第4章系统仿真及系统动力学方法
系统仿真及系统动力学(SD)方法课件

在因果关系图中,用箭头表示因果关系,箭头的方向表示因果关系的方向,即因在先,果在后。流图则更进一步 地描述了系统中各要素之间的信息流动情况,包括物质流、信息流和能量流等。通过绘制因果关系图和流图,可 以更深入地理解系统的结构和行为。
方程式建立与参数设定
总结词
详细描述
仿真模型的建立与实现系统仿真在各 Nhomakorabea域的应用前景
工业领域
系统仿真将在工业生产、工 艺优化、设备维护等方面发 挥重要作用,提高生产效率 和产品质量。
交通领域
系统仿真将应用于交通规划、 物流优化、交通安全等方面, 提高交通系统的运行效率和 安全性。
环保领域
系统仿真将用于环境监测、 生态保护、污染物治理等方 面,为环境保护提供科学支 持。
模型验证与评估
模型验证 模型评估 模型改进
案例一:经济系统模拟
总结词
通过系统动力学方法模拟经济系统的动 态行为,分析经济系统的结构和机制。
VS
详细描述
利用系统动力学模型,模拟经济系统中各 因素之间的相互作用和影响,如供需关系、 价格波动、政策干预等,帮助决策者更好 地理解经济系统的运行规律,预测未来发 展趋势,制定有效的经济政策。
医疗领域
系统仿真将应用于疾病预测、 治疗方案优化、药物研发等 方面,提高医疗水平和治疗 效果。
• 系统仿真过程及分析 • 系统动力学(SD)方法应用案例 • 系统仿真及系统动力学(SD)方法展望
定义与概念
定义
概念
系统动力学的发展历程
起源
系统动力学最早起源于20世纪50 年代,由美国麻省理工学院的 Jay Forrester教授创立。
发展
经过多年的研究和发展,系统动 力学逐渐成为一种成熟的学科领 域,广泛应用于各个领域的系统 分析和仿真。
系统仿真及系统动力学方法课件

集成两者,可以预测不同政策下交通系统的长期性能,为政策制定提供决策支持。
案例二:电力系统规划
利用系统动力学分析电力需求的增长趋势以及可再生能源的发展潜力。
通过系统仿真模拟电力系统的运行和调度,评估系统的可靠性、经济性和环保性。
集成两者,可以制定电力系统的长期发展规划,确定合理的电源结构和技术路线。
优点是可以详细地模拟系统的实际运行过程,缺点是建模和编程较为复杂。
03
02
01
应用
适用于具有反馈回路、非线性、动态复杂等特点的社会、经济、生态等系统的研究,如城市规划、环境保护、企业管理等领域。
概念
系统动力学仿真是一种基于系统动力学理论,通过计算机仿真技术来研究系统动态行为的方法。
优缺点
优点是可以揭示系统的动态行为和演化规律,缺点是需要对系统的结构和参数进行较为准确的刻画和测量。
概念
常用于解决概率论、数理统计、计算物理等领域中的复杂问题,如随机数生成、积分计算、概率分布模拟等。
应用
优点是可以处理高维度、非线性、复杂的问题;缺点是收敛速度较慢,需要大量的样本数量。
优缺点
离散事件仿真是一种通过模拟系统中离散事件的发生过程,来研究系统行为的方法。
概念
应用
优缺点
适用于具有离散、间断、异步等特点的系统,如生产制造系统、交通运输系统、计算机网络系统等。
精确性:通过系统仿真,可以精确地模拟系统的实际行为,减少因简化假设而引起的误差。
可用性:系统动力学模型可以为系统仿真提供理论支持和指导,帮助理解仿真结果的内在逻辑。
01
02
03
04
案例一:城市交通系统分析
利用系统动力学建立城市交通需求的长期预测模型,考虑人口、经济、政策等多种因素。
第4章 系统仿真模型-系统动力学

§4-5 DYNAMO仿真计算
一、 一阶正反馈回路 二、 一阶负反馈回路 三、 两阶负反馈回路
§4-6 系统动力学建模步骤
一、系统动力学模型的建模步骤 二、 DYNAMO仿真流程框图 三、系统动力学模型的评价 课后作业
第六章 系统仿真模型——系统动力学
§6-1 系统仿真的基本概念及其实质 一、基本概念 系统仿真——(Systems simulation)是对真 实过程或系统在整个时间内运行的模仿。 ◆依系统的分析目的进行构思 ◆建立系统模型 ◆建立描述系统结构和行为、具有逻辑和数学性 质的仿真模型 ◆依仿真模型对系统进行试验和分析 ◆获得决策所需信息
第六章 系统仿真模型——系统动力学
