《对数的概念》指数函数与对数函数PPT

合集下载

人教A版高中数学必修一 《指数函数》指数函数与对数函数PPT(第1课时指数函数的概念、图象及性质)

人教A版高中数学必修一 《指数函数》指数函数与对数函数PPT(第1课时指数函数的概念、图象及性质)
解析:选 C.函数 y=ax-a(a>0,且 a≠1)的图象恒过点(1,0), 故可排除选项 A,B,D.
5.求下列函数的定义域和值域: (1)y=2x-1 4;(2)y=23 -|x|.
解:(1)要使函数有意义,则 x-4≠0,解得 x≠4.
1
所以函数 y=2x-4的定义域为{x|x≠4}. 因为x-1 4≠0,所以 2x-1 4≠1,即函数 y=2x-1 4的值域为{y|y>0,且 y≠1}.
(2)要使函数有意义,则-|x|≥0,解得 x=0. 所以函数 y=23 -|x|的定义域为{x|x=0}. 因为 x=0,所以23 -|x|=230=1,即函数 y=23 -|x|的值域为{y|y= 1}.
本部分内容讲解结束
问题导学 预习教材 P111-P118,并思考以下问题: 1.指数函数的概念是什么? 2.结合指数函数的图象,分别指出指数函数 y=ax(a>1)和 y= ax(0<a<1)的定义域、值域和单调性各是什么?
1.指数函数的概念 一般地,函数 y=__a_x__ (a>0,且 a≠1)叫做指数函数,其中 x 是____自_变__量___.
指数函数的图象
根据函数 f(x)=12x的图象,画出函数 g(x)=12|x|的图象, 并借助图象,写出这个函数的一些重要性质.
【解】
g(x)=12|x
|=12x(x≥0),其图象如图. 2x(x<0),
由图象可知,函数 g(x)的定义域为 R,值域是(0,1], 图象关于 y 轴对称,单调递增区间是(-∞,0], 单调递减区间是(0,+∞).
■名师点拨 指数函数解析式的 3 个特征
(1)底数 a 为大于 0 且不等于 1 的常数. (2)自变量 x 的位置在指数上,且 x 的系数是 1. (3)ax 的系数是 1.

《对数函数的概念》《对数函数的图象和性质》指数函数与对数函数PPT

《对数函数的概念》《对数函数的图象和性质》指数函数与对数函数PPT

-1
2
2
1
化简可得 ≤x2≤2.
2
再由 x>0 可得 2≤x≤
2
2
答案:(1)A (2)
, 2
2
2
2
2
1
,
2,故函数 f(x)的定义域为
2
,
2
2 .
课堂篇
探究学习
探究一
探究二
探究三
探究四
探究五
思想方法
随堂演练
反思感悟 定义域问题注意事项
(1)要遵循以前已学习过的求定义域的方法,如分式分母不为零,
偶次根式被开方式大于或等于零等.
a>1
0<a<1
图象


定义域
值域
过定点
单调性
奇偶性
(0,+∞)
R
(1,0),即当 x=1 时,y=0
在(0,+∞)
在(0,+∞)
上是增函数
上是减函数
非奇非偶函数
课前篇
自主预习



3.做一做
(1)若函数y=logax的图象如图所示,则a的值可能是 (
)
A.0.5 B.2
C.e D.π
(2)下列函数中,在区间(0,+∞)内
.
2 -2-8 = 0,
解析:(1)由题意可知 + 1 > 0, 解得 a=4.
+ 1 ≠ 1,
(2)设对数函数为f(x)=logax(a>0,且a≠1).
则由题意可得f(8)=-3,即loga8=-3,
所以
a-3=8,即
1
3
-

