薄膜的生长过程word版
第5章+薄膜的生长过程和薄膜结构
11
特点:每一层原子都自发地平铺于衬底或 者薄膜的表面,降低系统的总能量。 典型例子:沉积ZnSe薄膜时, 一种原子会自发地键合到另 一种原子所形成的表面上。
12
3. 层状-岛状(Stranski-Krastanov)生长模式
在层状—岛状生长模式中,在最开始的一两个原子层厚 度的层状生长之后,生长模式转化为岛状模式。 根本原因:薄膜生长过程中各种能量的相互消长。
32
在形成这样的一个原子团时的自由能变化为:
G a1r GV a2r fs a2r sv a3r vf
3 2 2 2
体积自由能 变化量
界面自由能变化量
其中, GV 是单位体积的相变自由能,它是薄膜形核的驱动力;
vf 为气相与薄膜之间的界面能; fs 为薄膜与衬底之间的界面能;
由于 GV RT ln
r rr
C a A
c
b B
ri
i
i0
对于自发形核过程 ,有
P JV kT kT V GV ln ln P J
其中, 是原子体积, Pv是固相的平衡蒸汽压, P是气相实际的过饱和蒸汽压 ; Jv是凝结相的蒸发通量; J是气相的沉积通量。
20
以运动的原子团,这些原子团称为“岛”。
3. 小岛不断地接受新的沉积原子,并与其他
的小岛合并而逐渐长大,而岛的数目则很 快达到饱和。
5
4. 小岛通过相互合并而扩大(类似液珠一
样)而空出的衬底表面又形成了新的岛。
5. 像这样的小岛形成与合并的过程不断进
行,直到孤立的小岛逐渐连接成片,最 后只留下一些孤立的孔洞,并逐渐被后 沉积的原子所填充。
3
第一节 薄膜生长过程概述
薄膜生长步骤
薄膜生长步骤
薄膜生长指的是在基底上通过化学或物理方法制备出一层薄膜的
过程。
这项技术具有广泛的应用前景,例如电子器件、光学材料、涂
料等领域。
下面我们将分步骤介绍薄膜生长的过程。
第一步,先准备好基底,一般选用的是高质量的单晶硅片或玻璃
基板。
这个步骤的关键在于确保基底表面平整、无杂质,以及合适的
晶格结构和晶向。
第二步,进行基底表面预处理。
这个步骤的目的是去除表面的氧
化物和污染物,以及提高表面的反应活性。
常用的方法包括机械抛光、酸洗、热压等。
第三步,选择适当的生长技术。
常见的薄膜生长技术有物理气相
沉积、化学气相沉积、分子束外延、溅射等。
不同的技术具有不同的
优缺点和适用范围,应该根据具体需要选择。
第四步,进行薄膜的生长。
生长过程中需要控制温度、气压、反
应进气量等参数来控制膜的厚度和质量。
在生长过程中还需要根据需
要加入掺杂元素或在不同的反应条件下进行生长。
第五步,进行后处理。
薄膜生长后需要进行一定的后处理,例如
进行退火、氧化等,这些步骤有助于提高膜质量和改变其性能。
以上就是薄膜生长的主要步骤。
在实际操作中,还需要注意一些细节,例如仪器的维护、材料的选择、反应条件的调整等,才能得到高质量的薄膜。
5+薄膜的生长过程和薄膜结构
(2)层状生长(Frank-van der Merwe)模式 当被沉积物质与衬底之间浸润性很好时,薄 膜的沉积表现为层状生长模式。 在层状生长模式下,已没有意义十分明确的 形核阶段出现。 在极端情况下,即使是沉积物的分压已低于 纯组元的平衡分压时,沉积的过程也会发生。
薄膜生长过程和结构
形成一个新相核心时,系统的自由能变化为 自由能变化ΔG取得极值的条件为dΔG/dr = 0,即
临界核心半径
形成临界核心时系统自由能变化 S越大,△G*越小。
薄膜生长过程和结构 15
形核过程的能垒
减小自身尺寸 降低自由能; 核心的生长使 自由能下降。
薄膜生长过程和结构
16
压力对n*的影响: r<r*时,不稳定的核心与气相原子或者衬底表 面的吸附原子之间存在着可逆反应jA←→Nj
10
5.2 新相的自发形核理论
新相形核过程的类型: 自发形核:整个形核过程完全是在相变自由 能的推动下进行的。 非自发形核:除了有相变自由能作推动力之 外,还有其他的因素起着帮助新相核心生成的 作用。
