5.2.2 平行线的判定教学课件
合集下载
5.2.2 平行线的判定优质课件PPT
![5.2.2 平行线的判定优质课件PPT](https://img.taocdn.com/s3/m/cf61807b10a6f524ccbf85ea.png)
①同位角相等,两直线平行 ②内错角相等,两直线平行 ③同旁内角互补,两直线平行
作业:同步练习册5.2 (二)(三)
④同一平面内,垂直于同一直线的两直线平行
⑤平行于同一直线的两直线平行
Hale Waihona Puke • 我们很容易遭遇逆境,也很容易被一次次的失败打垮。但是人生不容许我们停留在失败的瞬间,如果不前进,不会自我激励的话,就注定只能被这个世界抛弃。自我激励能力是人自我调节系统中 重要的组成部分,主要表现在对于在压力或者困境中,个体自我安慰、自我积极暗示、自我调节的能力,在个体克服困难、顶住压力、勇对挑战等情况下,都发挥着关键性的作用。具备自我激励 能力的人,富有弹性,经常表现出反败为胜、后来居上、东山再起的倾向,而缺乏这种能力的人,在逆境中的表现就大打折扣,表现为过分依赖外界的鼓励和支持。一个小男孩在自家的后院练习 棒球。在挥动球棒前,对自己大喊:“我是世界上最棒的棒球手!”然后扔出棒球,挥动……但是没有击中。接着,他又对自己喊:“我是世界上最棒的棒球手!”扔出棒球,挥动依旧没有击中。 男孩子停下来,检查了球棒和球,然后用更大的力气对自己喊:“我是世界上最棒的棒球手!”可是接下来的结果,并未如愿。男孩子似乎有些气馁,可是转念一想:我抛球这么刁,一定是个很 棒的挥球手。接着男孩子又对自己喊:“我是世界上最棒的挥球手!”其实,大多数情况下,很多人做不到这看似荒谬的自我鼓励,可是,这故事却深深反映了这个男孩子自我鼓励下的执著,而 这执著是很多人并不具备的……而许多奇迹往往是执著者造成的。许多人惊奇地发现,他们之所以达不到自己孜孜以求的目标,是因为他们的主要目标太小、而且太模糊不清,使自己失去动力。 如果你的主要目标不能激发你的想象力,目标的实现就会遥遥无期。因此,真正能激励你奋发向上的是确立一个既宏伟又具体的远大目标。实现目标的道路绝不是坦途。它总是呈现出一条波浪线, 有起也有落,但你可以安排自己的休整点。事先看看你的时间表,框出你放松、调整、恢复元气的时间。即使你现在感觉不错,也要做好调整计划。这才是明智之举。在自己的事业波峰时,要给 自己安排休整点。安排出一大段时间让自己隐退一下,即使是离开自己挚爱的工作也要如此。只有这样,在你重新投入工作时才能更富激情。困难对于脑力运动者来说,不过是一场场艰辛的比赛。 真正的运动者总是盼望比赛。如果把困难看作对自己的诅咒,就很难在生活中找到动力,如果学会了把握困难带来的机遇,你自然会动力陡生。所以,困难不可怕,可怕的是回避困难。大多数人 通过别人对自己的印象和看法来看自己。获得别人对自己的反映很不错,尤其正面反馈。但是,仅凭别人的一面之辞,把自己的个人形象建立在别人身上,就会面临严重束缚自己的。因此,只把 这些溢美之词当作自己生活中的点缀。人生的棋局该由自己来摆。不要从别人身上找寻自己,应该经常自省。有时候我们不做一件事,是因为我们没有把握做好。我们感到自己“状态不佳”或精 力不足时,往往会把必须做的事放在一边,或静等灵感的降临。你可不要这样。如果有些事你知道需要做却又提不起劲,尽管去做,不要怕犯错。给自己一点自嘲式幽默。抱一种打趣的心情来对 待自己做不好的事情,一旦做起来了尽管乐在其中。所以,这次犯错,是为了下次接受挑战后,要尽量放松。在脑电波开始平和你的中枢神经系统时,你可感受到自己的内在动力在不断增加。你 很快会知道自己有何收获。自己能做的事,放松可以产生迎接挑战的勇气。事过境迁,面对人生,面对社会,面对工作,一切的未来都需要自己去把握。人一定要靠自己。命运如何眷顾,都不会 去怜惜一个不努力的人,更不会去同情一个懒惰的人,一切都需要自己去努力。谁都不可能一生一世的帮你,一时的享受也只不过是过眼云烟,成功需要自己去努力。当今社会的快速发展,各行 各业的疲软,再加上每年几百万毕业生涌向社会,社会生存压力太大,以至于所有稍微有点意识的年轻人都想努力提高自己。看着身边一个个同龄人那么优秀,看着朋友圈的老同学个个事业有成、 买房买车,我们心急如梵,害怕被这个社会抛弃。所以努力、焦躁、急迫这些名词缠绕着越来越多的年轻人,我们太想改变自己,太想早一日成为自己梦想中的那个自己。收藏各种技能学习资料, 塞满了电脑各大硬盘;报名流行的各种付费社群,忙的人仰马翻;于是科比看四点钟的洛杉矶成为大家励志的手段,纷纷开始早起打卡行动。其实……其实我们不觉得太心急了吗?这是有一次自 己疲于奔命,病倒了,在医院打点滴时想到的。我时常恐慌,害怕自己浪费时间,就连在医院打点滴的时候,都觉得是对时间的一种浪费。想快点结束,所以乘着护士不在,自己偷偷的拨快了点 滴速度。刚开始自己还能勉强受得了,过了差不多十分钟,真心忍不住了,只好叫护士帮我调到合适的速度。打完点滴走在回家的路上,我就在想,平时做事和打点滴何尝不是一样,都是有一个 度,你太急躁了、太想赶超,身体是受不了的。身体是革命的本钱,我们还年轻,还有大把的时间够我们改变,够我们学习成长。身体就像是1000前面的那个若是1都不存在了,后面再多的0又有 什么用?我是一个急性子,做事风风火火的,所以对于想改变自己,是比任何人都要心急。这次病倒了,个人感觉完全是没有方向、不分主次的一通乱忙乎才导致的,病倒换来的努力根本是一钱 不值。生病的那几天,我跟自己的大学老师打了一个电话,想让老师帮我解惑一下,自己到底是怎么了。别人也很努力啊,而且他们取得的成就远远超过我了,为啥他们反到身体倍棒而一无所获 的自己却病倒了?老师开着电脑,给我分享了两个小故事讲的第一个故事是“保龄球效应”,保龄球投掷对象是10个瓶子,你如果每次砸倒9个瓶子,最终得分是90分,而你如果每次能砸倒10个瓶 子,最终得�
5-2-2平行线的判定-七年级下册人教版数学课件
![5-2-2平行线的判定-七年级下册人教版数学课件](https://img.taocdn.com/s3/m/4b5c9235a66e58fafab069dc5022aaea998f419e.png)
课堂练习
1.如图5.2-35,己知∠1=145°,∠2=145°,则AB∥CD,依据是 _同___位__角__相__等___,__两__直__线___平__行___.
