定性验算及水平杆件的强度验算、连墙件验算等。 关键词:脚手架;技术标准;设计规定;计算方法;稳定性验算 摘自:建筑技术.1999.第8期 1993 年制订并下发的《编制建筑施工脚手架安全技术标准的统一规定》(建标[1993] 062 号,以下简称《统一规定》),对涉及风荷载计算、实用设计表达式等脚手架设计计算方法的有关问题作出了规定。经4 年的应用和研究,1997年通过并下发了该规定的修订稿,基本上形成了脚手架设计计算方法的框架,成为即将陆续颁布实施的各种建筑施工脚手架安全技术规范的指导性文件。 由脚手架杆(构)件和连接件搭设而成的各种形式的脚手架、支撑架和其他用途架子所形成的脚手架结构,具有其自身的特点,不同于工程结构,不能完全套用钢结构的计算方法,应依据《统一规定》确定的方法和要求进行设计和计算。 1 《统一规定》对脚手架结构设计计算方法的规定1.1 对设计方法和设计要求的规定 1.1.1 规定脚手架结构一律采用以概率理论为基础的极限状态设计法(简称概率极限状态设计法,即目前我国工程结构设计采用的方法)进行设计。 1.1.2 规定脚手架结构为临时工程结构,其结构重要性系数γ0取0.9。 1.1.3 对脚手架结构设计可靠度的要求,考虑到无足够统计数据积累的情况,确定其采用概率极限状态设计的结果,应与我国的历史使用经验相一致,即若采用单一系数法进行设计时,其单一安全系数应满足:强度计算时的K1≥1.5;稳定计算时的K2≥ 2.0 。为此,在计算式中引人材料强度附加分项系数γ0’或抗力附加分项系数γ’R,γ’R =γ0γ’m=0.9γ’m。1.1.4 规定钢管脚手架结构归人薄壁型钢结构,在涉及设计焊接连接、选用轴心受压杆件

重力式挡土墙计算书

重力式挡土墙验算[执行标准:公路] 计算项目:重力式挡土墙 1 计算时间:2016-05-20 10:51:50 星期五 ------------------------------------------------------------------------ 原始条件: 墙身尺寸: 墙身高: 4.500(m) 墙顶宽: 1.500(m) 面坡倾斜坡度: 1:0.250 背坡倾斜坡度: 1:-0.250 采用1个扩展墙址台阶: 墙趾台阶b1: 0.600(m) 墙趾台阶h1: 1.000(m) 墙趾台阶与墙面坡坡度相同 墙底倾斜坡率: 0.100:1 物理参数: 圬工砌体容重: 23.000(kN/m3) 圬工之间摩擦系数: 0.400 地基土摩擦系数: 0.500 墙身砌体容许压应力: 2100.000(kPa) 墙身砌体容许弯曲拉应力: 280.000(kPa) 墙身砌体容许剪应力: 110.000(kPa) 材料抗压极限强度: 1.600(MPa) 材料抗力分项系数: 2.310 系数醩: 0.0020 挡土墙类型: 一般挡土墙 墙后填土内摩擦角: 35.000(度) 墙后填土粘聚力: 0.000(kPa) 墙后填土容重: 19.000(kN/m3) 墙背与墙后填土摩擦角: 17.500(度) 地基土容重: 18.000(kN/m3) 修正后地基承载力特征值: 200.000(kPa) 地基承载力特征值提高系数: 墙趾值提高系数: 1.200