§6-2 系统动力学概述 一、系统动力学及其发展
(二)国内外系统动力学(Systems dynamics, SD)发展
1 国外学者SD研究现状
系统动力学在国外的应用非常广泛,其应用几乎遍及 各类系统,深入到各类领域。在商业上模拟复杂竞争 环境中的商业模型;在经济学上解释了SamuelsonHicks模型;在医学研究上模拟不同药物效用对病人的 生理学反映,如测试经过胰岛素治疗后糖尿病病人血 液葡萄糖水平的医学模型;在生物学上模拟并推导了 捕食者——被捕食者问题;还有模拟地区经济模型, 模拟生态系统模型等研究。
一、基本概念 二、系统仿真的实质 三、系统仿真的作用
§4-2 系统动力学概述
一、系统动力学及其发展 二、反馈系统
§4-3 系统动力学结构模型
一、信息反馈系统的动力学特征 二、反馈系统 三、流程图(结构模型)
第六章 系统仿真模型——系统动力学
目 录
§4-4 系统动力学数学模型(结构方程式)
一、基本概念 二、 DYNAMO方程
系统工程期末复习资料(全)

系统:由两个及以上有机联系、相互作用的要素组成,具有特定结构、功能和环境的整体。
系统边界:从空间结构上看,把系统和环境分开的所有点的集合;从逻辑上看,边界是系统构成关系从起作用到不起作用的边界,系统质从存在到消失的边界。
系统的属性:整体性{是系统最核心的特性,是系统性最集中的体现}关联性(由多个有机联系、相互作用的要素组成,具备独立要素所不具备的功能)环境适应性(环境输入系统,系统输出环境,系统要生存,一定要适应环境)层次性(作为总体来看,系统可以分解一系列子系统,并有一定的层次结构)目的性(有一定目的,为达到既定目的而具备一定的功能)集合性(把具备某种属性的一些对象看成一个整体,从而形成一个集合)系统的类型:人造系统和自然系统实体系统和概念系统、动态系统和静态系统、封闭系统和开发系统系统工程的概念:是组织管理系统的规划、研究、设计、制造、试验、使用的科学方法,是一种对所有系统具有普遍意义的科学方法。
系统工程方法论:是研究、探索系统问题的一般规律和途径重要思想:最优思想、总体思想、组合思想、分解和协调思想、反馈思想霍尔三维结构:知识维、时间维、逻辑维时间维(6个阶段):规划阶段、方案阶段、研制阶段、生产阶段、运行阶段、更新阶段逻辑维(7个步骤):明确问题、选择目标、系统综合、系统分析、方案优化、做出决策、付诸实施特点:强调目标明确,核心是最优化,认为一切现实问题都可以规划为工程系统问题,运用定量分析法,做最优解答。
该方法论在研究方法上有整体性,在技术应用上有综合性,在组织管理上有科学性,在系统工程上有问题导向性。
切克兰德方法论:主要内容:问题、根底定义、建立概念模型、比较与探索、选择、设计与实施、评估与反馈主要步骤(略)比较:同:同为系统工程方法论,均以问题为起点,具备相应的逻辑结构异:前者主要研究工程系统问题,后者更适用于“软”系统问题的研究前者以优化分析为核心,后者以比较学习为核心前者使用定量分析方法,后者使用定性、定量与定性相结合的方法前者研究对象为良结构,后者则为不良结构系统分析:运用建模及预测、优化、仿真、评价等技术,对系统的各方面进行定性与定量相结合的分析,为选择最优或满意的方案提供决策依据的分析研究过程。
系统动力学模型

如:
用
表示。
系统动力学的建模步骤
例1:建立“一阶库存管理系统”的系统动力学模型,并分析系统 的
动态趋势。
例2,: 建立“二阶库存管理系统”的系统动力学模型,并分析系统 的
动态趋势。
思考题
• 物流系统的系统动力学模型构建
• 决策变量(又称流率)(r):
描述系统物质流动或信息流动积累效应变化快慢的变 量,其具有瞬时性的特征。
——反映单位时间内物质流动或信息流量的增加或 减少的量
——相对量、速度、微积分中的变化率等
决策变量符号表示:
注 意:
(3) 常数:描述系统中不随时间而变化的量,
用
表示。
如:
(4) 辅助变量:从信息源到决策变量之间,起到辅助表达信息反 馈决策作用的变量。
——流图能反映出物质ห้องสมุดไป่ตู้积累值和积累效应变化快慢的区别
2. 流图 :
流图确定反馈回路中变量状态发生变化的机制,明确表 示系统各元素间的数量关系,反映物质链与信息链的区 别,能够反映物质的积累值及积累效应变化快慢的区别。