图5.2-35
课堂练习
2.如图5.2-36 是一条街道的两个拐角,∠ABC与∠BCD均为140°,则 街道AB与CD的关系是_________,这是因___________________.
中考在线 考点:平行线的判定
【例1】如图5.2-27,下列说法错误的是( C ).
A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥c
C.若∠3=∠2,则b∥c
D.若∠3+∠5=180°,则a∥c
知识梳理
图5.2-27
【解析】根据平行线的判定进行判断:A.若a∥b,b∥c,则a∥c,利用了 平行公理,正确;B.若∠1=∠2,则a∥c,利用了内错角相等,两直线平行, 正确;C.∠3=∠2,不能判断b∥c,错误;D.若∠3+∠5=180°,则a∥c,利 用同旁内角互补,两直线平行,正确;故选C.
【答案】证明:∵AB⊥BC,BC⊥CD, ∴∠ABC=∠DCB=90°,∵∠1=∠2, ∴∠ABC-∠1=∠DCB-∠2, ∴∠CBE=∠BCF,∴BE∥CF.
图5.2-51
课后习题
9.如图5.2-52所示,已知∠1=50°,∠2=65°,CD平分∠ECF,则 CD∥FG.请说明理由.
图5.2-52
第5章 相交线与平行线
5.2.2 平行线的判定
教学新知
方法1:平行线的定义. 方法2:两条直线都与第三条直线平行,那么这两条直线也平行. 方法3:同位角相等,两直线平行. 方法4:内错角角相等,两直线平行. 方法5:同旁内角互补,两直线平行.
【大单元教学】初中数学人教版七年级下册5.2.2 平行线的判定(教学课件)
![【大单元教学】初中数学人教版七年级下册5.2.2 平行线的判定(教学课件)](https://img.taocdn.com/s3/m/980ea222c4da50e2524de518964bcf84b9d52dc4.png)
那内错角满足什么样的关系也可以推导出两直线平行呢?
如图,已知∠2=∠3,求α∥b
1
3
∵∠2=∠3,∠1=∠3 ∴∠1=∠2 ∴α∥b(同位角相等,两直线平行)
a
2 b
总结归纳
平行线的判定方法2:两条直线被第三条直线所截 ,如果内错角相 等,那么这两条直线平行.
简记:内错角相等,两直线平行.
几何叙述: ∵∠2=∠3(已知)
【详解】解:A、a// b,b//c,则a//c,根据平行于同一直线的 两条直线互相平行,选项正确,符合题意; B、a⊥b,b⊥c,则a//c,根据同一平面内垂直于同一直线的两条 直线互相平行,选项错误,不符合题意; C、a//b,b⊥c,则a⊥c,选项错误,不符合题意; D、a⊥b,b//c,则a⊥c,选项错误,不符合题意; 故选:A.
2.如图,点E在AB的延长线上,下列条件中能判断AD∥BC的是( )
A.∠2=∠3 C.∠C=∠CBE
B.∠1=∠4 D.∠C+∠ABC=180°
【详解】解:由∠1=∠4,可得AD∥BC; 由∠2=∠3或∠C=∠CBE或∠C+∠ABC=180°, 可得AB∥CD, 故选:B.
3.下列说法正确的是( )
知识点一 同位角相等,两直线平行 思考 (1)刚才的推平行线法可以看作是怎样的图形变换? (2)在画图过程中,有没有始终相等的角? (3)直线a,b位置关系如何?
A a
1
b
2
总结归纳
平行线的判定方法1:两条直线被第三条直线所截 ,如果同位角相 等,那么这两条直线平行.
简记:同位角相等,两直线平行.
例5 如图,E是AB上一点,F是DC上一点,G是BC延长线
上一点.
(1)如果∠B=∠DCG,可以判断哪两条直线平行? 为什么?
如图,已知∠2=∠3,求α∥b
1
3
∵∠2=∠3,∠1=∠3 ∴∠1=∠2 ∴α∥b(同位角相等,两直线平行)
a
2 b
总结归纳
平行线的判定方法2:两条直线被第三条直线所截 ,如果内错角相 等,那么这两条直线平行.