墙踵值提高系数: 1.300 平均值提高系数: 1.000 墙底摩擦系数: 0.500 地基土类型: 土质地基 地基土内摩擦角: 30.000(度) 土压力计算方法: 库仑 坡线土柱: 坡面线段数: 1 折线序号水平投影长(m) 竖向投影长(m) 换算土柱数 1 17.280 9.430 1 第1个: 定位距离0.000(m) 公路-II级 坡面起始距离: 0.000(m) 地面横坡角度: 20.000(度) 填土对横坡面的摩擦角: 35.000(度) 墙顶标高: 0.000(m) 挡墙分段长度: 10.000(m) ===================================================================== 第 1 种情况: 组合1 ============================================= 组合系数: 1.000 1. 挡土墙结构重力分项系数 = 1.000 √ 2. 墙顶上的有效永久荷载分项系数 = 1.000 √ 3. 墙顶与第二破裂面间有效荷载分项系数 = 1.000 √ 4. 填土侧压力分项系数 = 1.000 √ 5. 车辆荷载引起的土侧压力分项系数 = 1.000 √ ============================================= [土压力计算] 计算高度为 4.705(m)处的库仑主动土压力 无荷载时的破裂角 = 42.858(度) 公路-II级 路基面总宽= 19.686(m), 路肩宽=0.000(m) 安全距离=0.500(m) 单车车辆外侧车轮中心到车辆边缘距离= 0.350(m), 车与车之间距离=0.600(m) 经计算得,路面上横向可排列此种车辆 7列 布置宽度= 7.360(m) 布置宽度范围内车轮及轮重列表: 第1列车: 中点距全部破裂体 轮号路边距离(m) 轮宽(m) 轮压(kN) 上轮压(kN) 01 0.500 0.300 15.000 15.000 02 2.300 0.300 15.000 15.000 03 0.500 0.600 60.000 60.000 04 2.300 0.600 60.000 60.000 05 0.500 0.600 60.000 60.000 06 2.300 0.600 60.000 60.000 07 0.500 0.600 70.000 70.000 08 2.300 0.600 70.000 70.000 09 0.500 0.600 70.000 70.000 10 2.300 0.600 70.000 70.000

抗浮桩计算

抗浮桩计算+有实列----难得啊! 一般抗浮计算:(局部抗浮)1.05F浮力-0.9G自重<0 即可 (整体抗浮)1.2F浮力-0.9G自重<0 即可 如果抗浮计算不满足的话,地下室底板外挑比较经济 同意以上朋友的观点,一般增大底版自重及底板外挑比抗拔桩要经济很多 【原创】抗浮锚杆设计总结 抗浮锚杆设计总结 1 适用的规范 抗浮锚杆的设计并无相应的规范条文,《建筑地基基础设计规范GB50007---2002》中“岩石锚杆基础”部分以及《建筑边坡工程技术规范GB 50330-2002》有关锚杆的部分可以参考使用,不过最好只用于估算,锚杆抗拔承载力特征值应通过现场试验确定,有一些锚杆构造做法可以参考。对于锚杆估算,推荐使用《建筑边坡工程技术规范GB 50330-2002》,对于岩土的分类较细,能查到一些必要的参数。 2 锚杆需要验算的内容 1)锚杆钢筋截面面积; 2)锚杆锚固体与土层的锚固长度; 3)锚杆钢筋与锚固砂浆间的锚固长度; 4)土体或者岩体的强度验算; 3 锚杆的布置方式与优缺点 1) 集中点状布置,一般布置在柱下;优点:可以充分利用上部结构传来的竖向力来平衡掉一部分水浮力;由于锚杆布置集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有很强的抵抗力。缺点:要求锚固于坚硬岩体中,不适用于软岩与土体,破坏往往是锚固岩体的破坏;由于局部锚杆较密,锚杆施工不方便;地下室底板梁板配筋较大。 2) 集中线状布置,一般布置于地下室底板梁下;优点:由于锚杆布置相对集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有较强的抵抗力。缺点:不能充分利用上部结构传来的竖向力来平衡掉一部分水浮力(个人认为考虑的话偏于不安全,对于跨高比小于6的底板梁,可以适当考虑上部结构传来的竖向力来平衡掉一部分水浮力),要求锚固于较硬岩体中,不适用于软岩与土体;地下室底板板配筋较大。 3) 面状均匀布置,在地下室底板下均匀布置;优点:适用于所有土体和岩体;地下室底板梁板配筋较小。缺点:不能充分利用上部结构传来的竖向力来平衡掉一部分水浮力(个人认为考虑的话偏于不安全);对于个别锚杆承载力不足的情况,由于能分担的锚杆较少,此情况抵抗力差;由于锚杆布置相对分散,对于地下室底板下的外防水施工比较麻烦。 4) 集中点状布置推荐用于坚硬岩;集中线状布置推荐用于坚硬岩与较硬岩;面状均匀布置推荐用于所有情况; 4 注意事项 1) 集中点状布置,抗浮锚杆与岩石锚杆基础结合为优,需注意柱底弯矩对锚杆拉力的影响,特别是柱底弯矩较大的时候; 2) 参考《建筑边坡工程技术规范GB 50330-2002》,应选用永久性锚杆部分内容; 3) 岩石情况(坚硬岩、较硬岩、较软岩、软岩、极软岩)应准确区分,可参考《建筑边坡工程技术规范GB 50330-2002》表7.2.3-1注4; 4) 锚杆抗拔承载力特征值应通过现场试验确定,可参考《建筑边坡工程技术规范GB 503

