Vensim+PLE+软件包中系统动力学函数

Vensim+PLE+软件包中系统动力学函数
Vensim+PLE+软件包中系统动力学函数

第8章 Vensim PLE 软件包中系统动力学函数

系统动力学所以能处理复杂的系统问题,除提出流位流率系简化流率基本入树建模法去描述系统外,还有一个重要原因是其专用软件都设计了一系列通用的系统动力学函数。

第一节数学、逻辑、测试函数

§ 8.1.1 数学函数

Vensim PLE备有五种普通数学函数供用户使用。

1.SIN(X)

定义1:SIN(X)为三角正弦函数,X须以弧度表示,其值小于8.35×105

当自变量是角度时,应通过乘以2π/360 转化为弧度。

2.EXP(X)

定义2:EXP(X) = e X ,e是自然对数的底,e=2.7182…,X的值必须小于36。

人们常用指数函数去描述系统,有了上面函数将会带来很大方便。

3. LN(X),变量X大于零。

即以e为底的对数函数,它与EXP(X)互为反函数,这样可以用EXP(X)和LN(X)来计算非以e为底的幂函数和对数函数。

4. SQRT(X)=√X—,X必须是非负量。

5. ABS(X) = │X│,对X取绝对值。

§ 8.1.2 逻辑函数

逻辑函数的作用类似于其它计算机语言中的条件语句,Vensim PLE的逻辑函数有三种。

1.最大函数MAX(P,Q)

MAX表示从两个量中选取较大者,P和Q是被比较的两个量,结果也是在这两个量中选取。

P 若P≥Q

定义1:若MAX(P,Q)=

Q 若P≤Q

其中P,Q是变量或常量,则MAX(P,Q)为最大函数。

可用MAX函数从多个量中选取较大者。如从P,Q,D三个量中选择较大者可用:MAX(D,MAX(P,Q))。

最小函数 Q 若P≥Q

定义2:若MIN(P,Q)=

P 若P≤Q

则MIN(P,Q)为最小函数。

1.MIN同MAX一样,可以从MIN(P,Q)

基本功能中派生出各种用法。

3. 选择函数IF THEN ELSE(C,T,F)

定义3:若IF THEN ELSE(C,T,F)

T C条件为真时

= (C为逻辑表达式)

F 否则

则IF THEN ELSE(C,T,F)为选择函数。

IF THEN ELSE函数常用于仿真过程中作政策切换或变量选择。有时也叫条件函数。

§ 8.1.3 测试函数

设计这一部分函数的目的主要是用于测试系统动力学模型性能用,所以称为测试函数。

在给出测试函数以前,我们必须重申一个概念,系统动力学的变量皆是时间TIME的函数,所以当仿真时间TIME发生变化时,各变量值都随之发生变化。不过,各变量与TIME的依赖关系存在差别,有的是以TIME为直接自变量,有的则是间接变量。测试函数以TIME为直接自变量,但在函数符号中常缺省。

1.阶跃函数STEP(P,Q)

定义1:

Q 若TIME≤Q

STEP(P,Q)=

P 若TIME > Q

其中,P---阶跃幅度;Q---STEP从零值阶跃变化到P值的时间,则STEP (P,

图8.1.1

阶路STEP(P,Q)和斜坡RAMP(A,B,C)函数图

2.斜坡函数RAMP(P,Q,R)

定义2:

0 若TIME≤Q

RAMP(P,Q,R)= P *(TIME-Q),若R≥TIME > Q

P *(R-Q),若TIME≥R

其中,P为斜坡斜率,Q为斜坡起始时间,R为斜坡结束时间,则RAMP(P,Q,R)为斜坡函数。

3.脉冲函数PULSE(Q,R)

定义3: 若PULSE(Q,R)随TIME变化产生脉冲。

其中:

Q---第一个脉冲出现的时间

R---相邻两个脉冲的时间间隔

脉冲宽度为仿真步长,则PULSE(Q,R)为脉冲函数。

4.均匀分布随机函数RANDOM UNIFORM(A,B,S)

定义5:RANDOM UNIFORM(A,B,S)产生在区间(A,B)内的均匀分布随机数,S给定随机数序列就确定,S取不同的值产生随机数序列也不同。RANDOM UNIFORM(A,B,S)为均匀分布随机函数。

上面我们给出了四种测试函数,实际上还有前面数学函数SIN(X)等也可以作为测试函数。

一个系统动力学模型,可以通过改变常数再运行的办法,实现多种测试函数分别进行测试。

第二节表函数

§ 8.2.1 表函数表示形式

1.Vensim PLE中表函数表示形式

定义 1 自变量与因变量的关系通过列表给出的函数叫表函数。例如下表就确定了一个表函数。

表函数是系统动力学的一个重要特征,它用于建立两个变量之间的非线性关系,特别是软变量之间的关系。例如:员工士气对工作效率的影响程度。一般,两个变量先归一化或者先规整化,再根据经验给出大致的关系图来。这样设计的变量是无量纲量。在进入Vensim PLE 软件Equation Editor,即点去图标Y=X2后,若方程还未定义,有AS Graph选项。选择此选项,会出现下面对话框。该对话框用于图形化定义,上例表函数可直接填入框中(图8.2.1)。包括自变量和函数值即因变量值列举,自变量和函数的最大值等。当自变量为非已知统计点时,可用线性插值法取其近似值。用鼠标左键在图形框中点按,会自动构成图形。

Vensim PLE软件中表函数表达形式还可通过选择方程类型TYPE中Lookup 进行列举表出,即把表函数自变量,因变量最大值、最小值及一些自变量与因变量对应的点值列出。如上例描述的表函数可以在方程输入框写成:

[(0,0)-(10,10)](0,0.5)(1,1)(1.5,2)(2,5)(2.5,10)其中[ ]中前面( )中0,0分另为自变量、因变量最小值,若自变量小于最小值,因变量取最小值,后面()中10,10分别为自变量、因变量最大值,若自变量超出最大值,因变量取最大值,[ ]后面五个()是已知自变量和因变量对值点,若自变量值不在给出点中,则自动用线性插值法求因变量对应值。自变量、因变量的最小值、最大值可依据实际背景来确定,列出的对应值点作为已知点可从历史数据中计算或分析给出。Vensim PLE专用软件对表函数的增减性、取值

间隔均匀性没有严格要求,但使用者可根据实际问题给出取值间隔、分段满足增减性的表函数。在Vensim PLE中建立的入树或流图内一个表函数必须有三部分完成,即一个自变量X,一个因变量Y及一个Y关于X的因子表,其因果关系为:

Y变量方程可写为:

↗↖ Y变量=X因子表(X变量)

X因子表 X变量

上例表函数中

X因子表=[(0,0)-(10,10)](0,0.5)(1,1)(1.5,2)(2,5)(2.5,10)表函数的建立方法将在§8.2.2介绍。

2.Micro DYNAMO及PD PLUS中表函数表示形式与Vensim PLE软件不同的是在

Micro DYNAMO及PD PLUS中有特定不同类型,其表示含义可由定义给出并固定下来。现使用 Vensim 软件的读者,可以不阅读下面内容。

⑴ Micro DYNAMO两类表函数

定义1:若TABLE(TY,X.K,XLOW,XHIGH,XINCR)

中: TY---表量名(因变量已给值)