简记:内错角相等,两直线平行.
几何叙述: ∵∠2=∠3(已知)
【详解】解:A、a// b,b//c,则a//c,根据平行于同一直线的 两条直线互相平行,选项正确,符合题意; B、a⊥b,b⊥c,则a//c,根据同一平面内垂直于同一直线的两条 直线互相平行,选项错误,不符合题意; C、a//b,b⊥c,则a⊥c,选项错误,不符合题意; D、a⊥b,b//c,则a⊥c,选项错误,不符合题意; 故选:A.
2.如图,点E在AB的延长线上,下列条件中能判断AD∥BC的是( )
A.∠2=∠3 C.∠C=∠CBE
B.∠1=∠4 D.∠C+∠ABC=180°
【详解】解:由∠1=∠4,可得AD∥BC; 由∠2=∠3或∠C=∠CBE或∠C+∠ABC=180°, 可得AB∥CD, 故选:B.
3.下列说法正确的是( )
知识点一 同位角相等,两直线平行 思考 (1)刚才的推平行线法可以看作是怎样的图形变换? (2)在画图过程中,有没有始终相等的角? (3)直线a,b位置关系如何?
A a
1
b
2
总结归纳
平行线的判定方法1:两条直线被第三条直线所截 ,如果同位角相 等,那么这两条直线平行.
简记:同位角相等,两直线平行.
例5 如图,E是AB上一点,F是DC上一点,G是BC延长线
上一点.
(1)如果∠B=∠DCG,可以判断哪两条直线平行? 为什么?
《平行线的判定》精品ppt课件
![《平行线的判定》精品ppt课件](https://img.taocdn.com/s3/m/7eb5eafbb1717fd5360cba1aa8114431b90d8ef7.png)
A
B
C
D
E
F
பைடு நூலகம்
1
3
2
∠1 +∠2=180°(已知), ∠2 +∠3=180°(邻补角互补),
∠1 =∠3(同角的补角相等).
AB∥CD
(同位角相等,两直线平行).
∵ ∠4+∠7=180 °(已知) ∠4+∠1=180°(邻补角的定义)
∴ ∠7=∠1(同角的补角相等)
∴ AB∥CD(内错角相等, 两直线平行)
思考:
下图中,如果∠1=∠7,能得出AB∥CD吗? 写出你的推理过程
∵∠1=∠7 ∠1=∠3
∴ ∠7=∠3
∴ AB∥CD
B
1
A
C
D
F
3
7
E
( )
已知
( )
对顶角相等
( )
等量代换
( )
C.∠4+∠5=180° D.∠2+∠4=180°
B
达标检测 反思目标
2.如图,BE是AB的延长线。由∠CBE=∠A可以判定____∥___根据是________________________由∠CBE=∠C可以判定___∥____根据是___________________________
解:根据∠OEB+∠EOD=180°得到 AB∥CD
上交作业:课本15—16 页 第4、7 题
课后作业
·
A
B
P
还记得如何用三角板和直尺画平行线吗?
一放、二靠、三推、四画。
从画图过程,三角板起到什么作用?
C
D
1
2
两条直线被第三条直线所截, 如果同位角相等,那么这两条直线平行.
B
C
D
E
F
பைடு நூலகம்
1
3
2
∠1 +∠2=180°(已知), ∠2 +∠3=180°(邻补角互补),
∠1 =∠3(同角的补角相等).
AB∥CD
(同位角相等,两直线平行).
∵ ∠4+∠7=180 °(已知) ∠4+∠1=180°(邻补角的定义)
∴ ∠7=∠1(同角的补角相等)
∴ AB∥CD(内错角相等, 两直线平行)
思考:
下图中,如果∠1=∠7,能得出AB∥CD吗? 写出你的推理过程
∵∠1=∠7 ∠1=∠3
∴ ∠7=∠3
∴ AB∥CD
B
1
A
C
D
F
3
7
E
( )
已知
( )
对顶角相等
( )
等量代换
( )
C.∠4+∠5=180° D.∠2+∠4=180°
B
达标检测 反思目标
2.如图,BE是AB的延长线。由∠CBE=∠A可以判定____∥___根据是________________________由∠CBE=∠C可以判定___∥____根据是___________________________
解:根据∠OEB+∠EOD=180°得到 AB∥CD
上交作业:课本15—16 页 第4、7 题
课后作业
·
A
B
P
还记得如何用三角板和直尺画平行线吗?
一放、二靠、三推、四画。
从画图过程,三角板起到什么作用?
C
D
1
2
两条直线被第三条直线所截, 如果同位角相等,那么这两条直线平行.
人教版七年级数学下册《5.2.2 平行线的判定》课件ppt
![人教版七年级数学下册《5.2.2 平行线的判定》课件ppt](https://img.taocdn.com/s3/m/eedf2d1a30b765ce0508763231126edb6e1a7663.png)
∴AB∥CD.
1.如图所示,直线a,b被c所截,现给出下列四个条件:
①∠1=∠5;②∠3+∠6=180°;③∠2+∠3=180°;
④∠4=∠5.其中能判定a//b的条件有序号是( A )
A.①②
B.①③
C.①④
D.③④
2.如图,下列条件中,能判断直线.l1//l2的是( B )
A.∠2=∠3
B.∠1=∠3
∴ CD∥EF (同位角相等,两直线平行)
两条直线被第三条直线所截,同时得到同位角、内错角和同旁内
角. 由同位角相等,可以判定两条直线平行,那么,能否利用内错角,或
同旁内角来判定两直线平行呢?
(1) 内错角满足什么关系时?两直线
会平行?
(2) 同旁内角满足什么关系时?两直
线会平行?