抗风倾覆稳定性计算书(幕墙和广告牌立柱、地脚螺栓、地基等抗倾覆稳定性计算大全)

抗风倾覆稳定性计算书 案例一:广告牌计算书SAP2000 案例二:广告牌计算书PKPM-STS 案例三:单柱或多柱广告塔主要结构造型计算 附件一:螺栓强度核算表 附件二:基础抗风稳定性简易计算 附件三:广告牌地脚螺栓强度简易核算 广告牌计算书SAP2000 一、工程概况 本工程为一广告牌,该广告牌为立体桁架组成的结构体系,桁架采用角钢连接。 二、设计所依据的规范 1、户外广告设施钢结构技术规程(CECS148-2003) 2、建筑结构荷载规范(GB50009-2001) 3、钢结构设计规范(GB50017-2003) 4、钢结构高强度螺栓连接的设计、施工及验收规程(JGJ82-91) 三、荷载情况 1、恒载:结构自重程序自动计入 2、活载:0.35kN/m2 3、基本雪压:0.3kN/m2 4、基本风压:Wo=0.35kN/m,地面粗糙度:C类。 5、抗震设防烈度:8度,设计基本地震加速度:0.20g,设计地震分组:第三组 6、水平地震影响系数最大值:0.16 7、建筑物场地类别:Ⅱ类,特征周期值:0.35s,结构阻尼比:0.05 8、抗震等级:三级。 四、总体结构布置形式 1、喷绘图案广告位高度h=4.68m 2、广告牌高H=5m 3、广告牌全长L=30m 五、风荷载计算 1、基本风压ω0=0.35KN/m2 2、标准风压ω=β×K×Kz×ω0=0.77KN/m2 其中:风振系数β=2.3;体型系数K=1.3;风压高度变化系数Kz=0.74

六、计算过程 1、SAP2000整体模型: 2、SAP2000计算喷绘广告位每个柱脚迎风面一根(即轴2处,其他轴线处均等于或小于该轴线)方钢管最大弯矩、剪力、挠度: 由分析可得:最大剪力为32.362KN;最大弯矩为M J=14.9655KN·M;最大挠度为7.86mm

抗倾覆稳定性验算

五、施工计算 1、抗倾覆稳定性验算 本工程基坑最深11.0米左右,此处的土为粘性土,可以采用“等值梁法”进行强度验算。 首先进行最小入土深度的确定: 首先确定土压力强度等于零的点离挖土面的距离y ,因为在此处的被动土压力等于墙后的主动土压力即: ()a p b K K P y -=γ 式中:P b 挖土面处挡土结构的主动土压力强度值,按郎肯土压力理论进行计 算即 a a b K cH K H P 22 12-=γ γ 土的重力密度 此处取18KN/m 3 p K 修正过后的被动土压力系数(挡土结构变形后,挡土结构后的 土破坏棱柱体向下移动,使挡土结构对土产生向上的摩擦力,从而使挡土结构后的被动土压力有所减小,因此在计算中考虑支撑结构与土的摩擦作用,将支撑结 构的被动土压力乘以修正系数,此处φ=28°则K=1.78 93.42452=??? ? ?+?=?οtg K K p a K 主动土压力系数 361.02452=??? ? ?-=?οtg K a 经计算y=1.5m