X---自变量

XLOW---自变量X的最小值

XHIGH---自变量X的最大值

XINCR---自变量X的取值间隔

自变量取值为XLOW至XHIGH间以等间隔XINCR取X

1,X

2

,…… X

m

m个值,且

m =(XHIGH-XLOW)/XINCR + 1

对应于X

1,X

2

,…… X

m

的TY的值在DYNAMO方程中以T方程:

T TY= E

1/E

2

/……/E

m

给出。

当X

0∈(XLOW,XHIGH),但X

≠Xi(i=1,2,…,m)时,其变量值按线性插法给出,

当X的值超出[XLOW,XHIGH]范围时,因变量取对应的端点值,并给出警告信息。则 TABLE(TY,X.K, XLOW, XHIGH, XINCR)称为第一类表函数。

T TY= E

1/E

2

/……/E

m

称为其表量语句,又称为T语言。

例1:已知两变量X和Y,因变量Y随自变量X变化的关系的曲线所示(图8.2.2) 自变量X从X=-3开始,按等距离取7个点得表8.2.1。设Y为辅助变量,用第一类表函数语句表示的DYNAMO语句为:

A Y.K=TABLE(TY,X.K.-3.3.1)

T TY =-20/0/10/16/20/24/30。

注1:该例在Vensim PLE中变量关系图为:

Y变量方程可写为:

↗↖ Y变量=X因子表(X变量)

X因子表 X变量

X因子表= [(-3,-20)-(3,20)](-3,-20),(-2,0),(-1,10),(0,16),(1,20),(2,24),(3,30) (曲线如图8.2.3)

当X值超出[-3,3]时,Y取对应的端点值,不给出警告信息。

定义2:若TABHL(TY,X.K,XLOW,XHIGH,XINCR)中随X的取值范围超出[XLOW,XHIGH]时,因变量取对应的端点值,但不给出错误信息外,其它内容与第一类表函数相同,则TABHL(TY,X.K,XLOW,XHIGH,XINCR)称为第二类表函数。

注2:在PD PLUS语言中,表函数中T语句中斜线改为了逗号,且定义了下面两类表函数,不妨称为第三、第四类表函数。

第三类表函数为:TABXL(TY,X.K,XLOW,XHIGH,XINCR),此表函数,除X取值范围超出[XLOW,XHIGH]范围时,因变量取端点的趋势外推值外,其它内含与第一类表函数相同。

第四类表函数为:TABPL(TY,X.K,XLOW,XHIGH,XINCR),此表函数除利用多项式使曲线在各点起滑连接代替线段连接外,其它含义与第一类表函数相同,但表量语的数值后要加上m个零,如,对前面第一类表函数的例子,改为TABPL,则写为:

A Y.K=TABPL(TY,X.K.-3.3.1)

T TY =-20,0,10,16,20,24,30,0,0,0,0,0,0,0。

§8.2.2 表函数建立方法介绍

前面介绍的Vensim PLE专用软件,DYNAMO语言表达表函数的方式,是比较简单、容易接受的,但一个表函数的建立却不是如此容易的,往往是一个定性与定量相结合反复分析的结果,要建立一个具体表函数,肯定必须考虑所涉及的自变量、因变量的实际背景,再仔细研究其包含的一般数学问题及一般统计问题,进行深层次的量化分析,最后得出能反应变量间一般关系规律的量表作为表函数才能用于SD模型,日常生活中,可以经常碰到时间间隔相同的统计年报表、季报表、月报表,这些都是表函数。但是,在建立一个实际系统的SD模型时,这些统计报表很难作为一个完整的表函数直接放入模型中。其一,表函数不一定以时间为自变量,实践表明,表函数的自变量很多是同模型中其它一个或若干个变量的因变量;其二,统计报表没有未来若干年的预测数据,而SD模型的目标重点在对未来规律的仿真。根据以上分析和以往的经验,建立一个具体表函数,必须涉及下面基本步骤:

一、确定变量变化范围及取值间隔:

首先根据实际背景,初步统计或估计因变量,自变量变化范围,即最小值、最大值,再依据获取数据的难易程度及灵敏度、精确度的要求来确定变量点间的取值间隔,由于Vensim PLE中自变量间隔不一定要求均匀,在定取值间隔时可依实际背景把变量范围看作一个阶段或若干阶段来定,在不同阶段,取值间隔可不一样,目的是必须准确反应变量间变化规律。

二、确定函数的变化趋势

根据变量间因果关系极性来确定函数的增减规律,对整个变量范围要进行分析,可能某阶段呈递增态,另一个阶段呈现递减态,有的阶段不明显,根据

变化幅度大小可以调整各阶段取值间隔点间隔及点密度。

三、找出特殊点与特殊线

针对一个实际系统,建立SD模型,调用的表函数往往涉及到一些特殊取值点,如极值点、参照点、临界点,若有这些起点,在用Vensim PLE时,最好能直接给出在表函数的表达形式中,比如一个表函数的因变量Y是模型中其它变量乘积因子,最好找出Y=1对应的自变量X,把(X,1)直接放入表函数表达式中;如Y是模型中其它变量的和式,最好找出Y=0对应的自变量X,把(X,0)直接放入表函数表达式中;如Y=Y

是表函数单调性改变的点,

最好找出相应自变量X

0,把(X

,Y

)直接放入表函数表达式中,等等。虽

然表函数一般情况下是非线性的,但不排除在某阶段呈线性,若在某阶段呈

线性,可在表函数表达式直接给出此阶段的两端点,(X

1,Y

1

),(X

2

,Y

2

)。(此

两点代表确定的那条直线)。特殊线是指Y=X,Y=Y

0 或Yˊ= X

,的一些线段,

反映了表函数的某种特征,若有,最好能直接给出。对于如何确定特殊点、特殊线,必须据实际背景,采用各种系统工程方法来定,可参考后面表函数实例。

四、确定斜率

这里讲的斜率主要是指非特殊点的变化情况,在一个表函数中除找出特殊点外,更重要的是非特殊点的变化规律,在Vensim PLE中,表函数表达式内必须列出反应变化规律的若干非特殊点,这些点通过分析历史数据、预测数据得到,直接关系到表函数是否有效,其分析方法可根据实际背景借用各种相关理论及技术手段。

为了让读者更直观的了解表函数的建立过程,下面给出二个现有SD模型的表函数进行简单分析。

例1:

如图8.2.4为一个城市建设简化模型中剩余可建面积对其事业单位新建面积的影响因子ELBC关于已占有土地比LFO的表函数,即ELBC=f(LFO),两个变量均为无量纲,此函数无法用基本初等函数表示,但可采用定性定量相结合的方法建立表函数。

第一步:确立自变量LFO的变化范围及间距。

假设建模研究时,已建土地比是0.1,又不考虑土地余留,故LFO变化范围为[0.1,1]。对于[0.1,1]区间如何等份?根据整个模型的精度要求及日常实际,分成9个等份。间隔取0.1为宜。因若在仿真中LFO需取两位小数,也可由表函数的线性取值办法解决(因一般统计土地比只保留到两位小数)。

第二步:确定函数增减性。

当LFO∈[0.1,0.4]时,ELBC随LFO递增

当LFO∈[0.4,1]时,ELBC随LFO递减

前式表明年新增长面积随城市建筑的增多而增加。这是因为,在城市发展的早期阶段,大量土地有待开发,且已有企事业单位的建成会为更多企事业单位的建立创造了有利的条件。如砖厂促进了建筑加快;路面的铺砌使材料运输更方便、更迅速;水、气、电企事业单位建立能提供生活基本保障。另外,经实地分析,当已占土地比不超过40%时,建地挑选也有更大余地。出于上述定性分析得前式成立。