(1). 物质链与信息链
物质链:系统中流动的实体,连接状态变量 是不使状态值变化的守恒流。
物质链符号表示:要素A→要素B
• 信息链:连接状态和变化率的信息通道,是与因果关系相连 的信息传输线路。
信息链符号表示:A O···→B
(2)状态变量与决策变量
• 状态变量(又称流位)(x):
描述系统物质流动或信息流动积累效应的变量,表 征系统的某种属性,有积累或积分过程的量
—— 绝对量、位移、微积分中的积分量等
1. 因果关系图: 2. 因果链:
3. 反馈回路:
综合“因果关系图”:
系统仿真及系统动力学方法

研究方向:深入研究系统动力学方法,拓 展其应用领域,提高其精度和效率。
技术发展:结合新技术,如人工智能、大 数据等,开发新的系统仿真方法,提高仿 真效率和精度。
行业应用:将系统仿真及系统动力学方法 应用于更多的行业,解决实际问题,推动 经济发展。
学科交叉:加强与其他学科的交叉融合, 形成更多新的研究方向,推动系统仿真及 系统动力学方法的创新和发展。
系统仿真及系统动力 学方法的发展趋势
技术发展动向
建模技术:更精细、更复杂的模型,提高系统仿真的准确性 计算能力:高效的计算硬件和软件,提高仿真速度和效率 人工智能和机器学习:应用于系统识别和参数估计,提高仿真的可靠性和可信度 云技术和物联网:实现大规模仿真和实时监测,拓展系统仿真的应用领域
理论研究热点
应用领域:广泛应用于工程设计、 生产管理、金融分析等领域,为决 策者提供科学依据和预测结果。
添加标题
添加标题
添加标题
添加标题
缺点:由于系统复杂,仿真计算量 大,需要较高的计算能力和数据处 理能力,同时还需要考虑模型的可 信度和适用范围。
发展前景:随着计算机技术和数据 处理能力的不断提高,系统仿真与 系统动力学结合的方法将会得到更 广泛的应用和发展。
系统仿真及系统动力学方 法
系统仿真
目录
系统动力学
系统仿真与系统动 力学结合
系统仿真及系统动
结论
力学方法的发展趋
势
系统仿真
定义及目的
定义:通过建立数学模型对真实系统进行实验研究 目的:研究系统的行为特性,为决策提供依据
仿真模型的种类
物理仿真:基于物理模型的仿 真方法
数学仿真:基于数学模型的仿 真方法
利用系统仿真 方法对系统动 力学模型进行
多体系统动力学建模与仿真分析

多体系统动力学建模与仿真分析概述多体系统动力学建模与仿真分析是解决实际工程问题和科学研究中的重要技术手段。
本文将从理论介绍、实际应用和发展前景等几个方面,探讨多体系统动力学建模与仿真分析的相关内容。
一、多体系统动力学建模的理论基础多体系统动力学建模是研究多体系统运动规律的基础工作。
其理论基础主要包括牛顿运动定律、欧拉-拉格朗日动力学原理等。
1. 牛顿运动定律牛顿运动定律是多体系统动力学建模的基础。
根据牛顿第二定律,物体的加速度与作用在物体上的合外力成正比,与物体的质量成反比。
在多体系统中,通过对所有物体的运动状态和相互作用力进行分析,可以建立多体系统的动力学模型。
2. 欧拉-拉格朗日动力学原理欧拉-拉格朗日动力学原理是一种更为普适的多体系统动力学建模方法。
该理论通过定义系统的广义坐标和广义速度,以及系统的势能和拉格朗日函数,通过求解拉格朗日方程,得到系统的运动方程。
相比于牛顿运动定律,欧拉-拉格朗日动力学原理具有更广泛的适用性和更简洁的表达形式。
二、多体系统动力学建模的实际应用多体系统动力学建模在工程和科学领域中有着广泛的应用。
以下以机械系统和生物系统为例,简要介绍多体系统动力学建模的实际应用。
1. 机械系统在机械工程中,多体系统动力学建模是设计和优化机械系统的关键步骤。
以汽车悬挂系统为例,通过建立汽车车体、轮胎、悬挂弹簧和减震器等部件的动力学模型,可以分析车辆在不同工况下的悬挂性能,进而指导悬挂系统的设计和优化。
2. 生物系统在生物医学工程和生物力学研究中,多体系统动力学建模对于理解和模拟生物系统的运动特性具有重要意义。
例如,通过建立人体关节和肌肉的动力学模型,可以分析人体的运动机制,评估关节健康状况,提供康复治疗方案等。
三、多体系统动力学仿真分析的方法与技术多体系统动力学仿真分析是通过计算机模拟多体系统的运动过程,从而得到系统的运动学和动力学特性。
