高中数学史集黄金分割素材

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黄金分割

(浙江省宁波市镇海区外语实验学校 315200)余满龙

在初中数学的相似形这一章中有“黄金分割”的简单介绍:把一条线段(PQ )分成两条线段,使其中较大的线段(PC )是原线段(PQ )与较小线段(CQ )的比例中项,这种分法用途广泛,且美观,所以人们把它称为黄金分割也称“中外比”或“中末比”。(如图1)

世界上最早接触黄金分割的是古希腊的毕达哥拉斯学派。公元前4世纪(二千多年前),古希腊数学家欧多克斯(约公元前408~公元前355)第一个系统研究了这一问题,并建立起比例理论。他发现:在这个几何问题里,若CQ 与PC 之比等于PC 与PQ 之比,那么这一比值就等于0.608…,用式子表示就是: Λ618.02

15=-==PQ PC PC CQ 这个神奇的数字已经让我们着迷了几千年但实际上,这个黄金分割很早

就存在了,我们从 Andros 神庙(公元前10000年)就可以看出,而

Kheops (公元前2800年)金字塔(如右图)表现的尤为明显。几何学家,

哲学家和建筑师都认为黄金分割是一组非常奇特的比例,是一种空间的和谐,能够组成精确的比例。公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克斯的工作,系统论述了黄金分割,成为最早的有证论著。欧多克斯就是从整个比例论的角度考虑黄金分割,他还把上述的C 点分PQ 所成的比PC:CQ 叫做“中外比”。欧多克斯发现这种线段之间的中外比关系存在于许多图形中。如正五边形中,相邻顶角的两条对角线互相将对方分成中外比,而较长的一段等于正五边形的边。如果将有理线段分成中外比,那末被分成的两个线段长是无理数。

文艺复兴时期的欧洲,由于绘画艺术的发展,促进了对黄金分割的研究。当时,出现了好几个身兼几何学家的画家,著名的有帕奇欧里、丢勒、达•芬奇等人。他们反几何学上图形的定量分析用到一般绘画艺术,从而给绘画艺术确立了科学的理论基础。

1228年,意大利数学家斐波那契在《算盘书》的修订本中提出“兔子問題”,导致斐波那契数列:1,1 ,2,3,5,8,13,21,34,55,89,……,它的每一项与后一项比值的极

Kheops (公元前2800 年)金字塔

Q

C P

图1

莱奥纳多·达·芬奇(1452-1519) 限就是黄金分割数,即黄金分割形成的线段与全线段的比值。(即设F 1 =1,F 2 =1,F n = F n-2 + F n-1,n ≥3,则)

1525年丢勒制定了充分吸收黄金分割几何意义的比例法则,揭示了黄金分割在绘画中的重要地位。丢勒以为,在所有矩形中,黄金分割的矩形,即短边与长边之比为

215-的矩形最美观。因为这样的矩形,“以短边为边,在这个矩形中分出一

个正方形后,余下的矩形与原来的矩形相似,仍是一个黄金分

割形的矩形”,这使人们产生一种“和谐”的感觉。

后来意大利伟大画家达·芬奇(1452-1519)(如右图)把欣

赏的重点转到使线段构成中外比的分割,而不是中外比本身,

提出了“黄金分割”这一名称。这一命名一直延用至今。

欧洲中世纪的物理学家和天文学家开普勒(J .Kepler1571—1630),曾经说过:“几何学里有二个宝库:一个是毕达哥拉斯定理(我们称为“商高定理”);另外一个就是黄金分割。前面那个可以比着金矿,而后面那一个可以比着珍贵的钻石矿。

希腊数学家把这个几何问题里的点C 称为把线段黄金分割(Golden section )。C 点叫“黄金分割点”。可以证明,PC =215-PQ ,这个数2

15-≈0.618以往的数学家称为“黄金分割数”(Golden number )简称“黄金数”,“黄金数”倒数

215+叫“黄金比”,顶角为36°的等腰三角形叫“黄金三角形”。古时候的希腊人认为一个人有完美的(或理想的)体型是肚脐那一点把头到脚“黄金分割”。因此一些艺术家画的人像以及古代雕塑像,大多数是以这个为比例。人体相关各部分之间是符合黄金分割率的,在躯干部分,乳房位置的上下长度比;咽喉至头顶和至肚脐之比;膝盖至脚后跟和至肚脐之比等,都是黄金分割数0.618的近似数。如果人体上述部分比例均符合黄金律的话,就显得协调匀称。古希腊断臂维纳斯、雅典娜女神和“海姑娘”阿曼达,其体型结构比例完全符合黄金律,美妙绝伦。

中世纪后,黄金分割被披上神秘的外衣,据说毕达哥拉斯学派是一个秘密团体,为了保证了学派不被外人流入,他们以一个比较难画的几何图形——正五角星作为学派的会章,而画正五角星就是以黄金分割作依据的。意大利数学家帕奇欧里(1445~1514),首先把“中外比”称为“神圣比例”,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。到19世纪黄金分割这一名称才逐渐通行黄金分割数有许多有趣的性质,它的实际应用也

很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广,取得很大成绩。

黄金分割是普遍存在的自然现象。如作正五边形或正五角星时涉及到黄金分割;舞台上的报幕员和独唱演员,通常不站在舞台前沿的中点而是在舞台宽度黄金分割点的位置时最美观,音响效果最佳;日常生活中,最和谐悦目的矩形,如电视屏幕、写字台面、书籍、衣服、门窗等,其短边与长边之比为0.618,你会因此比例协调而赏心悦目。甚至连火柴盒、国旗的长宽比例设计,都恪守0.618比值。在音乐会上,二胡要获得最佳音色,其“千斤”则须放在琴弦长度的0.618处。最有趣的是,在消费领域中也可妙用0.618这个“黄金数”,获得“物美价廉”的效果。据专家介绍,在同一商品有多个品种、多种价值情况下,将高档价格减去低档价格再乘以0.618,即为挑选商品的首选价格。科学家和艺术家普遍认为,黄金分割律是建筑艺术必须遵循的规律。在建筑造型上,人们在高塔的黄金分割点处建楼阁或设计平台,便能使平直单调的塔身变得丰富多彩;而在摩天大楼的黄金分割处布置腰线或装饰物,则可使整个楼群显得雄伟雅致。古代雅典的巴特农神殿,当今世界最高建筑之一的加拿大多伦多电视塔,举世闻名的法国巴黎埃菲尔铁塔,都是根据黄金分割的原则来建造的。

相关文档
最新文档