根据定性分析,与其它城市建立的历史事实横向比较,已占面积LFO超40%

以后,由于各种主要类型企事业单位已基本建立,市场供给网已基本建立,好的建筑环境为数不多,建筑土地资金费相应增加,这些都制约着开发地区的年建筑面积的新增,则有后式成立。

第三步:确定特殊点。

1、由历史统计数据,当土地面积比LFO=0.1时,年新增建筑面积比为60%,

0.7×ELBC=0.6,

ELBC=0.86

得点(0.1,0.86)

2、有企业建设年新建面积方程分析,当LFO=0.2时,ELBC=1

3、确定极大值点LFO=0.4时,ELBC的值,这是一个预测值,确定这种值,

系统动力学本身未提供有效的方法,一般建模者常借用其它预测方法来

帮助解决,如借用特尔菲方法,趋势外推,时间序列法,回归分析法、

GM模型等方法。最简单的是专家咨询法。通过定性分析的ELBC最大值

为1.1。得特殊点(0.4,1.1)。由实际情况,显然还有特殊点(1,0)。

第四步:确定斜率

也就是确定非特殊点对应的ELBC值。这些数据来自两部分,一部分是历

史数据,另一部分是预测数据。据系统分析综合两部分结果,参考有关

资料得到了图8.2.5的表函数。

例2:

如图8.2.5为我们建立的珠海市宏观经济SD模型中建城区绿地面积第三产业影响因子关于第三产业指数的表函数。这里第三产业指数是第三产业增加值的函数,根据珠海市的实际情况,珠海市1997年的建城区绿地面积占有率作为标准年,即当第三产业增加值为珠海市1997年实际值时,第三产业指数为1,这样得到了表函数的特殊点(1,1),根据珠海市第三产业的发展规模和速度,第三产业指数的取值范围定为0.5到10,根据珠海市过去的绿地面积占有率和城市的发展理念,对比1997年的情况,建城区绿地面积第三产业影响因子的取值范围定为0.9到2,珠海市是一个高度重视环境绿化的城市,近几年其绿地占有率逐年上升,可以预知随着第三产业的发展,绿地面积占有率还会提高,最后达到一个较稳定的数据,通过以上分析和专家咨询,综合珠海市的发展规划得到了上面图8.2.5表函数。该表函数可以随时根据珠海的发展进行调整,适当的时候可纳入珠海市的宏观调控计划模拟中。此SD模型在珠海市已使用了两年,得到了各方面的肯定,表函数的功能得到了充分发挥。

第三节延迟函数

§8.3.1 Vensim PLE中延迟函数表示及使用方法

一、定延迟函数的概念

义1 量变化需要经过一段时间的滞后才能得到响应,这种现象称为延迟。

刻划延迟现象的函数称为延迟函数。

延迟是系统动力学中一个重要概念,因为在系统中存在大量延迟现象,例如培训的学员要经过一段时间才能发挥作用;投资要经过一段时间才能成为新的增生产能力;人得病,有潜伏期;污染物排放到江河之中,要经过扩散才能使江河发生污染等。另外,延迟函数的构造丰富了系统动力学理论。

二、延迟函数的分类

发生的物流流线上的延迟称为物流延迟;发生在信息流线上的延迟称为信息延迟。

根据以上概念,原则上所有的物流和信息流,在其流线上都会出现延迟,但我们在建模时,应抓住主要延迟进行设计,才能使复杂与精确性得到统一。由物流和信息流的不同,延迟函数分为物流指数延迟函数和信息延迟函数,在Vensim PLE中其函数名有固定的表示形式,分别为DELAY1、DELAY2、DELAY3和SMOOTH、SMOOTH3等。

三、使用方法

延迟函数在Vensim PLE软件中直接给出,其函数在用到时可直接调用。图8.3.1是仓存Invent.dml模型的简化流率基本入树,其中变量接到的订单ORDRCV 是关于延迟时间DEL的延迟函数变量,其方程为:

接到的订单ORDRCV=DELAY3(订单率ORDRS,延迟时间DEL)

流位方程为:

仓存INV=INTEG(接到的订单ORDRCV-货运率SHIP,期望的仓存DSINV)在此该延迟变量可以不出现在入树或流图中,而可以直接放在流位方程中,这样在入树或流图中保证了流率对流位的直接作用对应关系,此时流位方程可直接写为:

仓存INV=INTEG(DELAY3(订单率ORDRS,延迟时间DEL)-货运率SHIP,期望的仓存DSINV),其运行结果和前面一样。下面是仓存invent.dml模型的所有方程,其中TEST是测试变量由测试函数组成,上机对TEST1、TEST2、TEST3、TEST4中的某个赋值1,其余的值仍为零,观察运行结果可以通过测试函数了解该模型变量的实增、稳态的下降、振动和随机扰动,这样能帮助我们弄清楚模型的反馈结构及其动态行为之间的联系(有兴趣的读者可以上机试试)。

(01) 标准货运NSHIP=

100

U nits: 货运单位/周

(02) 测试输入量TEST=

STEP(10, 2 )*TEST1+TEST2*RAMP(20, 2 , 20 )+TEST3*PULSE(2, 200)+TEST4*RANDOM UNIFORM

(-5, 5 , 0.25)

U nits: **undefined**

(03) 仓存调整时间IAT=

2

U nits: 周

(04) 仓存调整INV ADJ=

(期望的仓存DSINV-仓存INV)/(仓存调整时间IAT)

U nits: 货运单位/周

(05) 仓存INV= INTEG (

接到的订单ORDRCV-货运率SHIP,

期望的仓存DSINV)

U nits: 货运单位

(06) 订单率ORDRS=

平均货运率A VSHIP+仓存调整INV ADJ

U nits: 货运单位/周

(07) 货运率SHIP=

标准货运NSHIP+测试输入量TEST

U nits: 货运单位/周

(08) 接到的订单ORDRCV=

DELAY3(订单率ORDRS, 延迟时间DEL ) U nits: 货运单位/周

(09) 平均货运率A VSHIP=

SMOOTH(货运率SHIP, 信息延迟时间TAS ) U nits: 货运单位/周

(10) 期望的仓存DSINV=

3*标准货运NSHIP

U nits: 货运单位

(11) 信息延迟时间TAS=

2

U nits: 周

(12) FINAL TIME = 25

U nits: Week

T he final time for the simulation.

(13) INITIAL TIME = 0

U nits: Week

T he initial time for the simulation.

(14) 延迟时间DEL=

3

U nits: 周

(15) SA VEPER = 0.5

U nits: Week

T he frequency with which output is stored.

(16) TEST1=

U nits: **undefined**

(17) TEST2=

U nits: **undefined**

(18) TEST3=

U nits: **undefined**

(19) TEST4=

U nits: **undefined**

(20) TIME STEP = 0.25

U nits: Week

T he time step for the simulation.

