有限元 4-薄板弯曲问题

有限元 4-薄板弯曲问题
有限元 4-薄板弯曲问题

第4章 弹性薄板弯曲问题的有限元法

薄板弯曲问题在理论上和应用上都具有重要意义,并有专门著作加以论述(如杨耀乾《平板理论》)。象其它弹性力学问题一样,用微分方程、差分法等经典方法所能求解的薄板问题很有限,一般只能解决等厚、小孔口、支承情况较简单的单跨板。故工程设计中以往多采用简化、近似、图表等方法来解决板的设计问题。

在板的分析中,常取板的中面为xoy 平面(如图)。平板结构按其厚度t 与短边a 的比值大小而分为:

厚板(Thick plate )和

薄板(Thin plate)两种。

当1<

t 时称为薄板 平板上所承受的荷载通常有两种:

1. 面内拉压荷载。 由面内拉压刚度承担, 属平面

应力问题。

2. 垂直于板的法向荷载, 弯扭变形为主,具有梁的受力特征, 即常说的弯曲问题。平板在垂直于板面的荷载作用下产生挠度W 。

当最大挠度w 远小于t 时, 称为小挠度问题(or 刚性板)(stiffness plate) 当最大挠度w 与t 相差不大时,称为大挠度问题(or 柔性板)(flexure plate)

(工程定义: 51≤t w 为刚性板;551≤≤t

w 为柔性板; 5>t

w 为绝对柔性板。) 4.1 基本理论

一、基本假定

1、略去垂直于中面的法向应力。(0=z σ),即以中面上沿Z 方向的挠度W 代表板的挠度) 2、变形前垂直中面的任意直线,变形后仍保持为垂直中面的直线。(─法向假定0=zx τ,0=zy τ)

3、板弯曲时,中面不产生应力。(─中面中性层假定)

上述假定常称为薄板小挠度问题假定(or 柯克霍夫假定)。符合上述假定的平板即为刚性板。

二、基本方法

以上述假定为基础,板分析中常用挠度w 作为基本未知量,下面介绍以w 为基本未知量所导出的有关方程。 1、几何方程(应变─挠度关系)

①弹性曲面沿x, y 方向的倾角

从中面取出一微小矩形ABCD ,如图所示,设其边长

为dx, dy ,变形后弯曲成曲面A'B'C'D'

设A 点挠度w , 则沿x 方向倾角(绕y 轴)

x w y ??=θ (B ’点绕度 dx x

w w ??+) 沿y 方向倾角(绕x 轴) y w x ??=

θ (D ’点绕度 dy y w w ??+) ② 沿x, y 方向位移

作平行于z x 0平面,设中面上点A 到A'的距离为

Z ,变形后,A 点有挠度W, 同时发生弯曲,

曲面沿x 方向的倾角为x

w ??, 根据法线假定,则A'点沿x 方向的位移:

x w z u ??-= (负号为方向与x 相反)

同理取z y 0平面得: y w z v ??-= (4-1-1)

③ Z 平面的应变分量和曲、扭率

基本假定,由于0===xy zx z ττσ, 故板内任意点的应变与平面问题相同:

x v y u y

v x

u

xy y x ??+??=??=??=εεε???→?代入将V U .{}????

?????????????????-??-??-=??????????y x w z y w z x w z xy y x 222222εεεε= (4-1-2)

此为Z 平面的应变─挠度度几何方程。上式中的22x w ??,22y w ??,y

x w ???2为曲面在X,Y 方向的曲、扭率,记为:

{}?????

?????

???????-??-??-=??????????=y x w y w x w xy y x 222222χχχχ (4-1-3) 所以, {}{}χεz =

2、物理方程(应力─挠度关系)

由于忽略σz 对变形的影响, 因此z 平面的应力─应变关系具有与平面问题相同的形式: ()

()()????