4.3 对数的概念及其运算课件-2023届广东省高职高考数学第一轮复习第四章指数函数与对数函数

4.3 对数的概念及其运算课件-2023届广东省高职高考数学第一轮复习第四章指数函数与对数函数

例1 将下列指数式、对数式互化.
(1)2-2=14;
(2)log3 81=4.
【分析】 本题考查指数式与对数式互化:ab=N⇔loga N=b(a>0 且
a≠1),其中底数不变. 【解】 (1)将指数式 2-2=14化为对数式 log2 14=-2;
(2)将对数式 log3 81=4 化为指数式 34=81.
+∞),故选C.
2.下列计算正确的是( C )
A.(-1)-1=1
B.lg a+lg b=lg(a+b)
C.(-x7)÷(-x3)=x4 D. a2+1=a+1
【解析】 显然 D 选项错误;∵(-1)-1=-1,∴A 错误;∵lg a+lg b
=lg(a·b),∴B 错误;
(-x7)÷(-x3)=x7-3=x4,∴C 正确,故选 C.
4.3 对数的概念及其运算
知识点1 知识点2 知识点3 知识点4 知识点5
1.对数的定义 若ab=N(a>0且a≠1),则b叫做以a为底N的对数,即loga N=b.其中a 叫做底数,N叫做真数. (1)底数a的取值范围是a>0且a≠1;真数的取值范围是N>0; (2)常用对数:以10为底的对数叫常用对数,log10 N简记为lgN; (3)自然对数:以无理数e=2.71828……为底的对数叫做自然对数, loge N简记为ln N.
5.换底公式 loga b=llooggcc ba(a>0,b>0,c>0 且 a≠1,c≠1);特别地 c=10,loga b =llgg ab. 结论:(1)loga b·logb a=1;loga b=log1b a; (2)logambn=mn loga b;loganbn=loga b.
学一学
2(1-m) C. m

高中数学必修1课件:2.2.2《对数函数及其性质》 (共22张PPT)

高中数学必修1课件:2.2.2《对数函数及其性质》 (共22张PPT)

值域: R
自左向右看图象逐渐上升 在(0,+∞)上是: 增函数

x … 1/4 1/2 1 2 4 …
表 y log 2 x … -2 -1 0 1 2 …
y log 1 x … 2
2
1 0 -1 -2 …
y

2

1 11
这两个函数 的图象有什
42
0 1 23 4
x 么关系呢?
连 线
-1
-2
关于x轴对称
2.2 对数函数
2.2.2 对数函数及其性质 Nhomakorabea复习回顾
1 指数函数的概念;
复 习
2 指数函数的图像与性质:
3 对数的概念和基本运算法则
对数函数的概念
一般地,函数y =
(a>0,且a≠1)
叫做对数函数.其中 x是自变量.
注意:
1.对数函数对底数的限制条件:a>0,且a≠1
2.函数的定义域是(0,+∞).
a>1
0<a<1
图y
y
象 0 (1,0)
x
0 (1,0) x
定义域 : ( 0,+∞)

值域 : R
过定点(1 ,0), 即当x =1时,y=0
在(0,+∞)上是增函数
质 当x>1时,y>0
当x=1时,y=0 当0<x<1时,y<0
在(0,+∞)上是减函数
当x>1时,y<0 当x=1时,y=0 当0<x<1时,y>0
作y=log2x的图象

x
1/4 1/2 1 2
表 y=log2x -2 -1 0 1

《对数》指数函数与对数函数PPT教学课件(第二课时对数的运算)