薄膜生长过程和结构
11
在薄膜与衬底之间浸润性较差的情况下, 薄膜的形核过程可以近似地被认为是一个自 发形核的过程。
25
薄膜生长过程和结构
非自发形核过程的临界自由能变化还可以 写成两部分之积的形式
自发形核过程的 临界自由能变化
能量势垒降 低的因子
接触角θ越小,即衬底与薄膜的浸润性越好,则 非自发形核的能垒降低得越多,非自发形核的倾 向也越大。在层状模式时,形核势垒高度等于零。
薄膜生长过程和结构
26
在薄膜沉积的情况下,核心常出现在衬底 的某个局部位置上,如晶体缺陷、原子层形成 的台阶、杂质原子处等。这些地点或可以降低 薄膜与衬底间的界面能,或可以降低使原子发 生键合时所需的激活能。因此,薄膜形核的过 程在很大程度上取决于衬底表面能够提供的形 核位置的特性和数量。
薄膜的生长过程和薄膜结构
光学器件
光学薄膜
01
光学薄膜由多层薄膜构成,用于控制光的反射、透射和偏振等
特性,广泛应用于光学仪器、摄影镜头和照明等领域。
激光器
02
薄膜在激光器中用作反射镜、输出镜和增益介质等,如染料激
光器和光纤激光器。
太阳能电池
03
薄膜在太阳能电池中用作光吸收层和电极等,如染料敏化太阳
能电池和钙钛矿太阳能电池。
等离子体增强化学气相沉积
通过引入等离子体增强反应气体活性,促进化学反应并提高沉积速 率。
液相外延(LPE)
选择性液相外延
通过控制溶液的浓度和热处理条 件,使源物质在基底表面特定区 域析出并生长形成薄膜。
横向液相外延
通过控制溶液的浓度和涂覆方式 ,使源物质在基底表面横向生长 形成薄膜。
分子束外延(MBE)
界面态
在薄膜与基底之间可能存在界面态,即电子或空穴被限制 在界面区域。界面态对薄膜的电子传输和光学性能有重要 影响。
界面结构
界面结构是指薄膜与基底之间的原子排列和相互作用方式。 不同的制备方法和工艺参数可能导致不同的界面结构,从 而影响薄膜的整体性能。
03
薄膜特性
力学性能
弹性模量
描述薄膜在受力时的刚度,反 映了材料抵抗弹性变形的能力
电阻率
衡量薄膜导电难易程度 的物理量,与电导率密
切相关。
击穿电压
描述薄膜所能承受的最 大电场强度,超过此值
会发生绝缘击穿。
光学性能
透光率
衡量光线通过薄膜的能力,与材料的吸收、 反射和散射特性有关。
光谱特性
描述薄膜在不同波长光线下的透射、反射和 吸收特性。
反射率
描述光线在薄膜表面反射的比例,影响光学 器件的性能。
薄膜的形成过程及生长方式
低温抑制型薄膜沉积过程的特点:
• 原子的表面扩散能力较低,其沉积的 位置就是其入射到薄膜表面时的位置;
• 决定薄膜组织的唯一因素是原子的入 射方向;
• 形成的薄膜充满了缺陷和孔洞,表面 粗糙。
16
5.3.3 高温热激活型薄膜生长
• 当沉积温度较高时,原子扩散较为充分 ,扩散就会影响薄膜的组织结构和形貌 。它可以消除孔洞的存在,使薄膜组织 状变为柱状晶形态。
因于生长过程,所以薄膜生长是最为基 本的。
4
• 5.12薄膜的生长模式
• 薄膜的生长模式可以归纳为三种: • (1)岛状模式(Volmer-Weber模
式); • (2)层状模式(Frank-van der
Merwe); • (3)层岛复合模式(Stranski-
Krastanov) • 三种模式的示意图5.2
• 由于原子的平均扩散距离随着温度的上 升呈指数形式增加,因此,组织形态的 转变发生在0.3Tm附近很小的温度区域
17
。
•图5.17是 二维模拟得 出的30°角 倾斜入射沉 积时,薄膜 组织随沉积 温度的变化 情况。
• 由图可以看出,随着衬底温度的上升,薄膜
中的孔洞迅速减少。
18
图5.18显示了衬底温度对薄膜表面形貌的 影响
薄膜生长过程与薄膜结构薄膜的生长模式可以分为外延式生长和非外延式生长两种生长模式
薄膜的形成过程及生长方式
本课件仅供大家学习学习 学习完毕请自觉删除
谢谢 本课件仅供大家学习学习
学习完毕请自觉删除 谢谢
目录