常用的方法与技术包括数值积分方法、刚体碰撞检测与处理、非线性约束求解等。
系统工程课件:第1章 系统工程概述

15
第四节 系统工程的应用领域
目前,系统工程的应用领域已十分广阔。 主要有以下几个方面:
(1)社会系统工程 (2)经济系统工程 (3)区域规划系统工程 (4)环境生态系统工程 (5)能源系统工程 (6)水资源系统工程 (7)交通运输系统工程 (8)农业系统工程 (9)企业系统工程 (10)工程项目管理系统工程
古代中国和古希腊在系统思想的产生与早期发展中具 有突出地位和贡献。
整体思想和联系思想是科学系统思想的核心与实质。 一般系统论、控制论、信息论、耗散结构理论、协同学及 自组织理论等是系统理论的重要内容和SE的理论基础。
5
5
二、系统工程的发展概况
阶段 年代(份) 重大工程实践或事件
重要理论与方法贡献
1930
合计
学时数 5 5 5 6 6 7 12 2 48
3
第一章 系统工程概述
第一节 系统工程的产生、发展及应用 第二节 系统工程的研究对象 第三节 系统工程的概念与特点 第四节 系统工程的应用领域
4
第一节 系统工程的产生、发展及应用
一、系统思想的产生与发展
系统思想的发展经历了三个阶段,即:“只见森林” (朴素的系统思想)阶段→“只见树木”阶段→“先见森 林,后见树木”(科学的系统思想)阶段。
美国自动控制学家 L.A.Zedeh提出“模糊集 合”概念
美国实施“阿波罗”登月 计划
为现代SE奠定了重要的数学基础
使用了多种SE方法,其成功极大地提高 了SE的地位
7
二、系统工程的发展概况
1972 V
国际应用系统 分析研究所 (IIASA)在维也 纳成立
SE的应用开始从 工程领域进入到社会 经济领域,并发展到 了一个重要的新阶段。
系统仿真及系统动力学方法

第四章 系统仿真及系统动力学方法
40
Y(期望库存,6000)
二阶库存系统SD的仿真计算结果
注:G1=R1-R2
第四章 系统仿真及系统动力学方法
41
I
10,000
7500
5000
2500
0 0 10 20 30 40 50 60 70 80 90 100 Time (Day)
I : Current
一、因果关系图
1、基本概念 (1)因果箭:连接因果要素的有向线段。正(+) 为加强,负(-)为削弱。
因果链:因果关系具有传递性。 (2)因果(反馈)回路。原因和结果的相互作用 形成因果关系回路(因果反馈回路、环)。
第四章 系统仿真及系统动力学方法
21
一、因果关系图 2、举例
+
利息 (+) (元/年)
45
二阶生态系统的部分DYNAMO方程: L HZS·K=HZS·J+DT*(FZL1·JK-TSL·JK) N HZS=30000 R FZL1·KL=FZX1·K*HZS·K
模型)。 例子
第四章 系统仿真及系统动力学方法
27
第四章 系统仿真及系统动力学方法
因 果 关 系 图 流 图
28
变量类型:
a)水准(L)变量是时点变量,而速率(R)变量是 时段变量;
b) 系统最关注的或者需要输出的要素一般被处理 成L;
c) 两个L变量或两个R变量不能直接相连;
d) 尽量减少L变量,增加辅助变量A。
库存量 : Current
第四章 系统仿真及系统动力学方法
19
五、系统动力学(SD)仿真的程序
认识 问题
界定 系统
系统工程概述

1978年 1978年9月27日,钱学森、许国志、王寿云在《文 27日 钱学森、许国志、王寿云在《 汇报》发表题为“组织管理的技术——系统工程 系统工程” 汇报》发表题为“组织管理的技术——系统工程”的 长篇文章; 长篇文章; 从1978年起,西安交大、天津大学、清华大学、华 1978年起,西安交大、天津大学、清华大学、 年起 中理工大学、 中理工大学、大连理工大学等国内著名大学开始招收 了第一批SE专业硕士研究生; SE专业硕士研究生 了第一批SE专业硕士研究生; 1980年11月 中国系统工程学会在北京成立; 1980年11月,中国系统工程学会在北京成立; 1980年10月至1981年 1980年10月至1981年1月,中国科协、中央电视台会 月至1981 中国科协、 同中国系统工程学会、中国自动化学会联合举办“ 同中国系统工程学会、中国自动化学会联合举办“系 统工程电视普及讲座(45讲 统工程电视普及讲座(45讲)”,取得了良好的社会 效果。 效果。