?????-=+-=+-=xy xy x y y y x x E E E γμτμεεμσμεεμσ121122 将(4-1-2)代入得:

{}[]{}εμμμμμτσσσ022222222222111D y x w Ez x w y w Ez y w x w Ez xy y x =????

?????????????????+???? ????+??-???? ????+??--=??????????= 或简写为: {}[]{}x D z 0=σ (4-1-4)

式中弹性矩阵: ?????

???????--=21000101120μμμμE D 3、内力方程(内力─挠度关系)

从板内取微元体tdxdy , 由其上正应力x σ,y σ和剪应力xy τ,

弹性薄板小挠度弯曲问题的基础变分原理(16K

第6章 弹性薄板小挠度弯曲问题的基础变分原理 平分板厚度的平面称为板的中面,一般地,当板的厚度t 不大于板中面最小尺寸的5/1时的板称为薄板,薄板的中面是一个平面。薄板在垂直于中面的载荷作用下发生弯曲时,中面变形所形成的曲面称为弹性曲面或挠度面,中面内各点在未变形中面垂直方向的位移称为板的挠度。薄板弯曲的精确理论应是满足弹性力学的全部基本方程,但这在数学上将会遇到很大的困难。1850年,G.R.基尔霍夫(Kirchhoff Gustav Robert ,基尔霍夫 古斯塔夫·罗伯特,德国物理学家,1824-1887年)除采用弹性力学的基本假设外,还提出了一些补充的假设,从而建立起了薄板小挠度弯曲的近似理论。这些假设是:第一,变形前垂直于板中面的直线,在板变形后仍为直线,并垂直于变形后的中面,而且不经受伸缩;第二,与中面平行的各面上的正应力z σ与应力x σ,y σ和xy τ相比属于小量;第三,在横向载荷作用下板发生弯曲时,板的中面并不伸长,这也就是说,薄板中面内各点都没有平行于中面的位移分量。 用变分法可以导出薄板弯曲问题的平衡微分方程和边界条件。当板的形状和边界条件较复杂时,直接求解偏微分方程时比较困难的,以变分法为基础的各种近似解是求解这类问题的一个重要途径。 本章讨论了用于薄板小挠度弯曲问题的一些基础变分原理,这包括虚功原理、最小位能原理、最小余能原理、两类自变量广义变分原理并推广到三类自变量广义变分原理。 §6.1 基本方程与边界条件回顾 取坐标平面oxy 与中面重合,z 轴垂直于中面,x ,y 和z 轴构成一个右手直角笛卡儿坐标系。变形后的板内各点沿x ,y 和z 轴方向的位移分别用u ,v 和w 表示。由Kirchhoff 假设,可以得到 x w z z y x u ??-=),,(,y w z z y x v ??-=),,(,),(),,(y x w z y x w = (6-1) 并利用弹性力学中位移与应变之间的关系式,可以得到薄板中任意点的应变分量为 22x w z x ??-=ε,22y w z y ??-=ε,y x w z xy ???-=γ22 (6-2) 其余3个应变分量z ε,xz γ和yz γ根据假设都等于零,即 0=εz ,0=γxz ,0=γyz (6-3) 由薄板的平衡关系,可以确定板的横向分布载荷),(y x q 与剪力x Q ,y Q 以及弯矩 x M ,y M 和扭矩xy M (x M ,y M ,xy M 统称 为内力矩)与x Q ,y Q 之间的关系式。这里要注意,x M ,y M ,xy M 是单位中面宽度内的内力矩,它们的因次是千克力,x Q ,y Q 是单位中面宽度内的内力,它们的因次是千克力