为了更好地理解延迟函数的内在涵义,本书采用Micro DYNAMO语言程序来刻画。从§8.3.2节开始阐述各种延迟函数的内部结构原理及有关理论分析,这部分内容对于需深入掌握延迟函数的读者必须阅读。

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

系统动力学vensim软件使用说明

因果循环图快速自学手册 使用以下步骤,建立如上因果循环图: 1.启动Vensim,在工具列点选New Model,显示”Model Settings Time Bounds”对话窗口,再点选”OK”钮即显示空白窗口,就可以开始绘制因果循环图。 2.设定此绘图字型为Arial大小为10点,操作如下:在状态列的左边点选字型名称。因为尚未选取任何项目,所以显示是否要更改预设字型与颜色,点选”Yes”键,则显示”View Defaults” 对话窗口,改变”Face”为Arial与”Size”为10,然后点选”OK” 钮即可。 3.点选绘图列下的”Variable –Auxiliary/Constant”(“变量-辅助量/常量”)工具,然后在绘图工作区空白窗口,点选一个地方来放置变量”interest”,此时显示编辑框框,输入”interest”再按”Enter”键即可显示字号为Arial 10的”interest”。 重复此步骤来建立变量”savings”与”income”如上图。(提示:如果拼错变量名称,则点选”Variable –Auxiliary/Constant”工具钮,再点选拼错变量的名称,此时显示编辑框框更改之即可。如果想要完全删除变量或绘图区的其它组件,则点选绘图列下的”Delete”工具钮,再点选它们即可完全删除。 4.重复以上步骤来建立变量”work effort” 如上图。此时”work” 与“effort”显示在同一列,若要将它们放在不同列,则拖曳手把(小圆圈)至左下即可调整之。如果要改变其它特性,就按鼠标右键或同时按”control”、鼠标左键与点选”work effort”,则显示对话窗口,它提供变量多样的选择。在对话窗口左上方,”Shape”标签选取”Clear Box”,所拖曳的小圆圈是改变”work effort”形状的手把。注意,在点选”Variable –Auxiliary/Constant”工具钮下,完成此步骤时手把(小圆圈)即消失; 在点选”Move/Size Words and Arrowst”工具钮下,则手把(小圆圈)又会显现。

vensim 使用手册

Vensim 使用手册 李旭 复旦大学管理学院 二〇〇八年十一月

序言 Vensim是一个界面友好、操作简单、功能强大的系统仿真平台,可以帮助我们理解《系统动力学》的基本原理和方法,同时也是《系统动力学》学科体系的重要组成部分。 我们从1988年起为本科生和研究生开设《系统动力学》课程,并启动关于相关的研究工作。最初使用DYNAMO语言作为仿真平台,后来使用PD-Plus,从2004年起开始使用Vensim仿真平台。几年来,经过师生的共同努力,已经形成了《系统动力学》课程教学体系和研究体系。 该使用手册是以Vensim 5.4a PLE版本为基础,结合教学和科研实践整理而成的。本手册可以帮助初学者快速掌握Vensim的使用,在复旦大学管理学院本科教学多次试用,收到了很好的效果。本手册可以配合《系统动力学》课程的教学和实验、为教学服务,也可以供科研工作者参考。虽然手册中的各个步骤都上机做了验证,但仍然会存在错误和不足,希望广大使用者批评指正。同时也欢迎大家就Vensim DSS的相关内容一起学习和讨论。 在手册整理过程中,得到了复旦大学管理学院学生的大力协助和配合。复旦大学管理学院管理科学系2004级本科生张云丽同学、王迪同学,2005级本科生胡鉴阳同学和2005硕士研究生胡倩等同学对本手册的整理、编辑、充实和完善做了大量的工作。他/她们的聪明才智和辛勤的工作,使得广大使用者可以通过该手册方便地学习和使用Vensim。在此对参加本手册整理、编辑、充实和完善的同学们表示诚挚的谢意。 李旭 复旦大学管理学院 2008年11月

目录 第1章 Vensim 简介 (1) 1.1 前言 (1) 1.2 Vensim 安装 (1) 第2章 Vensim 用户界面 (2) 2.1 主要特征 (2) 2.2 标题栏 (2) 2.3 菜单 (3) 2.4 工具栏 (3) 2.5 Vensim窗口类型 (4) 2.6 在不同类型窗口之间移动 (5) 2.7 在同一类型中的窗口间移动 (5) 2.8 状态栏 (5) 2.9 Vensim绘图工具 (6) 2.10 模拟工具 (7) 2.11 分析工具 (7) 2.12 分析输出工具 (9) 2.13 控制面板 (11) 2.14 下标控制 (11) 第3章应用举例 (13) 3.1 用Vensim建模步骤 (13) 3.2 劳动力库存问题建模实例 (13) 第4章因果关系图 (17) 4.1 Vensim模型 (17) 4.2 绘制因果关系图 (17) 4.3 编辑因果关系图 (18) 第5章流图 (21) 5.1 绘制流图 (21) 5.2 变量外观 (23) 5.3 边框(Containing Boxes) (24) 第6章创建模型 (25) 6.1 Vensim规则 (25) 6.2 兔子繁殖模型 (25) 第7章函数 (32) 7.1 概述 (32) 7.2 Vensim函数库 (32) 7.3 Vensim表函数 (41) 第8章多重视图 (44) 8.1 多重视图的建立 (44)

《机械系统动力学仿真分析软件》

| 论坛社区 《机械系统动力学仿真分析软件》(MSC.ADAMS.2005.R2)R2 资源分类: 软件/行业软件 发布者: Coolload 发布时间: 2005-12-18 20:22 最新更新时间: 2005-12-19 07:04 浏览次数: 14548 实用链接: 收藏此页 eMule资源 下面是用户共享的文件列表,安装eMule后,您可以点击这些文件名进行下载 [机械系统动力学仿真分析软件].[$u]MSC.ADAMS.2005.R2.rar201.2MB [机械系统动力学仿真分析软 295.4MB 件].MSC_ADAMS_V2005_ISO-LND-CD1.iso [机械系统动力学仿真分析软185.0MB

件].MSC_ADAMS_V2005_ISO-LND-CD2.bin [机械系统动力学仿真分析软 6.5KB 件].Msc.Adams.v2005.Iso-Lnd-Cd1-Crack.rar 全选480.4MB eMule主页下载eMule使用指南如何发布 中文名称:机械系统动力学仿真分析 软件 英文名称:MSC.ADAMS.2005.R2 版本:R2 发行时间:2005年12月15日 制作发行:美国MSC公司 地区:美国 语言:英语 简介: [通过安全测试] 杀毒软件:Symantec AntiVirus 版本: 9.0.0.338 病毒库:2005-12-16 共享时间:10:00 AM - 24:00 PM(除 非线路故障或者机器故障) 共享服务器:Razorback 2.0 [通过安装测试]Windows2000 SP4 软件版权归原作者及原软件公司所 有,如果你喜欢,请购买正版软件