美国Bell电话公司 正式使用系统工程(Systems 电话公司 正式使用系统工程( 美国 Engineering)一词 ) 开发微波通讯系 统 产生军事运筹学( 产生军事运筹学(Military Operations Research),也即军 ) 也即军 事系统工程
英、美等国的反 第二次世界 空袭等军事行动 大战期间 II
4、系统工程的发展概况(世界)
阶段 年代( 年代(份) 重大工程实践或 事件 1930 I 1940 美国发展与研究 广播电视 美国实施彩电开 发计划 重要理论与方法贡献 正式提出系统方法(Systems 正式提出系统方法( approach)的概念 ) 采用系统方法, 采用系统方法,并取得巨大成 功
1958 IV 1965
系统仿真及系统动力学(SD)方法

案例四:金融市场的系统仿真模型
总结词
通过系统仿真,模拟金融市场的运行机制和 交易行为,揭示金融市场的内在规律和风险 特征。
详细描述
金融市场是一个高度复杂的系统,涉及到大 量的投资者、交易品种和交易策略。通过建 立金融市场的系统仿真模型,可以模拟金融 市场的运行机制和交易行为,揭示金融市场 的内在规律和风险特征,为投资者和监管机 构提供决策支持。
3
系统结构决定了系统的行为,通过改变系统结构 可以改变系统行为。
因果关系图与流图
因果关系图是一种图形化表示系 统要素之间因果关系的工具。
流图则用于描述系统中要素之间 的动态流动关系。
因果关系图和流图是系统动力学 建模的重要工具,有助于理解系
统的结构和行为。
变量与方程
01
系统中的变量可以分为状态变量、控制变量和辅助 变量等。
02
变量之间的关系可以用数学方程来表示,这些方程 描述了系统中变量的动态变化规律。
03
通过建立和求解这些方程,可以预测系统的未来状 态和行为。
模型建立与验证
01
系统动力学模型是实际系统的 简化表示,需要基于实际系统 的结构和行为进行建立。
02
模型的验证是确保模型准确性 和可靠性的重要步骤,包括对 模型进行仿真实验、比较仿真 结果与实际数据等。
促进跨学科研究
系统仿真及系统动力学方法可以促进不同学科之间的交叉 融合,推动跨学科研究的开展。
02 系统仿真及系统动力学 (SD)方法概述
系统仿真定义与特点
定义
系统仿真是一种通过计算机模拟系统 运行过程的方法,用于分析系统的性 能和行为。
特点
系统仿真具有灵活性、可重复性和可 扩展性,可以模拟各种复杂系统的动 态行为,为决策者提供数据支持。
【免费下载】vensim案例

第四章 系统动力学仿真模型由于上海地区的汽车市场只是全国市场的一部分,其供应系统除了上海本地汽车生产企业之外,还有全国各地的汽车企业。
随着加入WTO ,汽车产业逐步放开,将使我国的汽车市场成为国际市场的一部分,而价格也将与国际市场接轨。
另外世界汽车市场上潜在的生产能力极大,总体上已经形成生产过剩的卖方市场。
因此上海地区的汽车市场主要是需求问题。
研究上海市私车发展的主要问题也将是需求问题。
本文建立上海地区私车变化的系统动力学模型,从需求方面来研究上海市的私车发展。
图4-1 上海市私家车系统组成结构图§4.1 系统分析§4.1.1 系统边界的确定系统动力学分析的系统行为是基于系统内部要素相互作用而产生的,并假定系统外部环境的变化不给系统行为产生本质的影响,也不受系统内部因素的控制。
因此系统边界应规定哪一部分要划入模型,哪一部分不应划入模型,在边界内部凡涉及与所研究的动态问题有重要关系的概念模型与变量均应考虑进模型;反之,在界限外部的那些概念与变量应排除在模型之外。
根据系统论原理,一个完整的城市居民私家车消费系统不仅包括汽车的流通、交换和消费等环节,而且还包括城市人口、经济、社会环境和消费政策、公交等其他指系统,它是一个复杂的社会经济大系统(图4-1)。
只有建立一个适合于该系统的动态分析模型,才可能全面准确地研究系统中各因素间的相互作用关系和它们对系统行为的影响。