《对数》指数函数与对数函数PPT教学课件(第二课时对数的运算)
4.3 对 数
第二课时 对数的运算
第四章 指数函数与对数函数
考点
学习目标
核心素养
对数的运算 掌握对数的运算性质,能运用运算性 数学运算
性质 质进行对数的有关计算
了解换底公式,能用换底公式将一般
换底公式
数学运算
对数化为自然对数或常用对数
能灵活运用对数的基本性质、对数的 对数运算的
运算性质及换底公式解决对数运算 综合问题
栏目 导引
第四章 指数函数与对数函数
■名师点拨 对数的这三条运算性质,都要注意只有当式子中所有的对数都有意 义时,等式才成立.例如,log2[(-3)·(-5)]=log2(-3)+log2(-5) 是错误的. 2.换底公式
logcb logab=__l_o_g_ca_____ (a>0,且 a≠1;c>0,且 c≠1;b>0).
栏目 导引
第四章 指数函数与对数函数
2. 1 1+ 1 1=________. log149 log513 11
解析:log14119+log11513=llgg419+llgg513=- -22llgg23+- -llgg53=llgg23+llgg53=lg13= log310. 答案:log310
)
A.8
B.6
C.-8
D.-6
解析:选 C.log219·log3215·log514=log23-2·log35-2·log52-2= -8log23·log35·log52=-8.
栏目 导引
第四章 指数函数与对数函数
4.已知
a2=1861(a>0),则
log2a=________. 3
解析:由 a2=1861(a>0)得 a=49, 所以 log3249=log23232=2. 答案:2

第四章-指数函数与对数函数PPT课件

第四章-指数函数与对数函数PPT课件
❖ 3、在ab=N中,N=__a_b _, a=_b_N__,b=?
-
43
在ab=N中,b叫以a为底N的对数.
2 3 8 中, 3叫以2为底8的对数, 记作3=log28.
3 2 9 中,
记作2=log39.
1
0
1 中,
2
0叫以1/2为底1的对数,记作0=log1/21.
5 -1 1 中, 5
(4)y

x-
3 2

解:(1)函数 y = x 3 的定义域为 R ;
-
16
4.3幂函数
二、幂函数应用
例1 写出下列函数的定义域:
(1)y = x 3 ;
1
(2)y = x 2 ;
(3)y = x -2 ;
(4)y

x-
3 2

解:(2)函数
y

x
1 2
,即
y

x

定义域为 [ 0,+∞);
-
17
的函数叫做指数函数,其中 x是自变量.
函数的定义域是 R .
-
27
变式练习: 请问同学们下面的式子是不是指数函 数?
y 32x
-
28
图象
y 2x
x -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
y 0.25 0.35 0.5 0. 71 1 1.41 2 2.83 4
y
y 2x
-
7
4.2 有理指数幂
❖ 2.有理指数幂的定义
❖ 正数的正分数指数幂的意义是:
❖ amn nam(a 0 ,m ,且 n N ) ❖ 正数的负分数指数幂:

高一数学《指数函数与对数函数》PPT课件

高一数学《指数函数与对数函数》PPT课件

(1)
1 x 2
1
x2
2
x2
x 1
5
1
1
x2 x 2 5
1
(2)(x 2
)3
1
(x 2
)3
1
(x 2
1
x 2 )[(x
x 1 ) 1]
x x 1 3 x 0
5(3 1)
6. 4
3
36 3
81 9 2
7. 2 3 3 1.5 6 12 6
8.设 mn>0,x= m n ,化简:A= 2 x2 4 .
⑵ y 3 5x1 ⑶ y 2 x 1
函数的定义域就是使函数表达式有意义的自变量 x的取值范围。
(1)定义域为{x|x≠1};
1
0 x 1
值域为{y|y>0且y≠1}
1
⑴ y 0.4 x1
⑵ y 3 5x1 ⑶ y 2 x 1
(2)
定义域为{x|
x
1 5
}
值域为{y|y≥1}
5x 1 ≥0
BC A
A’ B’ C’
f(a)=SAA’C’C-SAA’B-SB’C’C
(f2()af)(a)1 g(a) 1a(a2
2
2
ag(a2) 2 aa11)
1 [( a 2 a 1) ( a 1 a )] 2
1(
1
1
)0
2 a 2 a 1 a 1 a
7. (★★★★)当a≠0时,y=ax+b 和 y=bax
y 1 x 2
y 1 x
1
2
把 y 轴右边的图形翻折到 y 轴的左边
3. 作出函数 y= │ 2x -1│的图像
y= │ 2x -1│