系统动力学软件VENSIM PLE教程

第8章 Vensim PLE 软件包中系统动力学函数 系统动力学所以能处理复杂的系统问题,除提出流位流率系简化流率基本入树建模法去描述系统外,还有一个重要原因是其专用软件都设计了一系列通用的系统动力学函数。 第一节数学、逻辑、测试函数 § 8.1.1 数学函数 Vensim PLE备有五种普通数学函数供用户使用。 1.SIN(X) 定义1:SIN(X)为三角正弦函数,X须以弧度表示,其值小于8.35×105 当自变量是角度时,应通过乘以2π/360 转化为弧度。 2.EXP(X) 定义2:EXP(X) = e X ,e是自然对数的底,e=2.7182…,X的值必须小于36。 人们常用指数函数去描述系统,有了上面函数将会带来很大方便。 3. LN(X),变量X大于零。 即以e为底的对数函数,它与EXP(X)互为反函数,这样可以用EXP(X)和LN(X)来计算非以e为底的幂函数和对数函数。 4. SQRT(X)=√X—,X必须是非负量。 5. ABS(X) = │X│,对X取绝对值。 § 8.1.2 逻辑函数 逻辑函数的作用类似于其它计算机语言中的条件语句,Vensim PLE的逻辑函数有三种。 1.最大函数MAX(P,Q) MAX表示从两个量中选取较大者,P和Q是被比较的两个量,结果也是在这两个量中选取。 P 若P≥Q 定义1:若MAX(P,Q)= Q 若P≤Q 其中P,Q是变量或常量,则MAX(P,Q)为最大函数。 可用MAX函数从多个量中选取较大者。如从P,Q,D三个量中选择较大者可用:MAX(D,MAX(P,Q))。 最小函数 Q 若P≥Q 定义2:若MIN(P,Q)= P 若P≤Q 则MIN(P,Q)为最小函数。 1.MIN同MAX一样,可以从MIN(P,Q) 基本功能中派生出各种用法。 3. 选择函数IF THEN ELSE(C,T,F) 定义3:若IF THEN ELSE(C,T,F)

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

最新系统动力学原理

5.1 系统动力学理论 1 2 5.1.1 系统动力学的概念 3 系统动力学(简称SD—System Dynamics),是由美国麻省理工学院(MIT)的 4 福瑞斯特(J.W.Forrester)教授创造的,一门以控制论、信息论、决策论等 5 有关理论为理论基础,以计算机仿真技术为手段,定量研究非线性、高阶次、 6 多重反馈复杂系统的学科。它也是一门认识系统问题并解决系统问题的综合交 叉学科[1-3]。从系统方法论来说:系统动力学是结构的方法、功能的方法和历7 8 史的方法的统一。它基于系统论,吸收了控制论、信息论的精髓,是一门综合 9 自然科学和社会科学的横向学科。系统动力学对问题的理解,是基于系统行为 与内在机制间的相互紧密的依赖关系,并且透过数学模型的建立与操作的过程10 11 而获得的,逐步发掘出产生变化形态的因、果关系,系统动力学称之为结构。 12 系统动力学模型不但能够将系统论中的因果逻辑关系与控制论中的反馈原理相 13 结合,还能够从区域系统内部和结构入手,针对系统问题采用非线性约束,动 14 态跟踪其变化情况,实时反馈调整系统参数及结构,寻求最完善的系统行为模 15 式,建立最优化的模拟方案。 5.1.2 系统动力学的特点 16 17 系统动力学是一门基于系统内部变量的因果关系,通过建模仿真方法,全面 18 动态研究系统问题的学科,它具有如下特点[4-8]: 19 (1)系统动力学能够研究工业、农业、经济、社会、生态等多学科系统问题。 20 系统动力学模型能够明确反映系统内部、外部因素间的相互关系。随着调整系 21 统中的控制因素,可以实时观测系统行为的变化趋势。它通过将研究对象划分 22 为若干子系统,并且建立各个子系统之间的因果关系网络,建立整体与各组成 23 元素相协调的机制,强调宏观与微观相结合、实时调整结构参数,多方面、多 24 角度、综合性地研究系统问题。

系统动力学原理

5.1 系统动力学理论 5.1.1 系统动力学的概念 系统动力学(简称SD—System Dynamics),是由美国麻省理工学院(MIT)的福瑞斯特(J.W.Forrester)教授创造的,一门以控制论、信息论、决策论等有关理论为理论基础,以计算机仿真技术为手段,定量研究非线性、高阶次、多重反馈复杂系统的学科。它也是一门认识系统问题并解决系统问题的综合交叉学科[1-3]。从系统方法论来说:系统动力学是结构的方法、功能的方法和历史的方法的统一。它基于系统论,吸收了控制论、信息论的精髓,是一门综合自然科学和社会科学的横向学科。系统动力学对问题的理解,是基于系统行为与内在机制间的相互紧密的依赖关系,并且透过数学模型的建立与操作的过程而获得的,逐步发掘出产生变化形态的因、果关系,系统动力学称之为结构。系统动力学模型不但能够将系统论中的因果逻辑关系与控制论中的反馈原理相结合,还能够从区域系统内部和结构入手,针对系统问题采用非线性约束,动态跟踪其变化情况,实时反馈调整系统参数及结构,寻求最完善的系统行为模式,建立最优化的模拟方案。 5.1.2 系统动力学的特点 系统动力学是一门基于系统内部变量的因果关系,通过建模仿真方法,全面动态研究系统问题的学科,它具有如下特点[4-8]: (1)系统动力学能够研究工业、农业、经济、社会、生态等多学科系统问题。系统动力学模型能够明确反映系统内部、外部因素间的相互关系。随着调整系统中的控制因素,可以实时观测系统行为的变化趋势。它通过将研究对象划分

为若干子系统,并且建立各个子系统之间的因果关系网络,建立整体与各组成元素相协调的机制,强调宏观与微观相结合、实时调整结构参数,多方面、多角度、综合性地研究系统问题。 (2)系统动力学模型是一种因果关系机理性模型,它强调系统与环境相互联系、相互作用;它的行为模式与特性主要由系统内部的动态结构和反馈机制所决定,不受外界因素干扰。系统中所包含的变量是随时间变化的,因此运用该模型可以模拟长期性和周期性系统问题。 (3)系统动力学模型是一种结构模型,不需要提供特别精确的参数,着重于系统结构和动态行为的研究。它处理问题的方法是定性与定量结合统一,分析、综合与推理的方法。以定性分析为先导,尽可能采用“白化”技术,然后再以定量分析为支持,把不良结构尽可能相对地“良化”,两者相辅相成,和谐统一,逐步深化。 (4)系统动力学模型针对高阶次、非线性、时变性系统问题的求解不是采用传统的降阶方法,而是采用数字模拟技术,因此系统动力学可在宏观与微观层次上对复杂的多层次、多部门的大系统进行综合研究。 (5)系统动力学的建模过程便于实现建模人员、决策人员和专家群众的三结合,便于运用各种数据、资料、人们的经验与知识、也便于汲取、融汇其他系统学科与其他科学的精髓。 5.1.3 系统动力学的结构模式[9-10] 系统动力学对系统问题的研究,是基于系统内在行为模式、与结构间紧密的依赖关系,通过建立数学模型,逐步发掘出产生变化形态的因、果关系。系统动力学的基本思想是充分认识系统中的反馈和延迟,并按照一定的规则从因果逻辑