根据系统建模的目的,本文研究系统的界限大体包括以下内容:私车的需求量私车的报废量私车的市场保有量私车的价格私车的使用费用私车发展系统城市公交系统城市市政系统汽车市场系统人口经济系统私车的上牌费用牌照限额居民人均可支配收入上海市人口数量上海市总户数政策因素公交汽车、出租车数量停车车位道路面积此外,还有其他许多内容,如摩托车的数量、汽车的质量、品牌种类等,均不划入系统的界限内。
§4.1.2 因果关系分析系统动力学的研究重点在于自反馈机制的系统动力学问题。
机械系统运动学和动力学建模与仿真

机械系统运动学和动力学建模与仿真机械系统运动学和动力学建模与仿真摘要:机械系统运动学和动力学建模与仿真是研究机械系统运动和力学特性的关键技术之一。
本文首先介绍了机械系统的运动学和动力学基本原理,然后详细阐述了机械系统建模的方法和步骤,并介绍了常用的仿真软件和工具。
最后通过一个具体的案例,展示了机械系统建模与仿真的应用。
关键词:机械系统、运动学、动力学、建模、仿真第一章引言机械系统是现代工程中常见的一种系统,其运动和力学特性对于系统设计和控制具有重要意义。
机械系统运动学和动力学建模与仿真是研究机械系统运动和力学特性的重要手段,在机械工程、航空航天、汽车工程等领域具有广泛的应用。
本文将系统介绍机械系统运动学和动力学建模与仿真的基本原理、方法和应用。
第二章机械系统运动学2.1 运动学基本原理运动学是研究物体运动的一门学科,对于机械系统运动学建模具有重要意义。
在机械系统运动学中,主要考虑系统的位置、速度和加速度等因素。
本节将介绍运动学基本原理,包括坐标系、位置、速度和加速度等概念。
2.2 运动学建模方法机械系统的运动学建模是指根据系统的几何结构和运动特性,建立系统的位置、速度和加速度等参数与时间的关系模型。
常用的运动学建模方法包括几何法、向量法和矩阵法等。
本节将详细介绍这些方法的原理和应用。
第三章机械系统动力学3.1 动力学基本原理动力学是研究物体运动的力学学科,在机械系统动力学建模中,需要考虑系统的受力和受力矩等因素。
本节将介绍动力学基本原理,包括受力和力矩的概念,以及牛顿运动定律和动力学基本方程等内容。
3.2 动力学建模方法机械系统的动力学建模是指根据受力和力矩的影响,建立系统的运动方程。
常用的动力学建模方法包括牛顿-欧拉法、拉格朗日法和哈密顿法等。
本节将详细介绍这些方法的原理和应用。
第四章机械系统建模与仿真4.1 建模方法和步骤机械系统建模是指根据系统的运动学和动力学特性,建立系统的数学模型。
建模的过程包括选择合适的坐标系、建立运动学方程和动力学方程等。
系统工程:系统仿真及系统动力学(SD)方法

(二)系统仿真方法(1)
系统仿真的基本方法是建立系统的结构模型和量化分析模 型,并将其转换为(或作为)适合在计算机上编程的仿真模 型,然后对模型进行仿真实验。 由于连续系统和离散(事件)系统的数学模型有很大差别, 所以系统仿真方法基本上分为两大类,即连续系统仿真方法 和离散系统仿真方法。
(二)系统仿真方法(2)
(1)因果关系图(因果反馈回路) 因果箭→因果链→因果(反馈)回路
+
利息 (元 /年 ) 利率 (+) 银行 货币
+
2、因果关系图和流图 (2)
+ 库存量
库存差额 期望
库存
订货量
( )
+
2、因果关系图和流图 (3)
+ 出生 人口 (+) + (平均)出生率 人口 总量 ( )
-
死亡 人口
-
(平均)死亡率
2、因果关系图和流图 (3)
+ + 人口 总量 出生 人口
(+) +
( )
-
死亡 人口
(平均)出生率
-
2、因果关系图和流图 (4)
+ 组织改善 组织绩效
组织缺陷
( )
-
+
3、流图--流图符号(1)
实物流
①
流
信息流 R1 R1
②
速率变量 L1
③ ④
水准变量 辅助变量 (
。 )
A1
。
3、流图--流图符号(2)
System Dynamics, SD/ J.W. Forrester(MIT)
1、
由来与发展
Industrial Dynamics (ID), 1959
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
31
第五节 ANYLOGIC仿真软件
成功建立了中国可持续发展模型,取得了良好的
