磁约束核聚变及关键技术,EAST及ITER进展 4

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EQUATORIAL PORT (6 used)
DIVERTOR PORT (6 used)
DIVERTOR CASSETTES (16 used)
About 40 large scale diagnostic systems are foreseen: • Diagnostics required for protection, control and physics studies • Measurements from DC to γ-rays, neutrons, α-particles, plasma species • Diagnostic Neutral Beam for active spectroscopy (CXRS, MSE ….)
Plasma Facing Components
HTc Current Leads
Control Technology
Cryogenic Technology
29
ASIPP
中国承担了约 40~50 亿ITER 部件研制任务
ITER FEEDERS
ITER面临的重大技术挑战
• Superconducting magnets
ITER的工程物理目标
Main parameters
Q=10 聚变功率≥ 500 MW “燃烧”时间 300~ 500 秒 Q ≥ 5 聚变功率 200~300 MW 稳态 “燃烧” “混合” 稳态 完全非感应电流驱动稳态 更高参数”燃烧” ( ≥ 700 MW )
• Total fusion power
ITER
28.5 m
Cryostat
24 m high x 28 m dia. 9 sectors
Toroidal Field Coil
Nb3Sn, 18, wedged
Vacuum Vesse Blanket
440 modules
Poloidal Field Coil
Nb-Ti, 6
Port Plug
TBM Location
总体计划:10年建设,20年运行,5年拆除
ITER
Common Understanding on Overall Project Schedule Presented at the First Interim ITER Council meeting (IIC-1(M))
计划中I TER 的四个运行阶段(20年)
ITER
Design of ITER (2000) completed, re-organization begun Choice of Cadarache by the 6 partners (CN, EU, JA, KO, RF, US) in Moscow, 28 June 2005 India becomes partner in December 2005 Public debate Signature 21 November 2006 Entry into force 24 October 2007
四、ITER科学目标、挑战及现状
科学和工程目标 历史事件和组织机构 重要部件和系统 进度计划和目前进展 面临的挑战 重大意义
ITER的工程物理目标
ITER
(International Thermal-nuclear Experimental Reactor)
ITER 一个可产生 50-70 万千瓦 聚变功率的燃烧等离子体实验反应堆 (总投资 50+50 亿欧元)
超导磁体系统
• 48 superconducting coils
– – – – 18 TF coils 6 CS modules 6 PF coils 9 pairs of CC
ITER
ITER 超导磁体采购包
ITER
Winding Packs for Toroidal Field (TF) Coils • 10 come from Europe - 9 from Japan TF Structures • Basic structures from Japan • Supports from China • Case-winding pack insertion 10 EU - 9 Japan Windings for Central Solenoid • US Polodial Field Coils • P2-P6 come from EU • P1 comes from Russian Federation Correction Coils • China Feeders •China Instrumentation • IO
• Auxiliary Heating / CD Power 73MW
ITER科学目标的具体含义
等离子体电流 Ip
Ip
ITER 的工程物理基础
KSTAR TFTR JT-60
EAST
ITER
重要历史事件
ITER activities started in 1988 (1984) Design of ITER (1998) completed, US withdraw
两种设计方案
目标的重大改变
Main parameters of ITER (1998) Main parameters of ITER (2002)

Total fusion power
1.5GW ~ 1000s 1MW/M2 8.1 m 2.8 m 1.6 0.24 21MA 5.7 T

Total fusion power
RF CN KO JP IN US European Union
Total procurement value : 3021 Staff : 476 R&D: 80 Total kIUA: 3577
The ITER Machine
ITER 的核心部件
Central Solenoid
Nb3Sn, 6 modules
真空和氚系统
ITER
六个实验包层
TBMs tests need a whole TBM system
ITER
TBM ports
Shield plug
The TBMs first wall is recessed of 50 mm and protected with a Be layer
Frame
500(700)MW ≥400 s
• Inductive burn time (Q ≥10)
• Neutron wall loading 0.57(0.8)MW/m2 • R0 • a • κ95 • δ95 • Ip • BT (6.2 m) • Divertor Configuration 6.2 m 2.0 m 1.70/ 1.85 0.33/0.49 15 (17)MA 5.3 T Single Null
heating/current drive, test blankets limiters/RH diagnostics
Major Plasma Radius 6.2 m Plasma Volume: 840 m3 Plasma Current: 15 MA Typical Density: 1020 m-3 Typical Temperature: 20 keV Fusion Power: 500 MW
H phase: H operation,inductive,Ohmic L& limited H mode; D phase: D operation (limited T ) (以上共7—10年) D/T phase: (以下共10—13年) 1. High power D/T inductive, ELMy H-mode, high β 2. Hybrid operation (D/T phase): Inductive/no-inductive 3. Steady state operation (D/T phase); High performance D/T operation-700 MW , 自持燃烧
ITER 真空室
ITER
VV & In-vessel components mass: ~8000 t 19.4 m outside diameter – 11.3 m tall
Eiffel Tower mass: ~ 7300 t 324 m tall (Completed 1889)
ITER 真空室
真空室,包层,偏滤器
ITER
偏滤器
ITER
第一壁材料选择
吨ITER 壹
Site Capabilities
Overview of the ITER site layout
ITER 建筑群
ITER
ITER 诊断系统
UPPER PORT (12 used)
ITER
VESSEL WALL (Distributed Systems)
500(700)MW ≥400 s
• Controlled ignition • Neutron wall loading • R0 • a • κ95 • δ95 • Ip • BT (8.1m) • Auxiliary Heating Power
• Inductive burn time (Q ≥10)
ቤተ መጻሕፍቲ ባይዱ
目前总体进度计划
ITER
中国已具备了承担ITER 任务的基础
CICC Technology
SC magnets Technology
Insulation Technology
Machining
发展了与 ITER 相关的重要技术
SC magnet test Power Supply System Technology
Torus Cryopumps, 8 Divertor
54 cassettes
Machine mass: 23350 t (cryostat + VV + magnets) - shielding, divertor and manifolds: 7945 t + 1060 port plugs - magnet systems: 10150 t; cryostat: 820 t
ITER
Scope • Main vacuum vessel and first safety barrier for ITER - SS 316 LN-IG - ~ 5300 tons (VV, ports, shielding only) - 19.4 m torus outer diameter - 11.3 m torus height • ~240 kIUA ITER credit ( ~ $470 Million) – VV, Ports, & Shielding (EU, KO, RF, & IN) Challenges: • Finalizing requirements • Welding • Tolerances • QA / QC (First safety barrier) • Schedule Status • Main VV & port PA planned for mid 2008
– – – Unprecedented size of the superconducting magnets and structures High field performance ~12T Cryo plant size
• Divertor Configuration Single Null 100MW
• Auxiliary Heating / CD Power 73MW
已经选址在法国的
Cadarache
France(Cadarace)
Japan (Rokkasho)
Canada(Clarington)
Spain(Vandellòs)
• Neutron wall loading 0.57(0.8)MW/m2 • R0 • a • κ95 • δ95 • Ip • BT (6.2 m) • Divertor Configuration 6.2 m 2.0 m 1.70/ 1.85 0.33/0.49 15 (17)MA 5.3 T Single Null
ITER 组织机构
ITER
经费分摊
ITER
Overall sharing: EU 5/11, other six parties 1/11 each. Overall contingency of 10% of total. Total amount: 3577 kIUA (5079 M Euro2007)
相关文档
最新文档