系统动力学vensim软件使用说明

SAVINGS AND INCOME effort 因果循环图快速自学手册 使用以下步骤,建立如上因果循环图: 1.启动Vensim ,在工具列点选New Model ,显示”Model Settings Time Bounds” 对话窗口,再点选”OK”钮即显示空白窗口,就可以开始绘制因果循环图。 2.设定此绘图字型为Arial 大小为10点,操作如下:在状态列的左边点选字型名 称。因为尚未选取任何项目,所以显示是否要更改预设字型与颜色,点选”Yes”键,则显示”View Defaults”对话窗口,改变”Face”为Arial 与”Size”为10,然后点选”OK”钮即可。 3.点选绘图列下的”Variable – Auxiliary/Constant”(“变量-辅助量/常量”)工 具,然后在绘图工作区空白窗口,点选一个地方来放置变量”interest”,此时显示编辑框框,输入”interest”再按”Enter”键即可显示字号为Arial 10的”interest”。重复此步骤来建立变量”savings”与”income”如上图。(提示:如果拼错变量名称,则点选”Variable – Auxiliary/Constant”工具钮,再点选拼错变量的名称,此时显示编辑框框更改之即可。如果想要完全删除变量或绘图区的其它组件,则点选绘图列下的”Delete”工具钮,再点选它们即可完全删除。 4.重复以上步骤来建立变量”work effort”如上图。此时”work”与“effort”显示在同 一列,若要将它们放在不同列,则拖曳手把(小圆圈)至左下即可调整之。如果要改变其它特性,就按鼠标右键或同时按”control”、鼠标左键与点选”work effort”,则显示对话窗口,它提供变量多样的选择。在对话窗口左上方,”Shape”标签选取”Clear Box”,所拖曳的小圆圈是改变”work effort”形状的手把。注意,在点选”Variable – Auxiliary/Constant”工具钮下,完成此步骤时手把(小圆圈)即消失;在点选”Move/Size Words and Arrowst”工具钮下,则手把(小圆圈)又会显现。 5.在绘图列中点选”Arrow”工具钮下,点选变量”interest”并放开鼠标,移至变 量”savings”再点选之,则显示有直线箭头指针从”interest”到”savings”;在点选”Move/Size Words and Arrows”工具钮下,拖曳直线箭头指针的手把(小圆圈)可以形成如上图之圆滑曲线。(提示:亦可在”Arrow”工具下,将鼠标移至直线箭头指针的手把(小圆圈)上方,就出现一小手,然后再拖拉它即可形成如上图之圆滑曲线。)

系统动力学与案例分析

系统动力学与案例分析 一、系统动力学发展历程 (一)产生背景 第二次世界大战以后,随着工业化的进程,某些国家的社会问题日趋严重,例如城市人口剧增、失业、环境污染、资源枯竭。这些问题范围广泛,关系复杂,因素众多,具有如下三个特点:各问题之间有密切的关联,而且往往存在矛盾的关系,例如经济增长与环境保护等。 许多问题如投资效果、环境污染、信息传递等有较长的延迟,因此处理问题必须从动态而不是静态的角度出发。许多问题中既存在如经济量那样的定量的东西,又存在如价值观念等偏于定性的东西。这就给问题的处理带来很大的困难。 新的问题迫切需要有新的方法来处理;另一方面,在技术上由于电子计算机技术的突破使得新的方法有了产生的可能。于是系统动力学便应运而生。 (二)J.W.Forrester等教授在系统动力学的主要成果: 1958年发表著名论文《工业动力学——决策的一个重要突破口》,首次介绍工业动力学的概念与方法。 1961年出版《工业动力学》(Industrial Dynamics)一书,该书代表了系统动力学的早期成果。 1968年出版《系统原理》(Principles of Systems)一书,论述了系统动力学的基本原理和方法。 1969年出版《城市动力学》(Urban Dynamics),研究波士顿市的各种问题。 1971年进一步把研究对象扩大到世界范围,出版《世界动力学》(World Dynamics)一书,提出了“世界模型II”。 1972年他的学生梅多斯教授等出版了《增长的极限》(The Limits to Growth)一书,提出了更为细致的“世界模型III”。这个由罗马俱乐部主持的世界模型的研究报告已被翻译成34种语言,在世界上发行了600多万册。两个世界模型在国际上引起强烈的反响。 1972年Forrester领导MIT小组,在政府与企业的资助下花费10年的时间完成国家模型的研究,该模型揭示了美国与西方国家的经济长波的内在机制,成功解释了美国70年代以来的通货膨胀、失业率和实际利率同时增长的经济问题。(经济长波通常是指经济发展过程中存在的持续时间为50年左右的周期波动) (三)系统动力学的发展过程大致可分为三个阶段: 1、系统动力学的诞生—20世纪50-60年代 由于SD这种方法早期研究对象是以企业为中心的工业系统,初名也就叫工业动力学。这阶段主要是以福雷斯特教授在哈佛商业评论发表的《工业动力学》作为奠基之作,之后他又讲述了系统动力学的方法论和原理,系统产生动态行为的基本原理。后来,以福雷斯特教授对城市的兴衰问题进行深入的研究,提出了城市模型。 2、系统动力学发展成熟—20世纪70-80年代 这阶段主要的标准性成果是系统动力学世界模型与美国国家模型的研究成功。这两个模型的研究成功地解决了困扰经济学界长波问题,因此吸引了世界范围内学者的关注,促进它在世界范围内的传播与发展,确立了在社会经济问题研究中的学科地位。 3、系统动力学广泛运用与传播—20世纪90年代-至今 在这一阶段,SD在世界范围内得到广泛的传播,其应用范围更广泛,并且获得新的发展.系统动力学正加强与控制理论、系统科学、突变理论、耗散结构与分叉、结构稳定性分析、灵敏度分析、统计分析、参数估计、最优化技术应用、类属结构研究、专家系统等方面的联系。许多学者纷纷采用系统动力学方法来研究各自的社会经济问题,涉及到经济、能源、交通、环境、生态、生物、医学、工业、城市等广泛的领域。 (四)国内系统动力学发展状况 20世纪70年代末系统动力学引入我国,其中杨通谊,王其藩,许庆瑞,陶在朴,胡玉奎等专家学者是先驱和积极倡导者。二十多年来,系统动力学研究和应用在我国取得飞跃发展。我国成立国内系统动力学学会,国际系统动力学学会中国分会,主持了多次国际系统动力学大会和有关会议。 目前我国SD学者和研究人员在区域和城市规划、企业管理、产业研究、科技管理、生态环保、海洋经济等应用研究领域都取得了巨大的成绩。 二、系统动力学的原理 系统动力学是一门分析研究信息反馈系统的学科。它是系统科学中的一个分支,是跨越自然科学和社会科学的横向学科。系统动力学基于系统论,吸收控制论、信息论的精髓,是一门认识系统问题和解决系统问题交叉、综合性的新学科。从系统方法论来说,系统动力学的方法是结构方法、功能方法和历史方法的统一。 系统动力学是在系统论的基础上发展起来的,因此它包含着系统论的思想。系统动力学是以系统的结构决定着系统行为前提条件而展开研究的。它认为存在系统内的众多变量在它们相互作用的反馈环里有因果联系。反馈之间有系统的相互联系,构成了该系统的结构,而正是这个结构成为系统行为的根本性决定因素。