• 5.1 薄膜生长过程概述 • 5.2 形核阶段 • 5.3 薄膜生长过程与薄膜结构
习题
2
5.1、薄膜生长过程概述
薄膜的生长过程和薄膜结构
5.3 薄膜的非自发形核理论 5.3.1 非自发形核过程的热力学
形成一个原子团时的自由能变化为
ΔGv — 单位体积的相变自由能,它是薄膜形核的驱动力; — 气相(v)、衬底(s)与薄膜(f)三者之间的界面能;
衬底之间晶格常数不匹配,随着沉积原子层的 增加,应变能增加。为松弛应变能,生长到一 定厚度,薄膜生长转化为岛状模式。
2)在Si、GaAs等半导体材料的晶体结构中, 每个原子分别在四个方向上与另外四个原子形 成共价键。但在Si的(111)晶面外延生长GaAs时, 由于As原子有五个价电子,它不仅可提供Si晶 体表面三个近邻Si原子所要求的三个键合电子, 而且剩余的一对电子使As原子不再倾向于与其 他原子发生进一步的键合。吸附了As原子的 Si(111)表面具有极低表面能,使其后As、Ga原 子的沉积模式转变为三维岛状的生长模式。
新相的形核阶段:气态的原子或分子凝聚到衬
底表面,扩散迁移形成晶核,晶核结合其他吸
附的气相原子逐渐长大形成小岛。
入射原 子束 再直接碰撞
临界核 临界值
稳定核 稳定值
表面扩散
核形成 核成长
形核阶段 小岛阶段 聚结阶段
薄膜的生长阶段: 小岛阶段; 聚结阶段;
电子衍射 ED
沟道阶段;
纯组元的平衡分压时,沉积的过程也会发生。
(3)层状—岛状(Stranski-Krastanov)生长模式 最开始的一两个原子层的层状生长之后,生长
模式从层状模式转化为岛状模式。 导致这种模式转变的物理机制比较复杂,但根
本的原因应该可以归结为薄膜生长过程中各种能 量的相互消长。
矿产
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
薄膜生长的基本过程
Monte Carlo 模拟和DLA模型
Monte Carlo simulation DLA (Diffusion Limited Aggregation) Hit-and-stick DLA model
Monte Carlo方法
利用随机数进行统计计算 利用随机投针法计算圆周率
P=2L/πd
1. 产生随机数 2. 设定游戏规则
参数比较容易测量。
Gc i / 2
Parameter dependencies of the maximum cluster density
起始沉积
成核
稳定核长大
稳定核相遇
融合后产生新的核
1.5 min
R = 1013 atoms/cm sec
15 min
8 min
85 min
Au/ NaCl(001)
其它因素: 台阶边缘的Schwoebel 势垒
33 oC 81 oC 105 oC
❖ Ag(111) 上Au核分布 的STM 图. ❖ 平台上的Au核表明台阶边缘的Schwoebel 势垒在低温
下阻碍原子的在台阶间的扩散。
不同D/J值时团簇密度 nj的直方图,n0为衬底表 面的原子数。
其它因素: 表面扩散的各向异性
Ed
v1e kT
Ed为扩散激活能 v1为横向振动频率
横向振动频率/纵向振动频率 ~ 0.25,可认为相等
吸附原子被捕获的几率 ~
Ea
吸附原子在衬底上的驻留时间: a v1e kT
一般的Ea>Ed 温度变化对驻留时 间的影响更显著
1/N0
Ea
Ed
Ra ~ a0 exp[(Ea Ed ) / 2kT ]
薄膜生长
薄膜的形核与生长
薄膜形核理论简介
气固相变的自发形核理论
二、自发形核的热力学分析:
4、临界核心的面密度:
4)分析与讨论: 要想获得平整、均匀的薄膜沉积,需要提高新相的形核率 n*,即:降低 G* 和 r*: 实现方法:
□ 在薄膜的形核阶段: P Sg r*、G* 形成大量核心 均匀平整的薄膜 热力学考虑! □ 在薄膜的生长阶段:T、采用离子轰击抑制岛状核心合并 抑制扩散防止过度生长 动力学考虑!