有限元填空选择题及答案

1有限元是近似求解_一般连续_场问题的数值方法 2有限元法将连续的求解域离散为若干个子域_,得到有限个单元,单元和单元之间用节点相连 3从选择未知量的角度来看,有限元法分为三类位移法. 力法混合法 4以_节点位移_为基本未知量的求解方法称为位移法. 5以_节点力_为基本未知量的求解方法称为力法. 6一部分以__节点位移__,另一部分以_节点力_为基本未知量的求解方法称为混合法. 7直梁在外力的作用下,横截面的内力有剪力_和_弯矩_两个. 8平面刚架结构在外力的作用下,横截面上的内力有轴力_ 、剪力_和弯矩. 9进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角 10平面刚架结构中,已知单元e的坐标变换矩阵[T e ]和在局 部坐标系x’O’y’下的单元刚度矩阵[K’]e ,则单元在真体坐标 系xOy下的单元刚度矩阵为_ [K]e = [T e ] T [K’] e [T e ] 13弹性力学问题的方程个数有15个,未知量的个数有15个. 14弹性力学平面问题的方程个数有8_个,未知量个数有8_个15几何方程是研究__应变___和_位移之间关系的方程 16物理方程是描述_应力_和_应变_关系的方程 17平衡方程反映了_应力__和_位移_之间关系的 18把经过物体内任意一点各个_ 截面上的应力状况叫做__该点_的应力状态 19形函数在单元上节点上的值,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_ 20 形函数是_三角形_单元内部坐标的_线性位移_函数,他反映了单元的_位移_状态 21在进行节点编号时,要尽量使用同一单元的相邻节点的狭长的带状尽可能小,以使最大限度地缩小刚度矩阵的带宽,节省存储,提高计算效率. 22三角形单元的位移模式为_线性位移模式_- 23矩形单元的位移模式为__线性位移模式_ 24在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何_各向同性 25单元刚度矩阵描述了_节点力_和_节点位移之间的关系 26在选择多项式作为单元的位移模式时,多项式阶次的确定,要考虑解答的收敛性,即要满足单元的_完备性和协调性要求27三节点三角形单元内的应力和应变是_常数,四节点矩形单元内的应力和应变是线性_变化的 28在矩形单元的边界上,位移是线性_变化的 29整体刚度是一个呈_ 狭长的带状_分布的稀疏矩阵 30整体刚度[K]是一个奇异阵,在排除刚体位移_后,它正义阵1从选择未知量的角度来看,有限元法可分为三类(力法,位移法,混合法) 2下列哪有限元特点的描述中,哪种说法是错误的(D需要使用于整个结构的插值函数) 3几何方程研究的是(A应变和位移)之间关系的方程式 4物理方程是描述(D应力和应变)关系的方程 5平衡方程研究的是(C应力和位移)之间关系的方程式 6在划分单元时,下列哪种说话是错误的(A一般首选矩形单元) 7下列哪种单元的单元刚度矩阵必须通过积分才能得到(D矩形单元) 8单元的刚度矩阵不取决于下列哪种因素(B单元位置) 9可以证明,在给定载荷的作用下,有限元计算模型的变形与实际结构变形之间的关系为(B前者小于后者) 10ANSYS按功能作用可分为若干个处理器,其中(B求解器)用于施加载荷和边界条件 11下列有关有限元分析法的描述中,哪种说话是错误的(B单元之间通过其边界连接成组合体) 12下列关于等参数单元的描述中,哪些说话是错误的(C将规则单元变换为不规则单元后,易于构造位移模式) 13从选择未知量的角度来看,有限元可以分为三类,混合法的未知量是(C节点力和节点位移) 14下列对有限元特点的描述中,哪种说话是错误的(B对有限元求解域问题没有较好的处理方法) 15在划分单元时,下列哪种说话错误(D自由端不能取为节点) 16对于平面问题,选择单元一般首选(D三角形单元或等参单元) 17下列哪种说法不是形函数的性质(C三角形单元任一条边上的形函数,与三角形的三个节点坐标都有关) 18下列四种假设中,哪种分析不属于分析弹性力学的基本假设(C大变形假设) 19下列四种假设中,哪种不属于分析弹性力学的基本假设(B 有限变形假设) 20下列关于三角形单元说法中哪种是错误的(C在单元的公共边上应力和应变的值是连续的) 21下列关于矩形单元的说法哪项是错误的(D其形函数是线形的) 22应用圣维南原理简化边界条件时,静力等效是指前后的力系的(D主矢量相同,对于同一点的主矩也相同) 24描述同一点的应力状态需要的应力分量是(C6个) 25在选择多项式作为单元的位移模式时.多项式阶次的确定,要考虑解答的收敛性,哪种说法不是单元必须满足的要求(D 对称性)