挡土结构的最小入土深度t 0: x y t +=0 x 可以根据P 0和墙前被动土压力对挡土结构底端的力矩相等来进行计算 ()m K K P y t a p 9.2600=-+=γ 挡土结构下端的实际埋深应位于x 之下,所以挡土结构的实际埋深应为 m t K t 5.302=?=(k 2 经验系数此处取1.2) 经计算:根据抗倾覆稳定的验算,36号工字钢需入土深度为3.5米,实际入土深度为3.7米,故:能满足滑动稳定性的要求 2、支撑结构内力验算 主动土压力:a a a K cH K H P 22 12-=γ 被动土压力:p p p cK K H P 22 12+=γ 最后一部支撑支在距管顶0.5m 的地方,36b 工字钢所承受的最大剪应力 d I Q d I Q S S z x x z ???? ??==*max max *max max max τ ,3.30* max cm I S z x = d=12mm,经计算 []ττ<=a MP 6.26max 36b 工字钢所承受的最大正应力 []σσ<==a MP W M 9.78max 经过计算可知此支撑结构是安全的 3、管涌验算: 基坑开挖后,基坑周围打大口井两眼,在进出洞口的位置,可降低 经计算25.12' ' ''=-γγγωh kh 因此此处不会发生管涌现象

抗浮锚杆计算书

结构计算书 项目名称:设计代号:设计阶段:审核:校对:计算: 第 1 册共 1 册 中广电广播电影电视设计研究院 2015年04 月07 日

综合楼锚杆布置计算 一、工程概况 (1)综合楼地下1层(含1夹层),地上2~4层,士0.00相对于绝对标高 7.50m,室内外高差-0.300m,地下室夹层高2.18m,地下室高5.30m,地下室建筑地面标 高-7.480m,建筑地面垫层厚150mm,结构地下室底板顶标高-7.630m。基础形式筏板,抗浮水位标高6.500m (绝对标高)。建筑地下室底板顶标高-7.630m (绝对标高- 0.130m),底板厚400mm。 (2)综合楼抗浮采用抗浮锚杆。 二、抗拔锚杆抗拔承载力计算 依据《岩土锚杆(索)技术规程》(以下简称《岩土规程》)计算。 锚杆基本条件: 锚杆直径D=150mm 锚杆长度L=7.5m 锚杆入岩(强风化花岗岩)长度:>2.5m 锚杆拉力标准值Nk=250KN 锚杆拉力设计值Nt=1.3Nk=325KN 钢筋:3?25 三级钢:A s=1470mm2, f=360 N/mm2 , f yk=400 N/mm2 依据《岩土锚杆(索)技术规程》(以下简称《岩土规程》)计算。 根据****院提供的《***勘察报告》,岩石(或土体)与锚固体的极限粘结强度标准值(f rbk),见第2页所附表1。 1、根据锚杆与土层粘结强度所计算的锚杆竖向抗拔承载力设计值Nt 依据《岩土规程》第7.5.1条公式(7.5.2-1)计算 N厂DL a f mg /K 勘探点1Q-K15岩层深,较为不利,计算该点抗拔承载力

Rt=360?9KN > Nt=351KN 2、 锚杆注浆体于钢筋间的锚固段长度 La 计算 依据《岩土规程》第7.5.1条公式(7.5.1-2) L a t 2070mm 7500mm n 「d 3* 「*25*0.6*2.4*1.0 锚杆注浆体于钢筋间的锚固段长度 La 满足要求。 钢筋面积A 计算 依据《岩土规程》第7.4.1条公式(7.4.1) 实配 3?25三级钢,A s =1472mm 2>1404 mm 2 锚杆杆体钢筋面积满足要求。 KN t 2*351000 3、 yk 1.6*351000 400 = 1404mm 2

相关文档
最新文档