《对数函数》指数函数与对数函数PPT教学课件(第2课时对数函数及其性质的应用)

《对数函数》指数函数与对数函数PPT教学课件(第2课时对数函数及其性质的应用)

解下列不等式:
(1)log1x>log1(4-x);
7
7
(2)logx12>1;
(3)loga(2x-5)>loga(x-1).
栏目 导引
【解】
(1)由题意可得4x->x0>,0, x<4-x,
解得 0<x<2.
所以原不等式的解集为(0,2).
(2)当 x>1 时,logx12>1=logxx,
解得 x<12,此时不等式无解.
栏目 导引
第四章 指数函数与对数函数
2.已知 a=30.5,b=log312,c=log32,则(
)
A.a>c>b
B.a>b>c
C.c>a>b
D.b>a>cog312<0,0<c=log32<1,所以
a>c>b.
栏目 导引
解对数不等式
第四章 指数函数与对数函数
栏目 导引
第四章 指数函数与对数函数
与对数函数有关的值域与最值问题 已知函数 f(x)=loga(1+x)+loga(3-x)(a>0,且 a≠1). (1)求函数 f(x)的定义域; (2)若函数 f(x)的最小值为-2,求实数 a 的值.
栏目 导引
【解】
第四章 指数函数与对数函数
(1)由题意得31-+xx>>00,,解得-1<x<3.
栏目 导引
第四章 指数函数与对数函数
(3)因为 0>log0.23>log0.24, 所以 1 < 1 ,
log0.23 log0.24 即 log30.2<log40.2. (4)因为函数 y=log3x 是增函数,且 π>3,所以 log3π>log33=1, 同理,1=logππ>logπ3,即 log3π>logπ3.

对数的概念PPT课件

对数的概念PPT课件
9
(3)因为 1.52=2.25,则 log1.52.25=2. (4)因为 10-4=10 1000,所以 lg10 1000=-4.
栏目 导引
第4章 指数函数与对数函数
(5)设 log816=x,则 8x=16, 即 23x=24,所以 3x=4, 即 x=43,所以 log816=43. (6)因为 ln 1=0,所以 ln e0=ln 1=0, 故 ln eln 1=0.
2
4
答案:1
栏目 导引
第4章 指数函数与对数函数
对数的概念
求使对数 log(a-2)(7-2a)有意义的 a 的取值范围.
【解】
7-2a>0, 依题意,得a-2>0, 解得
a-2≠1,
2<a<72且
a≠3.
即 a 的取值范围为 2<a<72且 a≠3.
栏目 导引
第4章 指数函数与对数函数
在解决对数式有意义的题目时,只要注意满足底数和真数的 条件,也就是对数式中的底数大于 0 且不为 1,真数大于 0, 对数式才有意义,尤其要注意底数不为 1 这一条件,然后解 不等式即可.
4.对数的性质
(1)loga1=0(a>0,a≠1);
(2)logaa=1(a>0,a≠1).
(3)零和负数没有对数.
栏目 导引
第4章 指数函数与对数函数
1.判断(正确的打“√”,错误的打“×”) (1)对数 log39 和 log93 的意义一样.( ) (2)(-2)3=-8 可化为 log(-2)(-8)=3.( ) (3)对数运算的实质是求幂指数.( ) 答案:(1)× (2)× (3)√
栏目 导引
第4章 指数函数与对数函数
1.在对数 logaN 中规定 a>0,且 a≠1,N>0 的原因 (1)若 a<0,则 N 为某些数值时,x 不存在,如式子(-3)x=4 没有实数解,所以 log(-3)4 不存在,因此规定 a 不能小于 0. (2)若 a=0,且 N≠0 时,logaN 不存在;N=0 时,loga0 有无 数个值,不能确定,因此规定 a≠0,N≠0. (3)若 a=1,且 N≠1 时,x 不存在;而 a=1,N=1 时,x 可 以为任何实数,不能确定,因此规定 a≠1. (4)由 ax=N,a>0 知 N 恒大于 0.