G*
*
0
温度 T 的影响: □ T 相变过冷度 Gv G* ! □ T 表面原子热振动加剧 吸附原子脱附几率 n1 n0 ! 规律:T n0、G*、exp(-G*/kT) n* 不利于获得高的薄膜形核率 低温有利于形核 (热力学有利!)、但不利于长大 (扩散不易进行、动力学不利!)
2、形核自由能及表面张力作用分析:
形成这样一个原子团时,系统的自由能变化可写作:
G a1Gv r 3 [a2 ( fs sv ) a3 vf ] r 2
(4 - 11)
式中:Gv — 单位体积相变能 (形核驱动力); — 表面张力 (下标 v、s、f 分别表示气相、、基本规律:
湿润性很差时: 薄膜以岛状模式生长! (同时要求沉积温度足够高、沉积原子具有一定扩散能力) ■ 错配度影响较小,沉积原子倾向相互键合形成三维岛,而避免与基片原子键合! ■ 在非金属基片上沉积金属材料时,薄膜往往以这种模式生长!
薄膜的形核与生长
薄膜生长的过程与模式
基于实验观察划分的薄膜生长模式
外延生长薄膜时,需要抑制新相核心的形成,同时促进扩散长大 Sg、T n* !
薄膜的形核与生长
5薄膜生长和薄膜结构
11
凝结系数 C
当蒸发的气相原子入射到基底表面时,除了被弹性反射和吸 附后再蒸发的原子外,完全被基底表面所凝结的气相原子数 与入射到基底表面上的总气相原子数之比。
•固体表面的特殊性:与体内相比,在晶体结构方面有重大差异, 存在大量不饱和键,这种键具有吸引外来原子或分子的能力。入射 到基板表面的气相原子被这种不饱和键吸引住的现象称为吸附。 •如果吸附仅仅是分子电偶极矩之间的范德华力起作用,称为物理 吸附 吸附是化学键结合力起作用,称为化学吸附
4
能量 斥力
A
物 理 吸 附
ED
ED:表面扩散激活能
吸附原子表面扩散示意图
吸附原子在一个吸附位臵上的停留时间称谓平均表面扩散时 间,它同表面扩散激活能ED之间的关系为
' ' 0是表面原子沿表面水平方向振动的周期,通常取 0
D exp(ED / kT )
' 0
0
8
吸附原子在表面停留时间内经过扩散运动所移动的距离, 称为平均表面扩散距离,可表示为
dN n * * Nn AJ dt
N ns e
* n
kT
ns是所有可能的形核点密度,J是气相原子流向新核心的 净通量:
C ( pV pS ) N A J 2RT
αC是凝聚系数,μ气相分子摩尔质量
23
所以,新相核心的成核速率为
dN n 4 Cr ns ( pV pS ) N A e dt 2RT
13
(2)层状生长模式(Frank-Vander Merwe模型)
薄膜生长的基本过程
半球体原子数的变化
rc (t ) rc (t0 )[1 (t t0 ) / ]
1/ 4
rc 4 (t0 ) / b
b N0 22 Ds / kT
r (t ) ~ t 大原子团 r (t ) ~ t 小原子团
4 c 4 c
Si上生长Sn 原子的过程
不同生长模式下的生长时间标度率
> N0 & <2N0 所有增原子的覆盖面积之和
> 2N0
描述成核长大的基本方程
可以将成核过程看 成是一系列的双分 子反应过程
忽略多原子团之间的复合过程
和化学反应中各组分浓度的变化一样,可 写出含有不同数目的原子团的浓度变化:
dn1 n1 R n1 K j n j dt a j 1 dnj dt K j 1n1n j 1 K j n1n j
i
Ei / kT
Re
E1=0