如图,由3=2,可推出a∥b吗?
∵AB⊥EF,CD⊥EF,
∴∠ABE=∠CDE=90°(垂直的定义),
∵∠1=∠2,
∴∠ABE-∠1=∠CDE-∠2,
即∠MBE=∠NDE,
∴ ∥ (同位角相等,两直线平行).
已知:如图,CF平分∠ACM,∠1=72°,∠2=36°,判断CM与DN是否平
行,并说明理由.
解:CM∥DN
∵CF平分∠ACM
AB CE
7.如图,∠B=∠3,则____//_____,根据的是__________________________;
内错角相等,两直线平行
若∠2=∠A,则____//_____,根据的是_______________________________;
AB CE
内错角相等,两直线平行
若∠2=∠E,则____//_____,根据的是_______________________________;
七年级数学5.2.2平行线的判定PPT课件
![七年级数学5.2.2平行线的判定PPT课件](https://img.taocdn.com/s3/m/4abfc50dbf23482fb4daa58da0116c175f0e1eef.png)
如图:B= D=45°, C=135°,
问图中有哪些直线平行?
A
D
答:AB//CD,AD//BC B
C
∵ B=45°(已知)
C=135°(已知) B+ C=180° AB//CD(同旁内角互补,两直线平行) 同理:AD//BC
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
纸条,
(点阵中相邻的四个点构成正方形).
E
G
A
B
C
D
F
H
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
画平行线的事 实
同位角相等, 两直线平行。
同旁内角互补, 两直线平行。
内错角相等, 两直线平行。
判定方法3 两条直线被第三条直线所截,如果 同旁内角互补,那么这两条直线平行
简单说成:同旁内角互补,两直线平行
1a
几何语言: ∵∠1+∠4=1800(已知)
3
4
2b
∴a∥b(同旁内角互补,两直线平行)
想一想 经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用
简记为“垂直于同一直线的两直线平行”。
∵ a⊥b,a⊥c(已知) ∴ b//c(垂直于同一直线的两条直线平行)
a
1
c
2
b
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
5.2.2平行线的判定
![5.2.2平行线的判定](https://img.taocdn.com/s3/m/bd999d0784254b35effd346b.png)
75o 1 3
2 105 (已知)
54 C
D5 105 (等量代换)
2 105o
F
1 75(已知)
1 5 180
AB // C精D品(课件同旁内角互补,两直线平13行)
试一试
有一块木板,身边只有直尺和量 角器,我们怎样才能知道它上下边缘 是否平行?
精品课件
14
方案1:
90
180 180
90
1
G R E A T 。PROTRACTOR
40°
0 0
40°
2
G R E A T 。PROTRACTOR
精品课件
15
方案2:
180
0
90
G R E A T 。PROTRACTOR
180
0
90 40°
1
2
G R E A T 。PROTRACTOR
40°
精品课件
16
方案3:
180
0
90
G R E A T 。PROTRACTOR
精品课件
9
解法3:理由是: ∵ b⊥a,c⊥a(已知)
b1 2c a
∴∠1=∠2=90°(垂直定义)
∴ ∠1+∠2=180°
∴b∥c(同旁内角互补,两直线平行)
精品课件
10
结论 在同一平面内,如果两条直线都垂直
于同一条直线,那么这两条直线平行
简说为:平面内,垂直于同一条直线的两 条直线平行.
b
c
吗?为什么?
答:平面内,垂直于同一条直线的两条直线平行.
解法1:理由如下:
∵b⊥a ,c ⊥a (已知)
bc
∴∠1= ∠2 = 90°(垂直的定义) a
5.2.2平行线的判定课件
![5.2.2平行线的判定课件](https://img.taocdn.com/s3/m/c68ada915122aaea998fcc22bcd126fff7055dd6.png)
理解运用
2.如果∠213 =∠524 , 能判定哪
两条直线平行?
E
G
1 A
3 2 C
F
B 4 5
D
H
如图,已知∠1=∠2,AB与CD平行
吗?为什么?
E
C
D
∠1 =∠2(已知),
∠2 =∠3(对顶角相等)A,
B
∠1 =∠3.(等量代换)
F
AB∥CD (同位角相等,两直线平行).
平行线的判定方法2
•
• 6.如图3所示,能判断AB∥CE的条件是( )
• A.∠A=∠ACE B.∠A=∠ECD C.∠B=∠BCA
D.∠B=∠ACE
A
E
B
CD
•
(3)
• 7.下列说法错误的是( )
• A.同位角不一定相等 B.内错角都相等
• C.同旁内角可能相等 D.同旁内角互补,两直线 平行
• 8.不相邻的两个直角,如果它们有一边在同一直线上, 那么另一边相互( )
(1)平面内两条直线的位置关系有几种?
相交与平行
(2)怎样过已知直线外一点画已知直线 的平行线?
位角注相两意等条两观,直直察那线我线!么被们平这如第能行两三得的何条条到方直刚板画直一法才起线线个吗平的着平所判?画什行行截定法么. 中作,线如,用果三??同角
b
.P
2
∠1与∠2具有什么样
的位置关系?
a 1
(A)AD//BC (B)AB//CD
A
D
1
(C)AD//EF (D)EF//BC E 2
F
B
C
应用练习
3.如图所示,直线 a ,b 被直线 c 所截,现给
5.2.2 平行线的判定(共38张PPT)
![5.2.2 平行线的判定(共38张PPT)](https://img.taocdn.com/s3/m/205fea174a7302768e9939c7.png)
一定要先知道由 哪两条直线被哪 条直线所截呦!