有限元分析薄板挠度(附C程序)

1问题描述 某周边简支非均匀的矩形(或圆形)板在均布载荷作用下挠度过大。结合实际,提出集中改进设计方案,并进行对比分析。 2.问题分析 不均匀板有两种主要的情况,结构不均匀和材料不均匀,结构不均匀是指板的厚度不是常量,材料不均匀体现在板的弹性模量和泊松比是变化的。另外,有的板可以是以上两种情况的混合情形。 不均匀板与均匀板的有限元问题有哪些差别呢?下面从均匀板问题推导出非均匀板有限元问题的解决方法。 2.1应力应变 先以结构不均匀板为例来讨论。假设一矩形板长为2,宽为2,厚度沿x ,y 不均匀,由一函数()h ,h x y =描述,但仍然符合薄板假设。对于均匀板,显然h 是一个常数。设挠度为()=x,y ωω,则板内应变向量可以表示为 {}2222211==z 1 2x x y y xy xy x z y x y ρεεεω εγγ?????????????????????????? ?=-???????????????????????? ?????????? 应力应变关系为 {}1p z D σρ????=? ????? 弯矩扭矩矩阵 {}{}()() h ,2h ,2 x y x y M zdz σ-=? 这里就体现出不均匀板和均匀板的区别了。积分完毕后,可以得到 {}[]1M D ρ?? =????

其中薄板的弯曲系数矩阵 []()()()3 21 ,101210 1/2Eh x y D μ μμμ?? ??=??-??-?? 是关于薄板总体坐标的函数,所以对各个分单元都是不同的。 各单元的弯曲系数矩阵可以采用单元中心处的代替。那么就可以得出一系列的弯曲系数矩阵[]D e i 。如果单元划分得足够细,是可以代替真实解的。 2.2单元分析 可以将板分为边长为0.25的矩形小单元,每一个单元都是一样的。对于任何一个单元的节点,都有3项独立的位移 {}i i i xi i yi i w w w y w x δθθ???? ? ???????????? ==???? ??????????? ??????- ???????? 位移模式 ()223123456722333 89101112,w x y x y x xy y x x y xy y x y xy αααααααααααα=+++++++ ++++ 形状函数矩阵是一个112?的行向量 ()[],k l m n N x y N N N N =???? 其中 222222222 2 22222211128111111i i i i i i i i i i i i i x x y y x x y y x y N a b a b a b x x y y y y x x y y x x y x a b b a b a ? ??????=++++--?? ? ????????????? ? ????????????++--++-? ??? ? ? ????????????????? (),,,i k l m n = 单元刚度矩阵 [][][][]1212e e T S k B D B dxdy ?=? 很明显,积分式中包含了弹性系数矩阵,而不同单元的弹性系数矩阵是不同的,所以, 即便单元划分相同,得到的单元刚度矩阵也不同。对于均匀板,相同形式的单元,刚度矩阵

华科大有限元分析题及大作业题答案——船海专业(DOC)

姓名:学号:班级:

有限元分析及应用作业报告 一、问题描述 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。

二、几何建模与分析 图1-2力学模型 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图1-2所示,建立几何模型,进行求解。 假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3 三、第1问的有限元建模 本题将分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算。 1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural 2)选择单元类型:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元;六节点三角形单元选择的类型是PLANE183(Quad 8node183),该单元属于是八节点单元类型,在网格划分时可以对节点数目控制使其蜕化为六节点单元。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 3)定义材料参数 4)生成几何模 a. 生成特征点 b.生成坝体截面 5)网格化分:划分网格时,拾取所有线段设定input NDIV 为10,选择网格划分方式为Tri+Mapped,最后得到200个单元。 6)模型施加约束: 约束采用的是对底面BC全约束。 大坝所受载荷形式为Pressure,作用在AB面上,分析时施加在L AB上,方向水平向右,载荷大小沿L AB由小到大均匀分布(见图1-2)。以B为坐标原点,BA方向为纵轴y,则沿着y方向的受力大小可表示为: ρ(1) = gh P- =ρ g = - 10 {* } 98000 98000 (Y ) y

ANSYS 有限元分析 平面薄板

《有限元基础教程》作业二:平面薄板的有限元分析 班级:机自101202班 姓名:韩晓峰 学号:201012030210 一.问题描述: P P h1mm R1mm 10m m 10mm 条件:上图所示为一个承受拉伸的正方形板,长度和宽度均为10mm ,厚度为h 为1mm ,中心圆的半径R 为1mm 。已知材料属性为弹性模量E=1MPa ,泊松比为0.3,拉伸的均布载荷 q =1N/mm 2。根据平板结构的对称性,只需分析其中的二分之一即可,简化模型如上右图所 示。 二.求解过程: 1 进入ANSYS 程序 →ANSYS 10.0→ANSYS Product Launcher →File management →input job name: ZY2→Run 2设置计算类型 ANSYS Main Menu: Preferences →select Structural → OK 3选择单元类型 ANSYS Main Menu: Preprocessor →Element Type →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK → Options… →select K3: Plane Strs w/thk →OK →Close 4定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX: 1e6, PRXY:0.3 → OK 5定义实常数以及确定平面问题的厚度 A NSYS Main Menu: Preprocessor →Real Constants …→Add/Edit/Delete →Add →Type 1→OK →Real Constant Set No.1,THK:1→OK →Close 6生成几何模型 a 生成平面方板 ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Rectangle →By 2 Corners →WP X:0,WP Y:0,Width:5,Height:5→OK b 生成圆孔平面 ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Circle →Solid Circle →WPX=0,WPY=0,RADIUS=1→OK b 生成带孔板 ANSYS Main Menu: Preprocessor →Modeling →Operate →Booleans → Subtract →Areas →点击area1→OK →点击area2→OK 7 网格划分 A NSYS Main Menu: Preprocessor →Meshing →Mesh Tool →(Size Controls) Global: Set →SIZE: 0.5 →OK →iMesh →Pick All → Close

有限元法课后习题答案

1、有限元是近似求解一般连续场问题的数值方法 2、有限元法将连续的求解域离散为若干个子域,得到有限个单元,单元和单元之间用节点连接 3、直梁在外力的作用下,横截面的内力有剪力和弯矩两个. 4、平面刚架结构在外力的作用下,横截面上的内力有轴力、剪力、弯矩. 5、进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角 6、平面刚架有限元分析,节点位移有轴向位移、横向位移、转角。 7、在弹性和小变形下,节点力和节点位移关系是线性关系。 8、弹性力学问题的方程个数有15个,未知量个数有15个。 9、弹性力学平面问题方程个数有8,未知数8个。 10、几何方程是研究应变和位移之间关系的方程 11、物理方程是描述应力和应变关系的方程 12、平衡方程反映了应力和体力之间关系的 13、把经过物体内任意一点各个截面上的应力状况叫做一点的应力状态 14、9形函数在单元上节点上的值,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_ 15、形函数是_三角形_单元内部坐标的_线性_函数,他反映了单元的_位移_状态 16、在进行节点编号时,同一单元的相邻节点的号码差尽量小. 17、三角形单元的位移模式为_线性位移模式_- 18、矩形单元的位移模式为__双线性位移模式_