( Ea Ed ) / kT
(R
i 1
/ N0 ) e
i 1
i ( Ei ( i 1) Ea Ed ) / kT
特别的,临界晶核i=1时
2
J1 R e
2 (2 Ea Ed )/ kT
/v
讨论:
临界晶核只含有单个原子 J1 ~ R 2 ln J1 ln(R / v) (2Ea Ed ) / kT
薄膜生长的成核长大动力学
薄膜生长的基本过程
热力学:判断过程是否能进行 动力学:过程怎么进行 热力学平衡的时候薄膜不能生长
1/N0
Ea
Ed
Ra ~ a0 exp[( Ea Ed ) / 2kT ]
起始沉积过程的分类
按起始沉积过程中再蒸发的难易程度和沉积 原子能够相遇结合起来的程度区分为三类
薄膜的生长过程
薄膜的生长主要包含以下三个基本过程:首先,在非平衡等离子体中,电子与反应气体发生初级反应,使得反应气体发生分解,形成离子和活性基团的混合物;其二,各种活性基团向薄膜生长表面和管壁扩散输运,同时发生各反应物之间的次级反应;最后,到达生长表面的各种初级反应和次级反应产物被吸附并与表面发生反应,同时伴随有气相分子物的再放出。
具体说来,基于辉光放电方法的PECVD技术,能够使得反应气体在外界电磁场的激励下实现电离形成等离子体。
在辉光放电的等离子体中,电子经外电场加速后,其动能通常可达10eV左右,甚至更高,足以破坏反应气体分子的化学键,因此,通过高能电子和反应气体分子的非弹性碰撞,就会使气体分子电离(离化)或者使其分解,产生中性原子和分子生成物。
正离子受到离子层加速电场的加速与上电极碰撞,放置衬底的下电极附近也存在有一较小的离子层电场,所以衬底也受到某种程度的离子轰击。
因而分解产生的中性物依扩散到达管壁和衬底。
这些粒子和基团(这里把化学上是活性的中性原子和分子物都称之为基团)在漂移和扩散的过程中,由于平均自由程很短,所以都会发生离子-分子反应和基团-分子反应等过程。
到达衬底并被吸附的化学活性物(主要是基团)的化学性质都很活泼,由它们之间的相互反应从而形成薄膜。
2、等离子体内的化学反应由于辉光放电过程中对反应气体的激励主要是电子碰撞,因此等离子体内的基元反应多种多样的,而且等离子体与固体表面的相互作用也非常复杂,这些都给PECVD技术制膜过程的机理研究增加了难度。
迄今为止,许多重要的反应体系都是通过实验使工艺参数最优化,从而获得具有理想特性的薄膜。
对基于PECVD技术的硅基薄膜的沉积而言,如果能够深刻揭示其沉积机理,便可以在保证材料优良物性的前提下,大幅度提高硅基薄膜材料的沉积速率。
目前,在硅基薄膜的研究中,人们之所以普遍采用氢稀释硅烷(SiH4)作为反应气体,是因为这样生成的硅基薄膜材料中含有一定量的氢,H 在硅基薄膜中起着十分重要的作用,它能填补材料结构中的悬键,大大降低了缺陷能级,容易实现材料的价电子控制,自从1975 年Spear 等人首先实现硅薄膜的掺杂效应并制备出第一个pn 结以来,基于PECVD 技术的硅基薄膜制备与应用研究得到了突飞猛进的发展,因此,下面将对硅基薄膜PECVD 技术沉积过程中硅烷等离子体内的化学反应进行描述与讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章薄膜的生长过程射向基板及薄膜表面的原子、分子与表面相碰撞,其中一部分被反射,另一部分在表面上停留。