试一试 猜一猜
如图,三根木条相交成∠1 , ∠2,固定木条b、c,转动木 条a , 观察∠1, ∠2满足什么条 件时直线a与b平行.
当∠1>∠2时
当∠1=∠2时
当∠1<∠2时
①直线a和b不平行 ②直线a∥b
③直线a和b不平行
当∠1=∠2时 直线a∥b
一般地,判断两直线平行有下面的方法: 两条直线被第三条直线所截 ,如果同旁内角 互补, 那么这两条直线平行.
平行线判定方法3:同旁内角互补,
两直线平行。
探究三、平行线判定方法3: 几何语言表述:
E A C 4 F 3 2 1 B D
∵∠3+∠4=180°(已知) ∴AB∥CD(同旁内角互补,两条直线平行)
思考:
两条直线被第三条直线所截,同时得 到同位角、内错角和同旁内角,由同位 角相等可以判定两直线平行,那么,能 否利用内错角和同旁内角来判定两直线 平行呢?
探究二、平行线判定方法2:
(2)由3= 2,可推出a//b吗?如何推出?
写出你的推理过程
c
解:
1=3(已知) 3 3= 2(对顶角相等) 1= 2 a//b(同位角相等,两直线平行)
a 2 3 1 b
6.直线ab被直线c所截,给出下列条件:
(1)∠1=∠2; (2)∠3=∠6;
(3)∠4=∠1; (4)∠6+∠7=180°。
其中能识别ab的条件序号是 (1)(2)(4) 。
5 a
6 b 8 4 7 2
c 1
3
A
1 B
3 4 5
D
7.如图
2
C
(1)从∠1=∠4,可以推出 AB ∥ CD , 理由是 内错角相等,两直线平行 (3)从∠ 2 =∠ 3 ,可以推出AD∥BC, 理由是 内错角相等,两直线平行 理由是 同旁内角互补,两直线平行 (4)从∠5=∠ ABC ,可以推出AB∥CD, 理由是 同位角相等,两直线平行 。 (2)从∠ABC +∠ BCD =180,可以推出AB∥CD , 。 。 。
七年级数学下册教学课件《5.2.2平行线的判定》
![七年级数学下册教学课件《5.2.2平行线的判定》](https://img.taocdn.com/s3/m/8aaee8f7dc88d0d233d4b14e852458fb770b38f9.png)
第3题图
第 4 题图
第 5 题图
5.如图,能判定 AB∥CD 的条件有___①①③③④④ ___.(填序号)
①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.
当堂检测
6.如图所示,∠B=∠C,∠DEF=∠A.试问CD与EF平行吗?为什么? 解:CD∥EF.理由:∵∠B=∠C,∴AB∥CD(内错角相等,两直线平行). ∵∠DEF=∠A,∴EF∥AB(同位角相等,两直线平行). ∴CD∥EF(平行于同一条直线的两条直线平行).
方法二:∵∠1+∠4=180°(平角定义), ∵∠1+∠2=180°(已知),∴∠2=∠4(同角的 补角相等),∴a∥b(内错角相等,两直线平行).
预习成果
1.如图1,∠C=60°,当∠ABE= 60° 时,就能使 BE∥CD.根据 同位角相等,两直线平行 . 2.如图2,∠1=120°,∠2=60°,问a与b的位置关系? 3.如图3,直线CD、EF被直线AB所截. (1)量得∠3=120°,∠4=120°,就可以判定 CD ∥ EF , 根据 内错角相等,两直线平行 . (2)量得∠1=60°,∠3=120°,就可以判定 CD ∥ EF , 根据 同旁内角互补,两直线平行 .
巩固例题
【例 2】如图,BE平分∠ABD,DE平分∠BDC,且 ∠1+∠2=90°. 求证:AB∥CD. 解:∵BE平分∠ABD,DE平分∠BDC(已知), ∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义). ∵∠1+∠2=90°, ∴∠ABD+∠BDC=2(∠1+∠2)=180°. ∴AB∥CD(同旁内角互补,两直线平行).
②当∠2+∠3=180°时,a∥b.证明: ∵∠2+∠4=180°,∠3+∠6=180°(平角定义), ∴∠2+∠4+∠3+∠6=360°,∵∠2+∠3=180° ∴∠4+∠6=180°∴a∥b(同旁内角互补,两直线平行).
七年级数学下册人教版课件 5.2.2平行线的判定
![七年级数学下册人教版课件 5.2.2平行线的判定](https://img.taocdn.com/s3/m/c4301aac5acfa1c7ab00cc57.png)
课堂导入
根据平行线的定义,如果同一平面内的两条直线不相交, 就可以判定这两条直线平行.但是,由于直线无限延伸, 检验它们是否相交有困难,难以直接根据两条直线是否 相交来判断两条直线是否平行,那么有没有其他判定方 法呢?
新知探究
知识点1:利用同位角判定两条直线平行
我们已经学习过用三角尺和直尺画平行线的方法.
∴a∥b.(同旁内角互补,两直线平行)
c 3a 1
2 b
新知探究
归纳 在平行线的判定中,同位角、内错角、同旁内角是针 对两个角的位置而言的,相等或互补是针对两个角的 大小而言的,所以使用上述三种判定方法判定两直线 平行时,可先找出同位角、内错角或同旁内角,再根 据角之间的相等或互补关系判定两直线平行.
∴ 1=2. ∴ a//b.(同位角相等,两直线平行)
c
1
a
3
2 b
新知探究
判定方法2:两条直线被第三条直线所截,如果内错角 相等,那么这两条直线平行.
简单说成:内错角相等,两直线平行.
应用格式: ∵∠3=∠2,(已知)
∴a∥b.(内错角相等,两直线平行)
c
1
a
3
2 b
新知探究
如图,如果1+2=180° ,你能判定 a//b 吗?
1.落 2.靠 3.推 4.画
新知探究
在画图过程中,什么角始终保持相等? A a 1
b 2
B 直线 a,b 位置关系如何?
新知探究
A
1
l2
2 l1
B
由上面的操作过程,你能发现判定两直线平行 的方法吗?
新知探究
判定方法1:两条直线被第三条直线所截,如果同位角相等, 那么这两条直线平行. 简单说成:同位角相等,两直线平行.
七年级数学下册教学课件《平行线的判定》
![七年级数学下册教学课件《平行线的判定》](https://img.taocdn.com/s3/m/f7d66f716fdb6f1aff00bed5b9f3f90f77c64d16.png)
1.如图,直线AB,CD被直线EF所截,∠1=55°,下列条件
中能判定AB//CD的是( C )
A.∠2=35° B.∠2=45° C.∠2=55° D.∠2=125°
2.如图,若∠1=∠2,则 _A_B__//_D__E_;若∠2=∠3, 则_B__C_∥__E_F_.
问题3 能否利用内错角,或同旁内角来判定两条直线
同一个平面内,两条直线 不__相__交___
同__位__角__相__等__,两直线平行
内__错__角__相__等__,两直线平行
同__旁__内__角__互__补__,两直线平行
作业布置 1.教材P15习题5.2第1,2,4,5题.
(1)由∠CBE=∠A可以判定哪两条直线平行?
根据是什么?
D
C
答:(1)AD∥BC,根据是
“同位角相等,两直线平行”;
A
B
E
(2)由∠CBE=∠C可以判定哪两条直线平行? 根据是什么?
D
(2)DC∥AB,根据是“内
错角相等,两直线平行”;
A
C
B
E
知识结构
随堂训练,课堂总结
平行线的 判定
定义法 判定方法
总结
判定方法2:两条直线被第三条直线所截,如果 内错角相等,那么这两条直线平行. 简单说成:内错角相等,两直线平行.
c 3
a
2 b
符号语言: 因为∠2=∠3 , 所以 a∥b.
对应训练
1.如图是一条街道的两个拐角,若∠ABC与∠BCD均 为140°,则街道AB与CD的位置关系是__A_B__//_C_D__.
例 (1)如图,当∠1=∠3时,直线a,b平行吗? (2)当∠2+∠3=180°时,直线a,b平行吗? 为什么?
中能判定AB//CD的是( C )
A.∠2=35° B.∠2=45° C.∠2=55° D.∠2=125°
2.如图,若∠1=∠2,则 _A_B__//_D__E_;若∠2=∠3, 则_B__C_∥__E_F_.
问题3 能否利用内错角,或同旁内角来判定两条直线
同一个平面内,两条直线 不__相__交___
同__位__角__相__等__,两直线平行
内__错__角__相__等__,两直线平行
同__旁__内__角__互__补__,两直线平行
作业布置 1.教材P15习题5.2第1,2,4,5题.
(1)由∠CBE=∠A可以判定哪两条直线平行?
根据是什么?
D
C
答:(1)AD∥BC,根据是
“同位角相等,两直线平行”;
A
B
E
(2)由∠CBE=∠C可以判定哪两条直线平行? 根据是什么?
D
(2)DC∥AB,根据是“内
错角相等,两直线平行”;
A
C
B
E
知识结构
随堂训练,课堂总结
平行线的 判定
定义法 判定方法
总结
判定方法2:两条直线被第三条直线所截,如果 内错角相等,那么这两条直线平行. 简单说成:内错角相等,两直线平行.
c 3
a
2 b
符号语言: 因为∠2=∠3 , 所以 a∥b.
对应训练
1.如图是一条街道的两个拐角,若∠ABC与∠BCD均 为140°,则街道AB与CD的位置关系是__A_B__//_C_D__.
例 (1)如图,当∠1=∠3时,直线a,b平行吗? (2)当∠2+∠3=180°时,直线a,b平行吗? 为什么?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脚踏实地过好每一天,最简单的恰恰是最难的。拿梦想去拼,我怎么能输。只要学不死,就往死里学。我会努力站在万人中央成为别人的光。行为决定性格, 性格决定命运。不曾扬帆,何以至远方。人生充满苦痛,我们有幸来过。如果骄傲没有被现实的大海冷冷拍下,又怎么会明白要多努力才能走到远方。所有的 豪言都收起来,所有的呐喊都咽下去。十年后所有难过都是下酒菜。人生如逆旅,我亦是行人。驾驭命运的舵是奋斗,不抱有一丝幻想,不放弃一点机会,不 停止一日努力。失败时郁郁寡欢,这是懦夫的表现。所有偷过的懒都会变成打脸的巴掌。越努力,越幸运。每一个不起舞的早晨,都是对生命的辜负。死鱼随 波逐流,活鱼逆流而上。墙高万丈,挡的只是不来的人,要来,千军万马也是挡不住的既然选择远方,就注定风雨兼程。漫漫长路,荆棘丛生,待我用双手踏 平。不要忘记最初那颗不倒的心。胸有凌云志,无高不可攀。人的才华就如海绵的水,没有外力的挤压,它是绝对流不出来的。流出来后,海绵才能吸收新的 源泉。感恩生命,感谢她给予我们一个聪明的大脑。思考疑难的问题,生命的意义;赞颂真善美,批判假恶丑。记住精彩的瞬间,激动的时刻,温馨的情景, 甜蜜的镜头。感恩生命赋予我们特有的灵性。善待自己,幸福无比,善待别人,快乐无比,善待生命,健康无比。一切伟大的行动和思想,都有一个微不足道 的开始。在你发怒的时候,要紧闭你的嘴,免得增加你的怒气。获致幸福的不二法门是珍视你所拥有的、遗忘你所没有的。骄傲是胜利下的蛋,孵出来的却是 失败。没有一个朋友比得上健康,没有一个敌人比得上病魔,与其为病痛暗自流泪,不如运动健身为生命添彩。有什么别有病,没什么别没钱,缺什么也别缺 健康,健康不是一切,但是没有健康就没有一切。什么都可以不好,心情不能不好;什么都可以缺乏,自信不能缺乏;什么都可以不要,快乐不能不要;什么 都可以忘掉,健身不能忘掉。选对事业可以成就一生,选对朋友可以智能一生,选对环境可以快乐一生,选对伴侣可以幸福一生,选对生活方式可以健康一生。 含泪播种的人一定能含笑收获一个有信念者所开发出的力量,大于个只有兴趣者。忍耐力较诸脑力,尤胜一筹。影响我们人生的绝不仅仅是环境,其实是心态 在控制个人的行动和思想。同时,心态也决定了一个人的视野、事业和成就,甚至一生。每一发奋努力的背后,必有加倍的赏赐。懒惰像生锈一样,比操劳更 消耗身体。所有的胜利,与征服自己的胜利比起来,都是微不足道。所有的失败,与失去自己的失败比起来,更是微不足道挫折其实就是迈向成功所应缴的学 费。在这个尘世上,虽然有不少寒冷,不少黑暗,但只要人与人之间多些信任,多些关爱,那么,就会增加许多阳光。一个能从别人的观念来看事情,能了解 别人心灵活动的人,永远不必为自己的前途担心。当一个人先从自己的内心开始奋斗,他就是个有价值的人。没有人富有得可以不要别人的帮助,也没有人穷 得不能在某方面给他人帮助。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。不要总在过去的回忆里缠绵,昨天的太阳,晒不干今天的衣裳。今天做别人不 愿做的事,明天就能做别人做不到的事。到了一定年龄,便要学会寡言,每一句话都要有用,有重量。喜怒不形于色,大事淡然,有自己的底线。趁着年轻, 不怕多吃一些苦。这些逆境与磨练,才会让你真正学会谦恭。不然,你那自以为是的聪明和藐视一切的优越感,迟早会毁了你。无论现在的你处于什么状态, 是时候对自己说:不为模糊不清的未来担忧,只为清清楚楚的现在努力。世界上那些最容易的事情中,拖延时间最不费力。崇高的理想就像生长在高山上的鲜 花。如果要搞下它,勤奋才能是攀登的绳索。行动是治愈恐惧的良药,而犹豫、拖延将不断滋养恐惧。海浪的品格,就是无数次被礁石击碎又无数闪地扑向礁 石。人都是矛盾的,渴望被理解,又害怕被看穿。经过大海的一番磨砺,卵石才变得更加美丽光滑。生活可以是甜的,也可以是苦的,但不能是没味的。你可
l
2
∵ ∠2+∠3=180°
3
∠2=135°(已知)
∴∠3=180°-∠2=45°(等式的性质)
1 a
b
∵∠1=45°(已知) ∴∠1=∠3 (等量代换)
∴a∥b(同位角相等,两直线平行)
2
判断下列说法是否正确: (1)∠1=45°,∠2=45°,所以∠1=∠2,理由是等式的性质 错 (2)∠1=45°,∠2=50°,所以∠1+∠2=95°,理由是等式的性质 (3)对∠a=∠c,∠b=∠c,所以∠a=∠b,理由是等量代换 (4)∠AOB=60°,所以2∠AOB=2x60°=120°,理由是等量代对换
①同位角相等,两直线平行 ②内错角相等,两直线平行 ③同旁内角互补,两直线平行
作业:同步练习册5.2 (二)(三)
④同一平面内,垂直于同一直线的两直线平行
⑤平行于同一直线的两直线平行
当你的才华还撑不起你的野心时,你就该努力。心有猛虎,细嗅蔷薇。我TM竟然以为我竭尽全力了。能力是练出来的,潜能是逼出来的,习惯是养成的,我的 成功是一步步走出来的。不要因为希望去坚持,要坚持的看到希望。最怕自己平庸碌碌还安慰自己平凡可贵。
l
3
1
2
a
b
12
已知直线a,b被l所截,如图,∠1=110°,∠2=70°。试判断a与 b是否平行.并说明理由.
平行线判定方法三:同旁内角 互补,两直线平行
符号表示:∵∠1+∠2=180° ∴a∥b
a
1 2
3
b
l
2
教材P172读一读
演绎 推理
推理
归纳 推理
一般 特殊 特殊 一般
12
例2:在四边形ABCD中,∠B=50°,∠C=130°,AB与CD平行吗?
∴a∥b
ቤተ መጻሕፍቲ ባይዱ
2
随堂练习1:已知直线a,b被l所截,如图,∠1=50°,∠2=
50°,试判断直线a与b是否平行.并说明理由.
l
1
2
a
∵ ∠1=50°,∠2=50° (已知)
b
∴ a∥b(同位角相等,两直线平行)
2
随堂练习2:已知直线a,b被l所截,如图,∠1=45°,∠2=
135°,试判断直线a与b是否平行.并说明理由.
5.2.2 平行线的判定
学习目标: • 能灵活运用平行线的三个判定方法解决简单
问题 • 初步应用推理格式解答问题
1
(1)平面内两条直线的位置关系有几种? (2)怎样过已知直线外一点画已知直线的平行线?