效果。
本节依据Vensim PLE for Windows Version
6.3E,对该软件使用进行简要介绍。
23
用户界面简介
工作平台(workbench)
工具栏(Sketh Tools)包含了仿 真所需要的主要工具
24
应用举例
因果关系回路图的绘制与分析 模型的构建与仿真
Urban Dynamics (UD), 1969 World Dynamics (WD), 1971 SD, 1972
9
第二节
系统动力学原理
2、研究对象及其结构特点
(1)研究对象——社会系统
(2)结构特点
①抉择性——具有决策环节(人、信息) ②自律性——具有反馈环节 ③非线性——具有延迟环节
(3)SD将社会系统当作非线性(多重)信息反 馈系统来研究
C C1=0.02
P 100 102 104.04 ┆
100 0
┆
一阶正反馈(简单 人口问题)系统输 出特性曲线
18
3、一级负反馈回路
+ 订货 量 R1 (—) + I 库存量 — 库存 差额 D 期望库存Y
1000
R1
。
Z。 。 D (订货调整时间,5)
I
。 Y(6000)
L I•K=I•J+DT*R1•JK N I=1000 R R1•KL=DK/Z A D•K=Y-I•K C Z=5 0 1 2 ┆
C Y=6000
C W=10,Z=5 C I=1000 1000 二阶负反馈系统输出特性曲线
t
C G=10000
21
Step Ramp Pulse Sin Noise 订货率
。 测试 函数
。
正常销售 (发货)率 。
DELAY
交 (到) 货 率
库存量
。
。
销售(发货)率
。 。
MAX
。
T2
。
T3
。 库存
37
第五节 ANYLOGIC仿真软件
三、应用举例
案例2: 为快速消费品零售商选择正确的仓库布局 结果:
客户可通过该仿真模型测试新的托盘货架和输送机布 置在不同装载量时的不同情况。它同时分析出了员工数量、 设备数量、和仓库容量间的相互关系。员工可以通过模型 对在特定时间仓库装载量的运转管理作出特定的规划。另 外,客户用该模型进行了员工培训。管理部门可以使用它 所提供的动画演示向新员工展示仓库内的工作流程。
I 1000 2000 2800 ┆
D 5000 4000 3200 ┆
R1 1000 800 640 ┆
I
1000 0 一阶负反馈(简单 库存控制)系统输 出特性曲线
19
t
C Y=6000
第三节 基本反馈回路的DYNAMO仿真分析
4、简单库存控制系统的扩展
库存量 R2 入库量 + (—)— + (—) 订货量 R1 I 10000
二、软件的特点
灵活的建模方法
1)基于Agent建模;2)离散事件建模;3)系统动 力学建模
简易的建模语言 先进的建模技术 丰富的建模库件
1)标准库;2)行人库;3)轨道库;4)流体库; 5)公路交通库
32
第五节 ANYLOGIC仿真软件
二、软件的特点
强大的实验框架
1)仿真实验;2)优化实验;3)参数变化实验; 4)比较运行实验;5)蒙特卡罗实验;6)敏感 性分析实验;7)校准实验
可视化的动态仿真 协作交互性 地理信息系统(GIS)集成
33
第五节 ANYLOGIC仿真软件
三、应用举例
案例1: 评估仓库自动化系统的引入
Symbotic是一家提供仓库自动化方案的公司。 它的系统基于可移动的机器人。
挑战:
该公司需要一个帮助顾客了解仓库改造所产生 的影响的工具。顾客可以利用这个工具比较引入自 动化系统前后投入资金的变化。它还必须要能通过 简单的调整适应每个特定的客户。
35
第五节 ANYLOGIC仿真软件
三、应用举例
案例2: 为快速消费品零售商选择正确的仓库布局
问题: 东欧某大型快速消费品(FMCG)零售商为多 个地区的几百家商店从一个分发中心分货。该公司 计划改变分发中心里托盘货架和输送机的布置。他 们决定雇佣AnyLogic公司咨询部建立一个仓库的 仿真模型来评估新布局的容量和有效性。
水准方程(L方程) 速率方程(R方程) 辅助方程(A方程) L R A L1· K=L1· J+DT*(RI· JK-RO· JK) R1·KL=f ( L1·K,A1·K,…) A1· K=g(L1· K,A2· K, R1· JK, …) L1=数值 或 L1=L10