对数函数的图象和性质PPT

对数函数的图象和性质PPT

课 时 分
A.(0,3)
B.[0,3]
层 作


C.(-∞,3]

D.[0,+∞)


返 首 页
30
第 一
2.设 a=log3π,b=log2 3,c=log3 2,则( A )


A.a>b>c


B.a>c>b
分 层

C.b>a>c



D.b>c>a


返 首 页
31
对数函数的图象




返 首 页
15
与对数函数有关的定义域问题




【例 2】求下列函数的定义域:
课 时

(1)y=loga(x-3)+loga(x+3);
层 作

(2)y=loga[(x+3)(x-3)];

二 阶
(3)f(x)=log(2x-1)(-4x+8).

返 首 页
16
解:(1)由xx+-33>>00, 得 x>3,

(1)D (2)4 (3)-1 解析:(1)由对数函数定义知,③⑥是对数 课

函数,故选 D.
分 层
(2) 因 为 函 数 y = log(2a - 1)x + (a2 - 5a + 4) 是 对 数 函 数 , 所 以
作 业

二 阶 段
2a-1>0,
2a-1≠1,
解得 a=4.
a2-5a+4=0,

(0,+∞) 解析:f(x)的定义域为 R.

第6讲 对数与对数函数 课件(共82张PPT)

第6讲 对数与对数函数  课件(共82张PPT)

解析 由 alog34=2 可得 log34a=2,所以 4a=9,所以 4-a=19,故选 B.
解析 答案
2.已知 a>0,a≠1,函数 y=ax 与 y=loga(-x)的图象可能是( )
解析 若 a>1,则 y=ax 是增函数,y=loga(-x)是减函数;若 0<a<1, 则 y=ax 是减函数,y=loga(-x)是增函数,故选 B.
且 a≠1)互为反函数,它们的图象关于直线 10 ___y_=__x___对称.
1.对数的性质(a>0 且 a≠1) (1)loga1=0;(2)logaa=1;(3)alogaN=N. 2.换底公式及其推论 (1)logab=llooggccba(a,c 均大于 0 且不等于 1,b>0); (2)logab·logba=1,即 logab=log1ba(a,b 均大于 0 且不等于 1); (3)logambn=mn logab; (4)logab·logbc·logcd=logad.
增区间.
∵当 x∈(4,+∞)时,函数 t=x2-2x-8 为增函数,
∴函数 f(x)的单调递增区间为(4,+∞).故选 D.
解析 答案
6.计算:log23×log34+( 3)log34=________. 答案 4 解析 log23×log34+( 3)log34 =llgg 32×2llgg32+3 log34=2+3log32=2+2=4.
8 5
<lg152·lg
3+lg 2
82=
lg
3+lg 2lg 5
82=llgg
22452<1,∴a<b.由
b=log85,得
8b=5,由
55<84,得
85b
<84,∴5b<4,可得 b<45.由 c=log138,得 13c=8,由 134<85,得 134<135c,

1 第1课时 对数函数的概念、图象及性质(共40张PPT)

1 第1课时 对数函数的概念、图象及性质(共40张PPT)