停留于表面的原子、分子,在自身所带能量及基板温度所对应的能量作用下,发生表面扩散(surface diffusion)及表面迁移(surface migration),一部分再蒸发,脱离表面,一部分落入势能谷底,被表面吸附,即发生凝结过程。
凝结伴随着晶核形成与生长过程,岛形成、合并与生长过程,最后形成连续的膜层。
在真空中制造薄膜时,真空蒸镀需要进行数百摄氏度以上的加热蒸发。
在溅射镀膜时,从靶表面飞出的原子或分子所带的能量,与蒸发原子的相比,还要更高些。
这些气化的原子或分子,一旦到达基板表面,在极短的时间内就会凝结为固体。
也就是说,薄膜沉积伴随着从气相到固相的急冷过程,从结构上看,薄膜中必然会保留大量的缺陷。
此外,薄膜的形态也不是块体的,其厚度与表面尺寸相比相差甚远,可近似为二维结构。
一、薄膜的生长过程:新相的成核与薄膜的生长两个阶段1、成核阶段在薄膜形成的最初阶段,一些气态的原子或分子开始凝聚到衬底上,从而开始了所谓的形核阶段。
由于热涨落的作用,原子到达衬底表面的最初阶段,在衬底上成了均匀细小、而且可以运动的原子团(岛或核)。
当这些岛或核小于临界成核尺寸时,可能会消失也可能长大;而当它大于临界成核尺寸时,就可能接受新的原子而逐渐长大。
2、薄膜生长阶段一旦大于临界核心尺寸的小岛形成,它接受新的原子而逐渐长大,而岛的数目则很快达到饱和。
小岛像液珠一样互相合并而扩大,而空出的衬底表面上又形成了新的岛。
形成与合并的过程不断进行,直到孤立的小岛之间相互连接成片,一些孤立的孔洞也逐渐被后沉积的原子所填充,最后形成薄膜。
二、薄膜生长的三种模式-岛状、层状和层状-岛状生长模式1、岛状生长(Volmer-Weber)模式 :被沉积物质的原子或分子更倾向于自己相互键合起来,而避免与衬底原子键合,即被沉积物质与衬底之间的浸润性较差;金属在非金属衬底上生长大都采取这种模式。
对很多薄膜与衬底的组合来说,只要沉积温度足够高,沉积的原子具有一定的扩散能力,薄膜的生长就表现为岛状生长模式。
图5.1 透射电子显微镜追踪记录Ag 在NaCl 晶体表面成核过程的系列照片和电子衍射图2、层状生长(Frank-van der Merwe)模式:当被沉积物质与衬底之间浸润性很好时,被沉积物质的原子更倾向于与衬底原子键合。
因此,薄膜从形核阶段开始即采取二维扩展模式,沿衬底表面铺开。
在随后的过程中薄膜生长将一直保持这种层状生长模式。
3、层状-岛状(Stranski-Krastanov)生长模式:在层状-岛状中间生长模式中,在最开始一两个原子层厚度的层状生长之后,生长模式转化为岛状模式。
导致这种模式转变的物理机制比较复杂,但根本的原因应该可以归结为薄膜生长过程中各种能量的相互消长。
三种不同薄膜生长模式的示意图:三、导致生长模式转变的三种物理机制1、虽然开始时的生长是外延式的层状生长,但是由于薄膜与衬底之间晶格常数不匹配,因而随着沉积原子层的增加,应变能(应力)逐渐增加。
为了松弛这部分能量,薄膜在生长到一定厚度之后,生长模式转化为岛状模式。
2、在Si的(111)晶面上外延生长GaAs,由于第一层拥有五个价电子的As原子不仅将使Si晶体表面的全部原子键得到饱和,而且As原子自身也不再倾向于与其他原子发生键合。
这有效地降低了晶体的表面能,使得其后的沉积过程转变为三维的岛状生长。
3、在层状外延生长表面是表面能比较高的晶面时,为了降低表面能,薄膜力图将暴露的晶面改变为低能面,因此薄膜在生长到一定厚度之后,生长模式会由层状模式向岛状模式转变。