赋初值方程(N方程) N
L10=数值
14
第二节
系统动力学原理
a. 水准(L)变量是积累变量,可定义在任何时点; 而速率(R)变量只在一个时段才有意义。 b. 决策者最为关注和需要输出的要素一般被处 理成L变量。 c. 在反馈控制回路中,两个L变量或两个R变量 不能直接相连 。 d. 为降低系统的阶次,应尽可能减少回路中L变 量的个数。故在实际系统描述中,辅助(A)变量 在数量上一般是较多的。 ④ 绘制SD流图。
常量方程 (C方程) C C1=数值
பைடு நூலகம்
17
第三节 基本反馈回路的DYNAMO仿真分析
2、一阶正反馈回路
PR
人 口 数 P (+) + 年人口 增 加 PR
P
。
C1(人口年自然增长率0.02) p
PR 2 2.04 2.0808
。
L P•K=P•J+DT*PR•JK
N P=100 R PR•KL=C1*R•K 0 1 2 ┆
25
因果关系回路图的绘制与分析
26
模型的构建与仿真
P R1
C1
L N R C
P.K=P.J+DT*(R1.JK-0) P=100 R1.KL=P.K*C1 C1=0.02
27
具体操作过程
28
仿真结果输出
仿真数据表
仿真结果图
29
相关常量变化的仿真
30
第五节 ANYLOGIC仿真软件
一、软件简介
10
第二节
系统动力学原理
3、工作程序
认识 问题
界定 系统
要素及其因 果关系分析
建立结 构模型
建立数 学模型
仿真 分析
比较与 评价
政策 分析
(流图)(DYNAMOY方程)
11
第二节
系统动力学原理
4、系统动力学模型 (1)常用要素
流
速率
水平变量 源与汇 参数
12
第二节
系统动力学原理
实物流
38
39
36
第五节 ANYLOGIC仿真软件
三、应用举例
案例2: 为快速消费品零售商选择正确的仓库布局 解决方案: 仓库模型模拟了分发中心里所有的主要工序包括: 将货物装上、卸下运载工具 流入、流出货物跟踪 货物储存位置 货物从缓冲存储地区到订单包装地区的流动 订单包装 已包装货物根据托盘排序
图等)、利用DYNAMO仿真语言在计算机上实现
对真实系统的仿真实验,从而研究系统结构、功 能和行为之间的动态关系。
8
第二节
系统动力学原理
1、由来与发展 Systems Dynamics, SD/ J.W. Forrester(MIT) Industridl Dynamics (ID), 1959
Principles of Systems, 1968
由于连续系统和离散(事件)系统的数学模型有
很大差别,所以系统仿真方法基本上分为两大类,
即连续系统仿真方法和离散系统仿真方法。
7
第一节
系统仿真
在以上两类基本方法的基础上,还有一些用 于系统(特别是社会经济和管理系统)仿真的特殊 而有效的方法,如系统动力学方法、蒙特卡洛法
等。
系统动力学方法通过建立系统动力学模型(流
差额
期望 。 库存
SMOOTH
平均销 售(发 货)率
。
22
第四节 Vensim_PLE 仿真软件使用简介
Vensim由Ventana Systems, Inc.开发,该软件 提供了强大的Windows界面下的编辑环境,为用 户提供了友好的图形界面,是一种易于使用,功
能强大的系统动力学仿真平台。国内曾用该软件
系统仿真
3、系统仿真的作用 (3)通过系统仿真,可以把一个复杂系统降 阶成若干子系统以便于分析。 (4)通过系统仿真,能启发新的思想或产生 新的策略,还能暴露出原系统中隐藏着的 一些问题,以便及时解决。
6
第一节
系统仿真
二、系统仿真方法
系统仿真的基本方法是建立系统的结构模型 和量化分析模型,并将其转换为适合在计算机上 编程的仿真模型,然后对模型进行仿真实验。
(2)流图符号
① 流 信息流 R1
②
速率变量 L1
R1
③ ④
水准变量 辅助变量
(
。 )
A1
。
13
第二节
系统动力学原理
(3)流图绘制程序和方法 ① 明确问题及其构成要素; ② 绘制要素间相互作用关系的因果关 系图。注意一定要形成回路; ③ 确定变量类型(L变量、R变量和A变 量)。将要素转化为变量,是建模的关键一 步。在此,应考虑以下几个具体原则: