第四章 系统的频率特性分析

合集下载

控制工程基础第4章控制系统的频率特性

控制工程基础第4章控制系统的频率特性

插值计算可大致确定闭环截止频率为 b
=1.3rad/s。
非单位反馈系统的闭环频率特性
对于非单位反馈系统,其闭环频率特性可
写为
X X
o i
j j
1
G j G j H
j
H
1
j
1
G j H j G j H j
在求取闭环频率特性时,在尼柯尔斯图上画
出 G j H j 的轨迹,由轨迹与M轨线和N轨
频域法是一种工程上广为采用的分析 和综合系统间接方法。另外,除了电路 与频率特性有着密切关系外,在机械工 程中机械振动与频率特性也有着密切的 关系。机械受到一定频率作用力时产生 强迫振动,由于内反馈还会引起自激振 动。机械振动学中的共振频率、频谱密 度、动刚度、抗振稳定性等概念都可归 结为机械系统在频率域中表现的特性。 频域法能简便而清晰地建立这些概念。
如果M=1,由式(4.26)可求得X=-1/2,即为
通过点(-1/2,0)且平行虚轴的直线。
如果M≠1,式(4.26)可化成
X
M M2
2
2
1
Y
2
M2 M 2 1 2
(4.27)
该式就是一个圆的方程,其圆心为
M2
,半径为 M 。如下图。
[
M
2
, 1
j0]
M 2 1
在复平面上,等M轨迹是一族圆,对于给定 的M值,可计算出它的圆心坐标和半径。下 图表示的一族等M圆。由图上可以看出,当 M>1时,随着M的增大M圆的半径减小,最后 收敛于点(-1,j0)。当M<1时,随着M的 减小M圆的半径亦减小,最后收敛于点 ( 0 , j0)。M=1 时 , 其 轨 迹 是 过 点 ( 1/2,j0)且平行于虚轴的直线。

自动控制原理与系统控制系统的频率特性

自动控制原理与系统控制系统的频率特性

如图4-6所示。
12
四、惯性环节 传递函数 : G(s) C(s) 1
R(s) Ts 1
频率特性 : G( j) C( j) 1
R( j) jT 1
对数频率特性 : L() 20lg
1
20lg
(T)2 1
(T)2 1
Bode图 : arctanT
▪对数幅频特性L(ω)是一条曲线,逐点描绘很烦琐,通常采用近似的 绘制方法,用两条渐进线近似表示.
(极坐标表示法)
U () jV ()
(直角坐标表示法)
(A指(数表)e示j法 ())
图4-2
A() G(j) U 2 () V 2 ()
() G( j) arctan 1 V () U ()
6
例4-1 写出惯性环节的幅频特性、相频特性和频率特性。
解:惯性环节的传递函数为
G(s) 1 Ts 1
2
• 系统(或环节)输出量与输入量幅值之比为幅值频率特性, 简称幅频特性,它随角频率ω变化,常用M(ω)表示。
A()
A c
A r
• 输出量与输入量的相位差为相位频率特性,简称相频特性,它 也随角频率ω变化,常用φ(ω)表示,
c r
幅频特性和相频特性统称为频率特性,用G( jω)表示
3
频率特性就是线性系统(或环节)在正弦输入信号 作用下稳态时输出相量与输入相量之比。
G (j) G(j) G(j)
A() G(j)
() G(j)
幅频特性是输出量与输入量幅值之比M(ω),描述系统 对不同频率正弦输入信号在稳态时的放大(或衰减) 特性。
相频特性是输出稳态相对于正弦输入信号的相位差 φ(ω),描述系统稳态输出时对不同频率正弦输入信号 在相位上产生的相角迟后(或超前)的特性。

系统的频率特性分析

系统的频率特性分析
系统的型号:一种依据系统开环传递函数中积分环节的多少 来对系统进行分类的方法
1.0 型系统(v=0) 2.I 型系统(v=1) 3 . II 型系统(v=2) ……
极坐标图的形状与系统的型号有关,一 般情况如下(注意起始点):
II型系 统
w0
w w
Im
w 0
w 0 Re
I型系 统
w0
w 0 型系统
w 基准点 ( 1 , L ( 1 ) 2l0 g K ) 第一转折频率之左
斜率 20 v dBdec
的特性及其延长线
⑷ 叠加作图
一阶 二阶
惯性环节 复合微分 振荡环节 复合微分
-20dB/dec +20dB/dec -40dB/dec -40dB/dec
⑸ 修正 根据误差曲线修正
① L(w) 最右端曲线斜率=-20(n-m) dB/dec ⑹ 检查 ② 转折点数=(惯性)+(一阶复合微分)+(振荡)+(二阶复合微分)
(1 w2 )1 1 ( 4 5 w2)jw (1 5 (1 w 2)j2 1 w ( 2 4 )w2)
G (j0) 90G (j)0270
渐近线: RG e(j[0) ] 15
与实轴交点:Im G (j[w) ]0 w1 20.707
15
10
RG (e j0 .[ 7) 0 ]7
(1 0 .5 )1 ( 4 0 .5 ) 3
对数幅频特性记为 对数相频特性记为
单位为分贝(dB) 单位为弧度(rad)
Bode Diagram 0
Phase (deg) Magnitude (dB)
-50
-100 0
-45
-90
-135

第四章系统的频率特性分析

第四章系统的频率特性分析

第四章 频率特性分析4.1 什么是频率特性?解 对于线性定常系统,若输入为谐波函数,则其稳态输出一定是同频率的谐波函数,将输出的幅值与输入的幅值之比定义为系统的幅频特性;将输出的相位于输入的相位之差定义为系统的相频特性。

将系统的幅频特性和相频特性统称为系统的频率特性。

4.2 什么叫机械系统的动柔度,动刚度和静刚度?解 若机械系统的输入为力,输出为位移(变形),则机械系统的频率特性就是机械系统的动柔度;机械系统的频率特性的倒数就是机械系统的动刚度;当0=w 时,系统频率特性的倒数为系统的静刚度。

4.3已知机械系统在输入力作用下变形的传递函数为 12+s (mm/kg),求系统的动刚度,动柔度和静刚度。

解 根据动刚度和动柔度的定义有 动柔度()()()12+====jw jw s s G jw G jw λ mm/kg 动刚度 )(jw K =)(1jw G =21+jw kg/mm 静刚度 ()()5.0021010==+====K w jw w jw G w jw kg/mm4.4若系统输入为不同频率w 的正弦函数Asinwt,其稳态输出相应为Bsin(wt+ϕ).求该系统的频率特性。

解:由频率特性的定义有 G (jw )=AB e jw。

4.5已知系统的单位阶跃响应为)(。

t x =1-1.8te 4-+0.8te9-,试求系统的幅辐频特性与相频特性。

解:先求系统的传递函数,由已知条件有)(。

t x =1-1.8te 4-+0.8te9-(t 0≥))(S X i =s 1)(。

S X =s 1-1.841+s +0.891+s )(S G =)()(。

S X S X =()()9436++s s )(jw G =jw s s G =)(=()()jw jw ++9436)(w A =)(jw G =22811636ww +•+)(w ϕ=0-arctan 4w -arctan 9w =-arctan 4w -arctan 9w4.6 由质量、弹簧、阻尼器组成的机械系统如图所示。

控制工程基础课程第四章习题答案

控制工程基础课程第四章习题答案

2007机械工程控制基础第四章习题答案第4章频率特性分析4.1什么是系统的频率特性?答:对于线性系统,若输入为谐波函数,则其稳态输出一定是同频率的谐波函数,将输出的幅值与输入的幅值之比定义为系统的幅频特性,将输出的相位之差定义为系统的相频特性。

系统的幅频特性和相频特性简称为系统的频率特性。

4.4若系统输入为不同频率ω的正弦t A ωsin ,其稳态输出相应为)sin(ϕω+t B 。

求该系统的频率特性。

解:由系统频率特性的定义知:ϕωj e AB j G =)( 4.5已知系统的单位阶跃响应为)0(8.08.11)(94≥+-=--t e e t x t t o ,试求系统的幅频特性与相频特性。

解:由已知条件得:s s X i 1)(=,98.048.11)(+++-=s s s s X o得系统传函为:)9)(4(36)()()(++==s s s X s X s G i o 得系统频率特性:)9)(4(36)(ωωωj j j G ++=,其中幅频特性为:22811636)()(ωωωω+⋅+==j G A相频特性为:9arctan4arctan)(ωωωϕ--=4.6由质量、弹簧、阻尼组成的机械系统如图(4.6)所示。

已知m=1kg ,k 为弹簧刚度,c 为阻尼系数。

若外力tN t f 2sin 2)(=,由实验得到系统稳态响应为)22sin(π-=t x oss 。

试确定k 和c 。

解:由系统结构知系统的动力学方程为: 当m=1时,得系统传函为:kcs s s G ++=21)(,得系统频率特性为: ωωωjc k j G +-=21)(。

图(题4.6)其中,幅频特性为2222)(1)(ωωωc k j G +-=,相频特性为2arctan)(ωωωϕ--=k c 由题意,当输入信号为t t f 2sin 2)(=时,2=ω,由其与稳态输出信号)22sin(π-=t x oss 对应关系知:2222)(121)(ωωωc k j G +-==,2arctan 2)(ωωπωϕ--=-=k c 解得4=k ,1=c 。

机械工程控制基础(第4章 系统的频率特性分析)

机械工程控制基础(第4章 系统的频率特性分析)

(4.1.10)
根据频率特性的定义可知,系统的幅频特性和相频特性分别为:
G ( j ) Xi ( ) G ( j ) A ( ) X o ( )
(4.1.11)
故 G ( j ) G ( j ) e
j G ( j )
就是系统的频率特性,它是将 G ( s )
d dt
微分方程
dt
s 传递函数 s
系统
j
频率特性
j
图4.1.2 系统的微分方程、传递 函数和频率特性相互转换关系图
中原工学院
机电学院
4.1.4 频率特性的特点和作用
第1
系统的频率特性就是单位脉冲响应函数的Fourier变换,即频谱。 所以,对频率特性的分析就是对单位脉冲响应函数的频谱分析。
第2
K

所以
A
X o Xi

1 T
2
2
arctan T

K 1 T
2 2
e
j arctan T
中原工学院
机电学院
2. 将传递函数中的s换为 j (s=j )来求取
由上可知,系统的频率特性就是其传递函数G(s)中复变量s j 的特殊情况。由此得到一个极为重要的结论与方法,即将系统的传递
G
j 端点的轨迹即为频率特性的极坐标图, 或称为Nyquist 图, 如
中原工学院
机电学院
图4.2.1所示。它不仅表示幅频特性和相频特性, 而且也表示实频特性和
虚频特性。图中的箭头方向为从小到大的方向。
正如4.1节所述, 系统的幅频特性和相频特
性分别为
A ( ) X o ( ) Xi G

第四章系统的频率特性分析

第四章系统的频率特性分析

第四章系统的频率特性分析第四章系统的频率特性分析时间响应分析:主要用于分析线性系统的过渡过程,以时间t为独立变量,通过阶跃或脉冲输入作用下系统的瞬态时间响应来研究系统的性能;依据的数学模型为G(s)频率特性分析:以频率ω为独立变量,通过分析不同的谐波输入时系统的稳态响应来研究系统的性能;依据的数学模型为G(jω)频域分析的基本思想:把系统输入看成由许多不同频率的正弦信号组成,输出就是系统对不同频率信号响应的总和。

4.1频率特性概述1.频率响应与频率特性(1)频率响应:线性定常系统对谐波输入的稳态响应。

(frequencyresponse)对稳定的线性定常系统输入一谐波信号xi(t)=Xisin?t稳态输出(频率响应):xo(t)=Xo(?)sin[ωt+?(ω)]【例】设系统的传递函数为输入谐波信号xi(t)=Xisin?t 则稳态输出(频率响应)与输入信号的幅值成正比与输入同频率,相位不同进行laplace逆变换,整理得同频率?幅值比A(?)相位差?(?)ω的非线性函数(揭示了系统的频率响应特性)输入:xi(t)=Xisinωt稳态输出(频率响应):xo(t)=XiA(?)sin[ωt+?(ω)]幅频特性:稳态输出与输入谐波的幅值比相频特性:稳态输出与输入谐波的相位差?(?)[s]A(?)?(?)(2)频率特性:对系统频率响应特性的描述(frequencycharacteristic)频率特性定义为ω的复变函数,幅值为A(?),相位为?(?)。

输入谐波函数xi(t)=Xisin?t,其拉式变换为2.频率特性与传递函数的关系设系统的微分方程为:则系统的传递函数为:则由数学推导可得出系统的稳态响应为根据频率特性定义,幅频特性和相频特性分别为故G(j?)=?G(j?)?ej?G(j?)就是系统的频率特性如例1,系统的传递函数为所以3.频率特性的求法(1)频率响应→频率特性稳态输出(频率响应)故系统的频率特性为或表示为(2)传递函数→频率特性将传递函数G(s)中的s换成jω,得到频率特性G(jω)。

第四章 (4.3.2)频率特性法分析系统稳定性(稳定裕度)

第四章 (4.3.2)频率特性法分析系统稳定性(稳定裕度)
5.3.2 用频率特性法分析系统稳定性 ——稳定裕量
幅相曲线和对数曲线相对于临界点 的位置即偏离临界点的程度,反映系统 的相对稳定性,即稳定裕量。
一、相位裕量 二、幅值裕量
临界稳定的概念
最小相位系统当G(jω)过(-1,j0)点时(见图), 闭环系统临界稳定。 G(jω) = -1 1+G(jω) = 0 s=jω
解:
1
3
10
由上式可见 G(j ω)与坐标轴无交点。 40 0 . 5 2<ω<10 2.5s ∠-1800, ∴k =∞ ∵G(j∞)=0 g 5
例2 试绘制图示系统开环的伯德图,并确定 系统的相位稳定裕量γ 。
θ r(s)

10 s(0.25s+1)(0.1s+1)
θ c(s)
-1
j
1
0
G(jω) 特点:G(jω)曲线过(-1,j0)点时,说明有这么一个点
G(jω) =1 ∠ G(jω) = -180o

同时成立!
2
稳定裕度的定义
j
Kg
G(jωg)
=1
–180o
G(jωg) -1 ωg
G( jc ) =

0
1
ωc
幅值裕度 K
g= G(jωg)
1
G(jω)
∠G(jωc)
K g dB 20 lg G ( j g )
相角裕度 =180o +∠G(jωc)
3
0dB
幅值裕量: c
1 Kg G ( j g )
20lg G ( j g )
ωc ∠ G(jωc)
-180o
ωg
x
相位裕量: =180+ ∠ G(jωc)

机械工程控制基础-频率特性分析

机械工程控制基础-频率特性分析

Nyquist图(极坐标图,幅相频率特性图) 图 极坐标图,幅相频率特性图) 3、 、
机械工程控制基础 作业: 作业:
第四章系统的频率特性分析
1、解释频率响应、频率特性,并写出频率特性 、解释频率响应、频率特性, 的解析式。 的解析式。 2、解释Nyquist图 并画出典型环节的Nyquist图 2、解释Nyquist图,并画出典型环节的Nyquist图。
机械工程控制基础
第四章系统的频率特性分析
机械工程控制基础
第四章系统的频率特性分析
解:
时间响应为
机械工程控制基础
第四章系统的频率特性分析
图4.1.1 系统及稳态的 输入输出波形
同频率 幅值比A(ω) 幅值比 相位差φ 相位差 (ω)
ω的非线性函数 的非线性函数 揭示了系统的频率响应特性) (揭示了系统的频率响应特性)
e j[ wt + ∠G(jω ) ] − e − j[ wt + ∠G(jω ) ] xos (t ) = lim xo (t ) = G(jω ) X i ⋅ t →∞ 2j
机械工程控制基础
第四章系统的频率特性分析
机械工程控制基础
第四章系统的频率特性分析
机械工程控制基础
第四章系统的频率特性分析
机械工程控制基础
第四章系统的频率特性分析
1、时域描述:信号瞬时值随时间变化。 、时域描述:信号瞬时值随时间变化。
2、频域描述:反映信号频率组成及其幅值、相角大小。 2、频域描述:反映信号频率组成及其幅值、相角大小。 例:寻找振源 3、两者描述的是同一信号,只是变换域不同, 、两者描述的是同一信号,只是变换域不同, 研究的方面不同。 研究的方面不同。
机械工程控制基础

第四章 系统的频率特性分析

第四章 系统的频率特性分析

61
4.2 频率特性的图示方法(典型环节的Bode图)
62
4.3 频率特性的特征量
如图4.31所示,在频域分析时要用到的一些有关频率的特征量 或频域性能指标有 A(0)、wm、wr(Mr)、wb。
1.零频幅值 A(0 ) 零频幅值A(0 )表示当频率ω 接近于零时,闭环系统稳态输出 的幅值与输入幅值之比。
解:根据回路电压定律有
系统的传递函数为:
系统的频率特性为 :
系统的幅频特性为:
17
4.1 频率特性概述
系统的相频特性为:
根据系统频率特性的定义有 ,系统稳态输出为:
18
4.1 频率特性概述
例4.4 系统结构图如图所示。当系统的输入 时,测得 系统的输出 ,试确定该系统的参数nω,ξ。 解:系统的闭环传递函数为:
因为,如果不知道系统的传递函数或微分方程等数学模型就无法
用上面两种方法求取频率特性。在这样的情况下,只有通过实验 求得频率特性后才能求出传递函数。这正是频率特性的一个极为 重要的作用。
12
4.1 频率特性概述
三、 根据定义来求,此方法麻烦。
13
4.1 频率特性概述
四、
14
4.1 频率特性概述
五、
27
4.2 频率特性的图示方法(典型环节的Nyquist图)
所以,微分环节频率特性的nyquist图是:
28
4.2 频率特性的图示方法(典型环节的Nyquist图)
29
4.2 频率特性的图示方法(典型环节的Nyquist图)
30
4.2 频率特性的图示方法(典型环节的Nyquist图)
31
4.2 频率特性的图示方法(典型环节的Nyquist图)

机械工程控制基础课件-第四章

机械工程控制基础课件-第四章

0
-90
-180
始于点 1, j,0与虚轴交点处的
频率 ,n 幅值
,1 相位 2
90
取值不同,G j的Nyqwist图
的形状也不同。
Im
[G(jw)]
w=∞ (1,jo)
0 w w=0 Re
wwnnξ1ξ2
wr
wn ξ3 ξ1>ξ2>ξ3
在振荡环节中,谐振频率 和r 谐振峰值 很M r重要。
的端点O A坐标就是 的实部G和j虚 部。当
时, :是0 的 复变
函G数 j,是一 种变换。 作为一个矢量,G其 j端 点在复平面相对应
的轨迹 极坐标图。(Nyquist曲线)
jw
w3 S
w2
w1
σ
0
Im [G(jw)]
w2 w3 0 w

Re
w1
G(jw1)
规定:从正实轴开始逆时针旋转为正。
一、典型环节的Nyquist图
A 1
12T2
arctanT
0 1 T

1 2

j为0 圆心,以
1
为2半径的一个
A 1 0
1
0
2
正实轴下的半圆。 可见 , A,低 通滤波的性能。
4 5 9 0 存在相位滞后, , ,最大 。9 0
一、典型环节的Nyquist图
5.一阶微分环节(导前环节)
GSTS1 A 12T2
G j 1j T arctanT
0 1 T
1
2
0
45
90
w=∞ Im
[G(jw)] w∞
450 w=1/T
0
(1,jo) Re

第四章频率特性分析1

第四章频率特性分析1

K , Ts 1
Xi ( s )
Xi s2 2

2
2

稳态输出(频率响应) 所以系统的频率特性为
xo( t )
XiK 1T
2 2
sin(t arctgT )
Xo( ) K A( ) Xi 1 T 2 2 ( ) arctgT

(2)对于那些无法用分析法求得传递函数或微分方程的系统或 环节,往往可以先通过试验求出系统或环节的频率特性,进 而求出该系统或环节的传递函数。即使对于那些能用分析法 求出传递函数的系统或环节,往往也要通过试验求出频率特 性来对传递函数加以检验和修正。
频率特性与频率响应
频率特性在有些书中又称为频率响应。本书
中,频率响应指系统对谐波输入的稳态响应。
4.1 频率特性概述
一、频率响应与频率特性
1.频率响应:线性定常系统对谐波输入的稳态响应
例 设系统的传递函数为
若输入信号为 xi(t)=Xisint 则 即
K G( s) Ts 1
Xi Xi ( s ) 2 s 2
K Xi Xo( s ) G( s ) Xi ( s ) 2 Ts 1 s 2
5.频率特性的特点
(1) 频率特性是频域中描述 系统动态特性的数学模型 频率特性是系统单位脉冲响应函 数(t)的Fourier变换 由 Xo(s)=G(s)Xi(s) 有 而当 xi(t)=(t) 时, 且 Xi(j ω)=F[(t)]=1 故 即 Xo(j ω)=G(j)Xi(j ω) xo(t)=ω(t), Xo(j ω)=G(j ω)
若系统稳定, 则有 x (t ) Be jt B*e jt 同理
s j

系统的频率特性分析

系统的频率特性分析

例4.3 一典型质量-弹簧-阻尼系统如图所示,系统输入 力f(t)为矩形波。f(t)=f(t-2T),试求系统的输出位移x(t)。 解:系统的传递函数为
X (s) 1 2 F ( s ) ms Bs k
幅频特性
C( )= j 1
2 ( - m 2 ) + B 2 2 k
相频特性
B G( ) - arctan j = = ( ) 2 k - m
K ( 如图所示系统,传递函数为G s)= Ts+1,求系统的
解:令 s=j 则系统的频率特性为
K G j)= ( jT+1
系统的幅频特性为
K K G j) ( = = jT+ 1 1+T 2 2
系统的相频特性为:
=G j)=-arctanT (
系统的稳态响应为:
(t)= c AK 1+T 2 2 sin t-arctanT) (
jt
* jt
t e
k s jt
xi xi jG j xi s j s j G j G j e B Gs s j s j 2j 2j
xi xi jG j B G j G j e 2j 2j

1
4 单位负反馈系统的开环传递函数为 Gs ss 2
若输入信号为
xi t 2 sin 2t
试求系统的稳态输出和稳态误差。
4 G B s 2 s 2s 4
G j
G j
4 4 2 j 2
4
4
2 2
F j) ( X1 j)= ( K j) (
由频率响应可知,当系统输入为正弦信号时,系统 ( 输出为同频率正弦信号。显然要使 X1 j) 0 ,则应使 K j) ( k2 2 k2-m2 =0 = 2 m2 即当选择吸振器参数满足上式时,可使质量 m1 的振 幅为零,施加于 m1 的干扰被 m2 和 k2 吸收了,这就 是振动控制中的吸振器。

《机械控制工程基础》第四章 控制系统的频率特性

《机械控制工程基础》第四章 控制系统的频率特性

解:列写力平衡方程
f(t)
Kx(t) Cx(t) f (t)
其传递函数为:G(s) X (s)
1
1 K
1 K
F(s) Cs K C K s 1 Ts 1
K
X(t)
c
f (t) F sin wt 拉氏变换:
F(s) F w s2 w2
输出位移 X (s) G(s)F(s)
x(t)
F K
( T )w 1 Tw2
(1,j0)
w
U
τ<T
当w=0 A(w)=1 w→∞
(w) 0 A(w)
T
() 0
要画准确的奈氏曲线需计算不同频率下的幅值和相位,或实部 和虚部,得到相应的各点,将各点顺次连接得到奈氏曲线。
若系统传递函数是由多个环节组成,幅频特性曲线其幅值 是各环节幅值的乘积,相角是各环节相位相加。
U (w)
比例环节的特点:不改变曲线的形状,只改变L(w)的大小 。
2.积分环节
G( jw) 1 j 1 jw w
L(w)/dB
20
L(w) 20lg A(w) 20lg 1 20lg w 0.1 w
-20dB/dec
1
(w) arctg V (w) 90
U (w)
φ(w)°
-90°
8.延时环节 传递函数 G(s) eτs
频率特性 G( jw) ejw cosTw j sin Tw
U (w) cosTw
jV
V (w) sinTw
A(w) U 2 (w) V 2 (w) 1
(w) arctg V (w) Tw
U (w)
(1,j0) U
w
例3. 已知系统传递函数为 G(s) s 1 ,试画其奈氏曲线图

第四章 频率特性分析解析

第四章  频率特性分析解析

以R-C电路为例,说明频率特性的物理
R
意义。如右图所示电路的传递函数为:
Uo (s) G(s) 1
ui
Ui (s)
1 RCs
C uo
设输入电压 ui (t) Asin t
U o ( j) G( j) 1 1
U i ( j)
1 RCj 1 Tj
图5-3 R-C电路
式中 T=RC G(jω) 称为电 路的频率特性。
— 稳态输出信号的相位
频率特性
线性定常系统在谐波输入信号作用下的频率 响应与输入信号频率的关系称为频率特性,它包 括幅频特性和相频特性。
系统的频率响应幅值与谐波输入信号幅值之 比随输入信号频率变化的关系称为幅频特性,即
A X o G j
Xi
G j
系统的频率响应相位与谐波输入信号相位之 差 (ω)随输入信号频率变化的关系称为相频特性。
❖ 频率响应与输入谐波信号之间存在相位差 (ω),其相 位差 (ω)随输入信号的频率ω的变化而改变。
❖ 即输出信号与输入信号的幅值比和相位差都是频率ω的 非线性函数。
频率响应演示
6 4 2 幅值 0 -2 -4 -6 -8
0
红 —输 入 , 蓝 —全 响 应 , 黑 —稳 态 响 应 yss(t)
频率特性记作 A(ω)·∠ (ω)
频率特性的求法
1. 根据系统的频率响应来求取;
2. 将系统传递函数G(s)中的s换为jω来求取; 3. 用试验方法求取。
当输入信号xi t
Xi
sin
t时,X i s
X i s2 2
则输出为:xos t
AX i
sin t
,X o s
AX i s sin cos
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、开环传递函数的极坐标图综合。
第四章 系统的频率特性分析
4.1 频率特性概述
4.2
4.3
频率特性的图示方法
频率特性的特征量
4.4
4.5
最小相位系统与非最小相位系统
利用MATLAB分析频率特性
二、频率特性的对数坐标图(Bode图)
1. Bode图介绍 如将系统频率特性G(jw ) 的幅值和相角分别绘在半对数坐标 图上,分别得到对数幅频特性曲线(纵轴:对幅值取分贝数后进行 分度;横轴:对频率取以10为底的对数后进行分度:lgw)和相频 特性曲线(纵轴:对相角进行线性分度;横轴:对频率取以10为 底的对数后进行分度lgw ),合称为伯德图(Bode图)。
T CR U c ( s) 1 1 1T G( s ) U r ( s ) C Rs 1 Ts 1 s 1 T
C0 1T Aw C1 s C2 2 s 1 T s w 2 s 1 T s2 w 2 建模 ur R i uc Aw T AwT C0 lim 2 c i Cu s 1 T s w 2 1 w 2T2 c uc ur CRu - AwT Aw C1 C2 U r [ CRs 1 ] U c 1 w 2T2 1 w 2T2 AwT 1 A 1 w Tw s U c ( s) 2 2 2 2 1 w 2T 2 s 1 T 1 w 2T 2 1 w 2T2 s w 1 w 2T2 s w t AwT A T sinwT cos coswT sin uc (t ) e 2 2 1 w 2 T2 1w T U c ( s)
特性来分析系统的品质。 2)应用频率特性法分析系统可以得出定性和定量的结论,并且有 明显的物理意义。在应用频率特性法分析系统时,可以利用曲线, 图表及经验公式。
4.1 频率特性概述
一 频率响应与频率特性概念
系统对正弦输入的稳态响应称为频率响应。
频率响应的典型例子
例1 RC 电路如图所示,ur(t)=Asinwt, 求uc(t)=?
w r w n 1 2 2
5 例4-1 G ( s ) 画G(jw)曲线。 s( s 1)(2 s 1)

G( jw )
5 j 5(1 jw )(1 j 2w ) jw (1 jw )(1 j 2w ) w (1 w 2 )(1 4w 2 )
不稳定惯性环节
G( s)
G ( jw )
1 1 jwT 1 G 1 w 2T2
1 Ts 1
G arctan
wT
-1
180 arctanwT
2 1 wn ⑹ 振荡环节 G( s) s 2 2w s w 2 s 2 s ( ) 2 1 n n wn wn
参看2阶系统正弦响应曲线
二、频率特性的定义
频率特性表达式为
三、频率特性的表示方法
幅频特性、相频特性、幅相特性
G ( jw ) G ( jw ) G ( jw ) A(w )e j (w ) u (w ) jv (w )
w :0
A(w ) ~ w
(w ) ~ w
为系统的幅频特性。 为系统的相频特性。
一、频率特性的极坐标图(Nyquist图)
2
1
Re[G( jw )]
Im
w
采用极坐 标图的优 点是它能 在一幅图 上表示出 系统在整 个频率范 围内的频 率响应特 性。
0
w3
Imag Axis
-1
G ( jw )
w2
(w )
Im[G( jw)]
Re
-2
-3
-4
w 0
-2
w1
-1 0 Real Axis 1 2 3
15 5(1 j 2w 2 ) j 2 2 (1 w )(1 4w ) w (1 w 2 )(1 4w 2 )
G( j 0) 90
渐近线:
G( j) 0 270
Re [ G( j 0)] 15
与实轴交点:Im[G( jw )] 0
总结:
1、频率特性的定义; 2、频率特性表示方法; 3、频率特性的求法。
复习:频率特性表示法
频率特性可用解析式或图形来表示。 (一)解析表示:系统开环频率特性可用以下解析式表示
幅频-相频形式 :
指数形式(极坐标) : 三角函数形式:
实频-虚频形式:
(二)图解形式 1. 极坐标图—奈奎斯特图 (Nyqusit) —幅相特性曲线 系统频率特性为幅频-相频形式 当w在0~变化时,相量G(jw)H (jw)的幅值和相角随w而变化,与此对应 的相量G(jw) H (jw)的端点在复平面 G(jw)H (jw)上的运动轨迹就称为幅相 频率特性或 Nyqusit曲线。画有 Nyqusit曲线的坐标图称为极坐标图或 Nyqusit图。
对数幅频特性记为 单位为分贝(dB)
对数相频特性记为
单位为弧度(rad)
0
Bode Diagram
Magnitude (dB) Phase (deg)
-50
-100 0 -45 -90 -135 -180 -1 10 10 10 Frequency (rad/sec)
0 1
10
2ቤተ መጻሕፍቲ ባይዱ
横轴
坐标 纵轴
按 lgw 刻度,dec ―十倍频程” 按 w 标定,等距等比
系统开环传函由多个典型环节相串联:
G(s) H (s) G1 (s)G2 (s)Gr (s) 系统幅相特性为:
G ( jw) H ( jw) A1 ( w)e j1 ( w) A2 ( w)e j2 ( w) Ar ( w)e jr ( w) A1 ( w) A2 ( w) Ar ( w)e j[1 ( w) 2 ( w) r ( w)] Ai ( w) [e

w 1 2 0.707
Re [ G( j 0.707)]
15 10 (1 0.5)(1 4 0.5) 3
例 4-4
G( s )
K (T1T2 ) K s v ( s 1 T1 )(s 1 T2 ) s v (T1 s 1)(T2 s 1)
极坐标图的形状与系统的型号有关,一 般情况如下(注意起始点):
Im
II型系统
w w

w 0
Re
0
0
w
w
w
I型系统
w
0
0 型系统
注意终止点:
Im
nm 3
nm 2 0
w
Re
nm 1
G ( jw) bm ( jw) m an ( jw) n
总结:
1、频率特性极坐标图的定义及作法;
四、频率特性与传递函数的关系
频率特性就是将G(s) 中的s用jw取代可以得到
五、频率特性函数求取方法
六、频率特性的特点和作用
(1)频率特性具有明确的物理意义,它可以用实验 的方法来确定,这对于难以列写微分方程式的元部件或 系统来说,具有重要的实际意义。 (2)由于频率响应法主要通过开环频率特性的图形 对系统进行分析,因而具有形象直观和计算量少的特点。 (3)频率响应法不仅适用于线性定常系统,而且还 适用于传递函数不是有理数的纯滞后系统和部分非线性 系统的分析。
1
复数域
时间域
jwt
Fourier变换 F ( jw) F[ f (t )]

0
f (t )e
dt
1 jwt f (t ) L [ F ( jw)] F ( jw ) e dw 2π
1
频率域
时间域
频域分析
频率特性是研究自动控制系统的一种工程方法。应用频率特 性可以间接地分析系统的动态性能与稳态性能。 1)频率特性法的突出优点是组成系统的元件及被控对象的数学模 型若不能直接从理论上推出和计算时,可以通过实验直接求得频率
G ( j 0)
K 0 90
v
0
I II
G ( jw )
K (1 jwT1 )(1 jwT1 ) K jw (1 jwT1 )(1 jwT1 )
G ( j )
0 180 0 270
K ( jw )2 (1 jwT1 )(1 jwT1 ) 180 0 360
L(w ) 20lgG( jw )
dB ―分贝”
特别注意横坐标的标注方法
0
Magnitude (dB)
Bode Diagram
-50
-100 0
Phase (deg)
-45 -90 -135 -180 -1 10 10 10 Frequency (rad/sec)
0 1
10
2
2.
典型环节的Bode图
2. 绘制系统Bode图
系统开环传函由多个典型环节相串联:
G ( jw) H ( jw) G1 ( jw)G2 ( jw) Gr ( jw) Ai ( w) [e
i 1 r j
k ( w )
k 1
r
]
则系统对数幅频和对数相频特性曲线为:
G ( jw )
1
w2 w 1 2 j 2 wn wn
谐振频率wr 和谐振峰值Mr
d G 0 dw
d dw
G 1
w2 2 w 2 [1 2 ] [2 ] wn wn
w2 2 w 2 [1 ] [ 2 ] 0 2 wn wn
w2 2 1 2 2 wn
第四章 系统的频率特性分析
相关文档
最新文档