(注:在上述三种模式转换机理中,开始的时候层状生长的自由能较低;但其后,岛状生长的自由能变低了,岛状生长反而变得更有利了。
)6.2新相的自发成核理论在薄膜沉积过程的最初阶段,都需要有新相的核心形成,新相的成核过程可以被分为两种类型:1. 自发成核:所谓自发成核指的是整个形核过程完全是在相变自由能的推动下进行的;2. 非自发成核:非自发形核指的是除了有相变自由能作推动力之外,还有其他的因素起到了帮助新相核心生成的作用。
自发成核简单例子-从过饱和气相中形成球形核的过程薄膜与衬底之间浸润性较差的情况下,薄膜的形核过程可以近似地被认为是一个自发形核的过程。
看图5.3,设新相核心的半径为r,因而形成一个新相核心时,体自由能将变化ΔGv,其中ΔGv =(kT/W)ln(Pv/P)是单位体积的固相在凝结过程中的相变自由能之差。
Pv和P分别是固相的平衡蒸气压和气相实际的过饱和蒸气压,W是原子体积。
当过饱和度为零时,ΔGv=0,这时将没有新相的核心可以形成,或者已经形成的新相核心不再长大。
当气相存在过饱和(P>Pv)现象时,Gv <0,它就是新相形核的驱动力。
在新的核心形成的同时,还将伴随有新的固气相界面的生成,它导致相应界面能的增加,其数值为4πr2γ,其中γ为单位面积的界面能。
综合上面两项能量之后,我们得到系统的自由能变化为:24R G G v π+∆=∆ 对G 求r 的微分,得到自由能G 为零的条件为:v G r r ∆-=/2* 它是能够平衡存在的最小固相半径 ,或临界核心半径讨论(1)当 r < r*时,在热涨落过程中形成的这个新相核心将 处于不稳定状态,它可能再次消失(2)当 r > r*时新相核心将处于可以继续稳定生长的状态, 并且生长过程将使得自由能下降。
临界成核时系统的自由能变化为:(把r*代入G )23*3/16v G r G ∆=∆π 气相的过饱和度越大,临界核心的自由能变化也越小。
形成临界核心的临界自由能变化G* 实际上就相当于成核的势垒;热激活过程提供的能量起伏将使得一些原子具备了G* 大小,导致新核的形成。
以上讨论的出发点是气相的过饱和度,是从热力学的角度考虑问题,另一种考虑问题的方法是从动力学的角度去考虑问题。
由于在核心长大的过程中,需要吸纳扩散来的单个原子,而核成核自由能变化随新相核心半径的变化关系心间还在通过合并过程而长大,小核心中的单个原子也会通过气相或通过表面扩散的途径转移到大核心中去。
因此,降低衬底的温度还可以抑制原子和小核心的扩散,冻结形核后的细晶粒组织,抑制晶核的长大过程。
它使得沉积后的原子固定在其初始沉积的位置上,形成特有的低温沉积组织。
在降低温度的同时,采用粒子轰击的方法抑制三维岛状核心的形成,使细小的核心来不及由扩散实现合并就被沉积来的原子所覆盖,以此形成晶粒细小、表面平整的薄膜。
在大多数固体相变过程中,涉及的成核过程都是非自发成核的过程,即有其他的因素起到了帮助新相核心的生成。
一、非自发成核过程的热力学原子团在衬底上形成初期,原子团很小,它可能吸收外来原子而长大,也可能失去已有的原子而消失,其自由能变化为vf sv fs v r a r a r a G r a G γγγ23222231-++∆=∆ΔGv 是单位体积的相变自由能,它是薄膜成核的驱动力;vf 、 fs 、sv 分别是气相(v)、衬底(s)与薄膜(f)之间的界面能; a1、a2、a3是与核心具体形状有关的常数(活度)。