系统动力学vensim学习手册中文版

系统动力学软件Vensim 6.3 系统动力学应用于社会经济复杂动态问题建模模拟,以及系统思考。近年来由于系统动力学软件工具的进展,使系统动力学建模与模拟分析变得更加规范与简单易学。发源于美国麻省理工学院的Vensim软件,是由Ventana公司开发,在全球和国内获得最广泛使用系统动力学建模软件。它具有图形化的建模方法,除具有一般的模型模拟功能外,还具有复合模拟、数组变量、真实性检验、灵敏性测试、模型最优化等强大功能。Vensim有Vensim PLE, PLE Plus, Professional和DSS版本,适合不同的用户。 其特点如下: 利用图示化编程建立模型。在Vensim中,“编程”实际上并不存在,只有建模的概念。只要在模型建立窗口(Building)画出流图,再通过Equation Editor输入方程和参数,就可以直接进行模拟了。如果用户需要查看有关方程和参数,可使用Mode Document工具条。另外,Vensim提供两种模型文件保存方式,一种是二进制文件,后缀为.vmf;另一种是文本文件,后缀为.mdf,这种文件可以用于模型的建立和修改,但这并不是Vensim推荐的方法。 运行于Windows下,数据共享性强,提供丰富的输出信息和灵活的输出方式。由于采用了多种分析方法,因此Vensim的输出信息是非常丰富的。其输出兼容性较强。一般的模拟结果,除了即时显示外,还提供保存文件和copy到剪切板。例如建立好的模型可以copy到剪贴板,再由剪贴板转到MS Word的编辑文件中。 对模型的多种分析方法:Vensim提供对于模型的结构分析和数据集分析。其中结构分析包括原因树分析(逐层列举作用于指定变量的变量)、结果树分析(逐层列举该变量对于其它变量的作用)和反馈列表。模型运行后,可进行数据集分析。对指定变量,可以给出它随时间的变化图,列出数据表;可以给出原因图分析,列出所有作用于该变量的其它变量随时间变化的比较图;可以给出结果图分析,列出该变量与所有它作用的变量随时间变化的比较图;同时可以将多次运行的结果进行比较。作为最终结果的图形分析和输出,可使用Custom Graph,它不但可以列举多个变量随时间的变化图,而且可以列举变量之间的关系图。 真实性检验对于我们所研究的系统,对于模型中的一些重要变量,依据常识和一些基本原则,我们可以预先提出对其正确性的基本要求。这些假设是真实性约束。将这些约束加到建好的模型中,专门模拟现有模型在运行时对于这些约束的遵守情况或违反情况,就可以判断模型的合理性与真实性,从而调整结构或参数。真实性检验是Ventana公司的专利方法,

弹簧阻尼系统动力学模型adams仿真设计

震源车系统动力学模型分析报告 一、项目要求 1)独立完成1个应用Adams 软件进行机械系统静力、运动、动力学分析问题,并完成一份分析报告。分析报告中要对所计算的问题和建模过程做简要分析,以图表形式分析计算结果。 2)上交分析报告和Adams 的命令文件,命令文件要求清楚、简洁。 1K 1 C 2K 2C 3 C 3 K 3 M 1 M 2M 二、建立模型 1)启动admas ,新建模型,设置工作环境。 对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View 菜单栏中,选择设置(Setting )下拉菜单中的工作网格(Working Grid )命令。系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X 和Y 分别设置成750mm 和500mm ,间距(Spacing )中的X 和Y 都设置成50mm 。然后点击“OK ”确定。如图2-1所表示。 图 2-1 设置工作网格对话框

2)在ADAMS/View零件库中选择矩形图标,参数选择为“on Ground”,长度(Length)选择40cm高度Height为1.0cm,宽度Depth为30.0cm,建立系统的平台,如图2-2所示。以同样的方法,选择参数“New Part”建立part-2、part-3、part-4,得到图形如2-3所示, 图 2-2 图 2-3创建模型平台 3)施加弹簧拉力阻尼器,选择图标,根据需要输入弹簧的刚度系数K和粘滞阻尼系数C,选择弹簧作用的两个构件即可,施加后的结果如图2-4 图 2-4 创建弹簧阻尼器 4)添加约束,选择棱柱副图标,根据需要选择要添加约束的构件,添加约束后的模型如2-5所示。

vensim案例

第四章 系统动力学仿真模型 由于上海地区的汽车市场只是全国市场的一部分,其供应系统除了上海本地汽车生产企业之外,还有全国各地的汽车企业。随着加入WTO ,汽车产业逐步放开,将使我国的汽车市场成为国际市场的一部分,而价格也将与国际市场接轨。另外世界汽车市场上潜在的生产能力极大,总体上已经形成生产过剩的卖方市场。因此上海地区的汽车市场主要是需求问题。研究上海市私车发展的主要问题也将是需求问题。本文建立上海地区私车变化的系统动力学模型,从需求方面来研究上海市的私车发展。 §4.1 系统分析 §4.1.1 系统边界的确定 系统动力学分析的系统行为是基于系统内部要素相互作用而产生的,并假定系统外部环境的变化不给系统行为产生本质的影响,也不受系统内部因素的控制。因此系统边界应规定哪一部分要划入模型,哪一部分不应划入模型,在边界内部凡涉及与所研究的动态问题有重要关系的概念模型与变量均应考虑进模型;反之,在界限外部的那些概念与变量应排除在模型之外。 图4-1 上海市私家车系统组成结构图 根据系统论原理,一个完整的城市居民私家车消费系统不仅包括汽车的流通、交换和消费等环节,而且还包括城市人口、经济、社会环境和消费政策、公交等其他指系统,它是一个复杂的社会经济大系统(图4-1)。只有建立一个适合于该系统的动态分析模型,才可能全面准确地研究系统中各因素间的相互作用关系和它们对系统行为的影响。 根据系统建模的目的,本文研究系统的界限大体包括以下内容: 私车的需求量 私车的报废量 私车的市场保有量 私车的价格 私车的使用费用 私车的上牌费用 牌照限额 居民人均可支配收入 上海市人口数量 上海市总户数 私车发展系统 城市公交系统 城市市政系统 汽车市场系统 人口经济系统

系统动力学模型

第10章系统动力学模型 系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。 1 系统动力学概述 2 系统动力学的基础知识 3 系统动力学模型 第1节系统动力学概述 1.1 概念 系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。 系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下: 1 系统动力学模型的理论基础是系统动力学的理论和方法; 2 系统动力学模型的研究对象是复杂反馈大系统; 3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室”; 4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算

机仿真语言DYNAMIC的支持,如:PD PLUS,VENSIM等的支持; 5 系统动力学模型的关键任务是建立系统动力学模型体系; 6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计算机仿真实验结果,即坐标图象和二维报表; 系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。 地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。 1.2 发展概况 系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特(JAY.W.FORRESTER)提出来的。目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等著作,引起了世界各国政府和科学家的普遍关注。 在我国关于系统动力学方面的研究始于1980年,后来,陆续做了大量的工作,主要表现如下: 1)人才培养

系统动力学软件Vensim

Vensim ? PLE 快速参考与自学手册台湾科技大学 摘要 1.File(档案)与cutting/pasting(剪下/贴上) 的操作如微软窗口系统之功能? 2.许多功能列中经常使用的功能项目都放在工具列的按钮,以利操作? 3.专门术语:”click”即按压鼠标左键再释放之?”drag” 即按压鼠标左键不释放而移动鼠标 ?”right-click” 即按压鼠标右键再释放之?而”control-click” 即按ctrol键及按鼠标左键再释放之,结果与”right-click”相同? 4.Vensim使用预设变量,无论建立任何模块,系统自动建立必要变量而使用它;如标题列 的FINAL TIME变数? ________________________ Copyright 2002, Craig W. Kirkwood. All rights reserved. (Email: craig.kirkwood@https://www.360docs.net/doc/cc2093045.html,) Updated on December 12, 2002 by Jennifer Cihla Vender using VensimPLE Version 5.0c1

Main Toolbar(工具列)

Sketch Tools(绘图工具列)。

Analysis Tools (分析工具栏) 分析工具注意事项: 1.若有较多的模拟执行,则分析工具是无法运作的。因此,在实验中,必须仔细地追踪在窗口中所显示的结果。 2.大部分窗口显示有关工作变量的信息。在窗口中选择一变量,用鼠标双击变量即成工作变量。 3.在分析工具所输出图形左上角功能列如右图,其中最左边的键是删除窗口键。 在其右边则是锁住删除功能键,再按一次则可恢复删除功能。其右边则是打印机功能键可 以打印此窗口内容。其右边键则是复制窗口至回纹夹。最后键则是储存窗口内容于档案。 4.在图形内有多个曲线,这些曲线会使用不同颜色显示。黑白打印机打印时很难区隔它,因此在Option 功能键,选择”Show Line Markers on Graph Lines”可以在曲线上标示不同数字以示区隔。

vensim 操作手册(系统动力学)

Formulating Models of Simple Systems using Vensim PLE version 3.0B Professor Nelson Repenning System Dynamics Group MIT Sloan School of Management Cambridge, MA O2142 Edited by Laura Black, Farzana S. Mohamed, and students in the System Dynamics in Education Project, April 1998. Copyright ? 1998 by the Massachusetts Institute of Technology.