4.若函数 y=loga(x+a)(a>0 且 a≠1)的图象过点(-1,0). (1)求 a 的值; (2)求函数的定义域.
解:(1)将点(-1,0)代入 y=loga(x+a)(a>0 且 a≠1)中,有 0=loga(-1+ a),则-1+a=1,所以 a=2. (2)由(1)知 y=log2(x+2),由 x+2>0,解得 x>-2,所以函数的定义域为 {x|x>-2}.
[注意] 对数函数解析式中只有一个参数 a,用待定系数法求对数函数解析 式时只须一个条件即可求出.
1.若函数 f(x)=log(a+1)x+(a2-2a-8)是对数函数,则 a=________.
a2-2a-8=0,
解析:由题意可知a+1>0,
解得 a=4.
a+1≠1,
答案:4
2.点 A(8,-3)和 B(n,2)在同一个对数函数图象上,则 n=________.
【答案】 C
角度二 作对数型函数的图象
画出下列函数的图象,并根据图象写出函数的定义域、值域以及单
调性:
(1)y=log3(x-2); (2)y=|log1x|.
2
【解】 (1)函数 y=log3(x-2)的图象如图①.其定义域为(2,+∞),值域为 R,在区间(2,+∞)上是增函数.
(2)y=|log12x|=lloogg122xx,,0x<>x1≤,1,其图象如图②. 其定义域为(0,+∞),值域为[0,+∞),在(0,1]上是减函数,在 (1,+∞)上是增函数.
()
解析:选 A.函数 y=log2|x|是偶函数,且在(0,+∞)上为增函数,结合图象 可知 A 正确.
3.点(2,4)在函数 f(x)=logax(a>0,且 a≠1)的反函数的图象上,则 f12= ________. 解析:因为点(2,4)在函数 f(x)=logax(a>0,a≠1)的反函数的图象上,所 以点(4,2)在函数 f(x)=logax(a>0,a≠1)的图象上,因此 loga4=2,即 4= a2,又 a>0,所以 a=2,所以 f(x)=log2x,故 f12=log212=-1. 答案:-1

对数课件(共18张PPT)

对数课件(共18张PPT)
数学
基础模块(上册)
第四章 指数函数 与对数函数
4.2.1 对数
人民教育出版社
第四章 指数函数与对数函数 4.2.1 对数
学习目标
知识目标 能力目标
理解对数的概念,熟练进行指数式与对数式的互化,掌握对数的性质与运算 法则,能够使用计算器求解对数值
学生运用分组探讨、合作学习,掌握对数与对数函数图象和性质,学会利用 计算器求对数的值,提高学生的数学运算能力
设经过b次分裂,可以列出等式: 2b=4096.
这是个已知底数和幂的值求指数的问题. 一般地,若ab=N(a>0,且a≠1,N>0),则称幂指
数b是以a为底N的对数.例如: 因为42=16,所以2是以4为底16的对数; 因为43=64,所以3是以4为底64的对数;
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
实质上,上述对数式,不过是指数式的另一种表达 形式而已.
例如:
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
34=81 与4=log381 这两个式子表达的是同一关系.
拓展延伸 对数恒等式
我们来推导对数恒等式。 因为ab=N,根据对数的定义得b=logaN,于是得到 下面的对数恒等式:
aloga N N . 例如,2log2 32 32,10log10100 100 .
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?

《对数的概念》指数函数与对数函数PPT优秀课件

《对数的概念》指数函数与对数函数PPT优秀课件

思维脉络
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 概念》 指数函 数与对 数函数P PT
课前篇
自主预习



一、对数的概念
1.(1)某种细胞分裂时,由1个分裂成2个,2个分裂成4个,…依次类
推,那么1个这样的细胞分裂x次后,得到的细胞个数N是多少?
提示:N=2x.
(2)上述问题中,若已知分裂后得到的细胞的个数分别为8个,16个,
首页
课标阐释
1.理解对数的概念,掌握对数的
基本性质.
2.掌握指数式与对数式的互化,
能应用对数的定义和性质解方
程.
3.理解常用对数和自然对数的
定义形式以及在科学实践中的
应用.
4.了解对数的发展历史,了解数
学文化.
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 概念》 指数函 数与对 数函数P PT
(3)ln M=n用指数式如何表示?
提示:en=M.
2.填空
常用对数 以 10 为底数,记作 lg N
自然对数 以 e 为底数,记作 ln N,其中 e=2.718 28…
3.做一做
(1)lg 105=
答案:(1)5 (2)1
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 概念》 指数函 数与对 数函数P PT
(1)负数和零没有对数.
(2)loga1=0(a>0,a≠1).
(3)logaa=1(a>0,a≠1).
(4)对数恒等式log =N(a>0,且 a≠1,N>0).
公开课课件优质课课件PPT优秀课件PP T免费 下载《 对数的 概念》 指数函 数与对 数函数P PT