对如图所示的冠状核心来说,有)cos 3cos -2( a 31θθπ+=θπ sin a 22=)cos -(1 2 a 3θπ=核心形状的稳定性要求界面能之间满足:θγγγcos vf fs sv +=即θ只取决于各界面能之间的数量关系。
薄膜与衬底的浸润性越差,则θ的数值越大。
由上式也可以说明薄膜的不同生长模式。
θ > 0 + < vf fs sv γγγ 岛状生长模式;θ = 0 + vf fs sv γγγ= 生长模式转换为层状或中间模式。
由式(5-10)对原子团半径r 微分为零的条件,(由0=∇dr G d )可求出临界半径为:v sv fs vf G a r a r a r a r ∆-+-=12233)(2* 临界成核时系统的自由能变化为:θ越小,衬底与薄膜的浸润性越好,则非自发成核的能垒降低的越 多,非自发成核的倾向越大。
在层状模式时,形核势垒高度等于零。
非自发形核过程中ΔG 随r 的变化趋势也如图5.4所示。
在热涨落的作用下,会不断形成尺寸不同的新相核心。
半径r<r*的核心会由于Δ G 降低的趋势而倾向于消失,而那些r>r*的核心则可伴随着自由能的下降而倾向于长大。
成核自由能变化随新相核心半径的变化关系-类似自发成核,形成临界核心的临界自由能变化ΔG* 实际上就相当于成核的势垒;热激活过程提供的能量起伏将使的一些原子具备了ΔG* 大小,导致新核的形成。
333322*22214()16(23cos cos )2734vffs sv vf v V a a a G a G G γγγπγθθ+--+∆==∆∆在薄膜沉积的情况下,核心常出现在衬底的某个局部位置上,如晶体缺陷、原子层形成的台阶、杂质原子处等。
这些地点或可以降低薄膜与衬底间的界面能,或可以降低使原子发生键合时所需的激活能。
因此,薄膜形核的过程在很大程度上取决于衬底表面能够提供的形核位置的特性和数量。
二、薄膜的成核速率形核率是在单位面积上,单位时间内形成的临界核心的数目。
新相形成所需要的原子可能来自:(1) 气相原子的直接沉积;(2) 衬底表面吸附原子沿表面的扩散。
在形核最初阶段,已有的核心数极少,因而后一可能性应该是原子来源的主要部分,即形核所需的原子主要来自扩散来的表面吸附原子。
沉积来的气相原子将被衬底所吸附,其中一部分将会返回气相中,另一部分将由表面扩散到达已有的核心处,使得该核心得以长大。
表面吸附原子在衬底表面停留平均时间τ取决于脱附激活能E d ν为表面原子的振动频率。
这些吸附原子在扩散中,会与其他原子或原子团结合在一起。
随着其相互结合成越来越大的原子团,其脱附的可能性也在逐渐下降。
在衬底表面的缺陷处,原子的正常键合状态被打乱,因而在这里吸附原子的脱附激活能Ed 较高。
这1DE KTe τν=**dN N A dt ω=导致在衬底表面的缺陷处薄膜的形核率较高。
新相核心的成核速率N*为单位面积上临界原子团的密度,A*为每个临界核心接受沿衬底表面扩散来的吸附原子的表面积;是单位时间内流向单位核心表面积的原子数目(吸附原子的通量)。
迁移来的吸附原子通量应等于吸附的原子密度n a 和原子扩散的发生几率 两者的乘积;而在衬底上吸附原子的密度等于 即沉积气相撞击衬底表面的原子通量与其停留时间的乘积。
这样 所以 薄膜最初的成核率与临界成核自由能ΔG* 密切相关,ΔG* 的降低可显著提高成核率。
而高的脱附能Ed ,低的扩散激活能Es ,都有利于气相原子在衬底表面的停留和运动,因此会提高成核率。