I. Introduction and Getting Started The purpose of this tutorial is to help you develop some familiarity with building and analyzing system dynamics models using the Vensim PLE software. In order to become familiar with Vensim PLE, you are going to build a simple model of the federal deficit. To begin you need to get Vensim PLE ready for modeling. This tutorial makes use of the Macintosh version on Vensim PLE; the IBM-Compatible version should work similarly, but some of the screens may look different. When you first open Vensim PLE on your computer, the screen should look like this: To start working on a new model go to the File menu and select New Model. Vensim PLE will return the following dialog box:

系统动力学原理

系统动力学理论 系统动力学的概念 系统动力学(简称SD—System Dynamics),是由美国麻省理工学院(MIT)的福瑞斯特(.Forrester)教授创造的,一门以控制论、信息论、决策论等有关理论为理论基础,以计算机仿真技术为手段,定量研究非线性、高阶次、多重反馈复杂系统的学科。它也是一门认识系统问题并解决系统问题的综合交叉学科[1-3]。从系统方法论来说:系统动力学是结构的方法、功能的方法和历史的方法的统一。它基于系统论,吸收了控制论、信息论的精髓,是一门综合自然科学和社会科学的横向学科。系统动力学对问题的理解,是基于系统行为与内在机制间的相互紧密的依赖关系,并且透过数学模型的建立与操作的过程而获得的,逐步发掘出产生变化形态的因、果关系,系统动力学称之为结构。系统动力学模型不但能够将系统论中的因果逻辑关系与控制论中的反馈原理相结合,还能够从区域系统内部和结构入手,针对系统问题采用非线性约束,动态跟踪其变化情况,实时反馈调整系统参数及结构,寻求最完善的系统行为模式,建立最优化的模拟方案。 系统动力学的特点 系统动力学是一门基于系统内部变量的因果关系,通过建模仿真方法,全面动态研究系统问题的学科,它具有如下特点[4-8]: (1)系统动力学能够研究工业、农业、经济、社会、生态等多学科系统问题。系统动力学模型能够明确反映系统内部、外部因素间的相互关系。随着调整系统中的控制因素,可以实时观测系统行为的变化趋势。它通过将研究对象划分为若干子系统,并且建立各个子系统之间的因果关系网络,建立整体与各组成元素相协调的机制,强调宏观与微观相结合、实时调整结构参数,多方面、多角度、综合性地研究系统问题。 (2)系统动力学模型是一种因果关系机理性模型,它强调系统与环境相互联系、相互作用;它的行为模式与特性主要由系统内部的动态结构和反馈机制所决定,不受外界因素干扰。系统中所包含的变量是随时间变化的,因此运用该模

空气动力学原理.

空气动力学原理 空气动力学在科学的范畴里是一门艰深的度量科学,一辆汽车在行使时,会对相对静止的空气造成不可避免的冲击,空气会因此向四周流动,而蹿入车底的气流便会被暂时困于车 底的各个机械部件之中,空气会被行使中的汽车拉动,所以当一辆汽车飞驰而过之后,地上的纸张和树叶会被卷起。此外,车底的气流会对车头和引擎舱内产生一股浮升力,削弱车轮对地面的下压力,影响汽车的操控表现。 另外,汽车的燃料在燃烧推动机械运转时已经消耗了一大部分动力,而当汽车高速行使时,一部分动力也会被用做克服空气的阻力。所以,空气动力学对于汽车设计的意义不仅仅 在于改善汽车的操控性,同时也是降低油耗的一个窍门。 对付浮升力的方法 对付浮升力的方法,其一可以在车底使用扰流板。不过,今天已经很少有量产型汽车 使用这项装置了,其主要原因是因为研发和制造的费用实在太过高昂。在近期的量产车中只有FERRARI 360M 、LOTUS ESPRIT 、NISSAN SKYLINE GT-R还使用这样的装置。 另一个主流的做法是在车头下方加装一个坚固而比车头略长的阻流器。它可以将气流引导至引擎盖上,或者穿越水箱格栅和流过车身。至于车尾部分,其课题主要是如何令气流顺 畅的流过车身,车尾的气流也要尽量保持整齐。 如果在汽车行驶时,流过车体的气流可以紧贴在车体轮廓之上,我们称之为ATTECHED 或者LAMINAR(即所谓的流线型)。而水滴的形状就是现今我们所知的最为流线的形状了。 不过并非汽车非要设计成水滴的形状才能达到最好的LAMINAR,其实传统的汽车形态也可 以达到很好的LAMIAR的效果。常用的方法就是将后挡风玻璃的倾斜角控制在25度之内。FERRARI 360M和丰田的SUPRA就是有此特点的双门轿跑车。 其实仔细观察这类轿跑车的侧面,就不难发现从车头至车尾的线条会朝着车顶向上呈弧 形,而车底则十分的平坦,其实这个形状类似机翼截面的形状。当气流流过这个机翼形状的 物体时,从车体上方流过的气体一定较从车体下方流过的快,如此一来便会产生一股浮升力。随着速度的升高,下压力的损失会逐渐加大。虽然车体上下方的压力差有可能只有一点点, 但是由于车体上下的面积较大,微小的压力差便会造成明显的抓着力分别。一般而言,车尾更容易受到浮升力的影响,而车头部分也会因此造成操控稳定性的问题。 传统的房车、旅行车和掀背车这类后挡风玻璃较垂直的汽车,浮升力对它们的影响会较 为轻微,因为气流经过垂直的后窗后就已经散落,形成所谓的乱流效果,浮升力因此下降, 但是这些乱流也正是气流拉力的来源。有些研究指出像GOLF之类的两厢式掀背车,如车 顶和尾窗的夹角在30度之内,它所造成的气流拉力会较超过30度的设计更低。所以有些人就会想当然的认为只要将后窗的和车顶的夹角控制在28至32度之间,就能同时兼顾浮升力和空气拉力的问题。其实问题并没有那么简单,在这个角度范围里气流既不能紧贴在车体上 也不足以造成乱流,如此一来将很难预计空气的流动情况。因为汽车在行驶时并非在一个水 平面上行驶,随着悬挂系统的上下运动,其实汽车的离地距离是一个变量,而气流在流过车体上下所造成的压力差也会随时改变,同时在车辆过弯时车尾左右的气流动态也会对车尾的 1

相关文档
最新文档