《对数与对数函数》指数函数、对数函数与幂函数PPT课件(对数函数的性质与图像)【品质课件PPT】

《对数与对数函数》指数函数、对数函数与幂函数PPT课件(对数函数的性质与图像)【品质课件PPT】

y= loga x PPT模板:/moban/
P P T背景:www.1ppt.c om /be ij ing/ P P T下载:www.1ppt.c om /xia za i/
资料下载:www.1ppt.c om /zilia o/
一般地,函数____________称为对数函数,其中 试卷下载:/shiti/
PPT教程: /powerpoint/
资料下载:www.1ppt.c om /zilia o/
个人简历:www.1ppt.c om /j ia nli/
试卷下载:www.1ppt.c om /shiti/
教案下载:www.1ppt.c om /j ia oa n/
手抄报:www.1ppt.c om /shouc ha oba o/
4.2 对数与对数函数 4.2.3 对数函数的性质与图像 第1课时 对数函数的性质与图像
第四章 指数函数、对数函数与幂函数
考点
学习目标
核心素养
理解对数函数的概念,会 对数函数的概念
判断对数函数
数学抽象
初步掌握对数函数的图
对数函数的图像
直观想象、数学运算
像与性质
对数函数的简单 能利用对数函数的性质
数学建模、数学运算
历史课件:www.1ppt.c om /ke j ia n/lishi/
问题导学
预习教材 P24-P27 的内容,思考以下问题: 1.对数函数的概念是什么?它的解析式具有什么特点? 2.对数函数的图像是什么,通过图像可观察到对数函数具有哪 些性质?
栏目 导引
第四章 指数函数、对数函数与幂函数
对数函数
历史课件:www.1ppt.c om /ke j ia n/lishi/

《对数与对数函数》指数函数、对数函数与幂函数PPT(对数函数的性质与图像)

《对数与对数函数》指数函数、对数函数与幂函数PPT(对数函数的性质与图像)
错解三中出现逻辑性错误运算变形的顺序出现了问题即开始默认了a1对原不等式进行了转化是不正确的虽然后来对a又进行了讨论看起来结果正确而实际上解答过程是错误的
人教版高中数学B版必修二
指数函数、对数函数与幂函数
4.2 对数与对数函数
4.2.3 对数函数的性质与图像
-1-
课标阐释
思维脉络
1.理解对数函数的概念,体会对
B.(-1,+∞) C.(-1,4)
D.(4,+∞)
(2)函数 y=loga -1(a>0,a≠1)的定义域为
答案:(1)A
(2)(1,+∞)
+ 1 ≥ 0,
解析:(1)由题意可知
4- > 0,
解得 x∈[-1,4),故选 A.
(2)由题意可得 -1>0,又∵偶次根号下非负,
∴x-1>0,即 x>1.
A.(0,2)
B.(0,2] C.(2,+∞)
1
指数函数、对数函数与幂函数
(2)函数 f(x)=log4 的大致图像为(
)
D.[2,+∞)
)

(1)函数
(a>0,且a≠1)是对数函数.
因忽视真数的取值范围而致误
29可看作是函数y=log0.
(5)当0<a<1时,y=logax为R上的减函数;当a>1时,y=logax为R上的增函数.
同理可得函数y=log0.2(x2-2x+2)的单调增区间为(-∞,1].
故函数y=log0.2(x2-2x+2)的单调增区间为(-∞,1],
单调减区间为[1,+∞).
课堂篇探究学习
探究一
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档