一放,二靠,三推,四画
12
平行线判定方 法一:同位角 相等,两直线 平行
1·
b
a 2
l
符号表示:∵∠1=∠2
AD与BC平行吗?
D A
B
C
12
如图,在同一平面内,直线CD、EF均与直线AB垂直, D、F为垂足。试判断CD与EF是否平行。
平行线判定方法四:
在同一平面内,垂
直于同一直线的两 直线平行
A
CE
DF
B
3
1.在下列解答中,填上适当的理由:
(1)∵∠B=∠1(已知) ∴AD∥BC( (2)∵∠D=∠1(已知)
错
2
已知直线a,b被l所截,如图,∠2=∠3,试判断直线a与b是否平
行.并说明理由.
l
∵ ∠2=∠3, ∠1与∠3是对顶角(已知)
∴∠1=∠3(对顶角相等)
∴ ∠1=∠2 (等量代换) ∴ a∥b (同位角相等,两直线平行)
3
1
2
a
b
2
平行线判定方法二:内错角相 等,两直线平行
符号表示:∵∠2=∠3 ∴a∥b
)
1 A
D
∴AB∥CD(
)
B
C
3
2.在下列解答中,填空: (1)∵∠BAD+∠ABC=180°(已知) ∴( )∥( )(同旁内角互补,两直线 平行 ) (2)∵∠BCD+∠ABC=180°(已知) ∴( )∥( )(同旁内角互补,两直线 平行 )
A
D
B
C
34
谈谈本节课你有哪些收获。
一、平行线判定的五种方法 二、推理格式的规范书写
l
2
∵ ∠2+∠3=180°
3
∠2=135°(已知)
∴∠3=180°-∠2=45°(等式的性质)
1 a
b
∵∠1=45°(已知) ∴∠1=∠3 (等量代换)
∴a∥b(同位角相等,两直线平行)
2
判断下列说法是否正确: (1)∠1=45°,∠2=45°,所以∠1=∠2,理由是等式的性质 错 (2)∠1=45°,∠2=50°,所以∠1+∠2=95°,理由是等式的性质 (3)对∠a=∠c,∠b=∠c,所以∠a=∠b,理由是等量代换 (4)∠AOB=60°,所以2∠AOB=2x60°=120°,理由是等量代对换
①同位角相等,两直线平行 ②内错角相等,两直线平行 ③同旁内角互补,两直线平行
作业:同步练习册5.2 (二)(三)
④同一平面内,垂直于同一直线的两直线平行
⑤平行于同一直线的两直线平行
当你的才华还撑不起你的野心时,你就该努力。心有猛虎,细嗅蔷薇。我TM竟然以为我竭尽全力了。能力是练出来的,潜能是逼出来的,习惯是养成的,我的 成功是一步步走出来的。不要因为希望去坚持,要坚持的看到希望。最怕自己平庸碌碌还安慰自己平凡可贵。
l
3
1
2
a
b
12
已知直线a,b被l所截,如图,∠1=110°,∠2=70°。试判断a与 b是否平行.并说明理由.
平行线判定方法三:同旁内角 互补,两直线平行
符号表示:∵∠1+∠2=180° ∴a∥b
a
1 2
3
b
l
2
教材P172读一读
演绎 推理
推理
归纳 推理
一般 特殊 特殊 一般
12
例2:在四边形ABCD中,∠B=50°,∠C=130°,AB与CD平行吗?
∴a∥b
ቤተ መጻሕፍቲ ባይዱ
2
随堂练习1:已知直线a,b被l所截,如图,∠1=50°,∠2=
50°,试判断直线a与b是否平行.并说明理由.
l
1
2
a
∵ ∠1=50°,∠2=50° (已知)
b
∴ a∥b(同位角相等,两直线平行)
2
随堂练习2:已知直线a,b被l所截,如图,∠1=45°,∠2=
135°,试判断直线a与b是否平行.并说明理由.
5.2.2 平行线的判定
学习目标: • 能灵活运用平行线的三个判定方法解决简单
问题 • 初步应用推理格式解答问题
1
(1)平面内两条直线的位置关系有几种? (2)怎样过已知直线外一点画已知直线的平行线?
一放,二靠,三推,四画
12
平行线判定方 法一:同位角 相等,两直线 平行
1·
b
a 2
l
符号表示:∵∠1=∠2
AD与BC平行吗?
D A
B
C
12
如图,在同一平面内,直线CD、EF均与直线AB垂直, D、F为垂足。试判断CD与EF是否平行。
平行线判定方法四:
在同一平面内,垂
直于同一直线的两 直线平行
A
CE
DF
B
3
1.在下列解答中,填上适当的理由:
(1)∵∠B=∠1(已知) ∴AD∥BC( (2)∵∠D=∠1(已知)
错
2
已知直线a,b被l所截,如图,∠2=∠3,试判断直线a与b是否平
行.并说明理由.
l
∵ ∠2=∠3, ∠1与∠3是对顶角(已知)
∴∠1=∠3(对顶角相等)
∴ ∠1=∠2 (等量代换) ∴ a∥b (同位角相等,两直线平行)
3
1
2
a
b
2
平行线判定方法二:内错角相 等,两直线平行
符号表示:∵∠2=∠3 ∴a∥b
)
1 A
D
∴AB∥CD(
)
B
C
3
2.在下列解答中,填空: (1)∵∠BAD+∠ABC=180°(已知) ∴( )∥( )(同旁内角互补,两直线 平行 ) (2)∵∠BCD+∠ABC=180°(已知) ∴( )∥( )(同旁内角互补,两直线 平行 )
A
D
B
C
34
谈谈本节课你有哪些收获。
一、平行线判定的五种方法 二、推理格式的规范书写