19、在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何_各向同性 20、单元刚度矩阵描述了_节点力_和_节点位移之间的关系 21、矩形单元边界上位移是连续变化的 1.诉述有限元法的定义 答: 有限元法是近似求解一般连续场问题的数值方法 2.有限元法的基本思想是什么 答: 首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。 3.有限元法的分类和基本步骤有哪些 答: 分类: 位移法、力法、混合法;步骤: 结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。 4.有限元法有哪些优缺点 答: 优点:

薄板压力容器盖的热-结构耦合有限元分析

北京工商大学学报(自然科学版) 左右的蒙板,纵横各4块,下蒙板为2mm厚半径为 140 mm的球冠型薄板.球冠型蒙板与侧板之间的 密封槽和密封圈结构对计算影响较小,忽略为球冠型下蒙板与边缘平板直接连接的结构.所有的薄板的连接均采用粘结方式,便于各薄板分别划分网格. 容器盖上附有耳子、安全连锁及钩锁,均焊接在容器盖的侧蒙板上.安全连锁的锁片和锁舌虽是接触关系,但工作状态下二者一直处于接触状态,简化为粘贴关系I钩锁结构的两钩接触面上建立接触对. 容器盖上有通气管和安全卸压装置,因工作压力下这些装置处于关闭状态,故简化模型将其忽略. 鉴于简化后的压力容器盖的对称性,取其一半建立有限元模型,如图1,图2为安全连锁模型图. 图1有限元模型 点的正确联结,从而保证计算精度.如本文压力容器盖就应首先对上下蒙板划分网格,其次是肋板和侧板. 单元边长应小于等于板厚度,或通过建立相似模型进行简单试计算,验证结果的精确性来确定网格大小.在对压力容器盖划分网格前,单独建立上蒙板模型,单元边长设置为2mm,进行100℃恒温热应力分析,ANSYS分析结果位移值与计算结果基本相同,所以设置压力容器盖的单元边长为2mm 即可满足计算精度要求. 耳子、安全连锁及钩锁是主要承力构件,细化耳子与容器盖的连接处以及安全连锁的螺钉和钩锁结构的销钉的网格,从而确保分析结果更加精确.2.2求解及结果分析 2.2.1温度场分析 忽略容器盖向空间辐射的热量及肋板中间空隙的空气对流,下蒙板温度边界条件105℃,外界为40℃空气对流,对流系数为12.5W/(m?℃),环境温度为20℃,稳态分析,结果如图3、图4. 图3热分析整体结果温度 图z安全连锁 2.1.2单元选择及网格划分 一般的有限元计算及分析可采用的单元类型都不只一种,分析时可按照计算要求、载荷情况及预期结果等因素进行选择. 文中模型结构不规则,计算精度要求高,所以选择六节点四面体单元Solid87和二十节点四面体单图4热分析肋板组元结果温度 元Solid92分别进行热分析和结构分析的网格划 2.2.2热应力分析 分. 耳子是压力容器盖与压力容器基座固定和连接 薄板结构的网格划分应当首先从最薄的板开 的装置,设定耳子轴孔各方向位移都为0;因安全连始,依次单个进行,以保证网格的精度要求和边界节 锁的锁舌可在固定的锁孔里沿z、z向滑动,但建模

第12章 薄板的小挠度弯曲问题

第十二章薄板的小挠度弯曲问题知识点 薄板的基本概念 薄板的位移与应变分量 薄板广义力 薄板小挠度弯曲问题基本方程薄板自由边界条件的简化 薄板的莱维解 矩形简支薄板的挠度基尔霍夫假设 薄板应力 广义位移与薄板的平衡 薄板的典型边界条件 薄板自由边界角点边界条件挠度函数的分解 一、内容介绍 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板。薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。薄板的小挠度弯曲理论是由基尔霍夫基本假设作为基础的。 根据基尔霍夫假设,采用位移解法,就是以挠度函数作为基本未知量求解。因此,首先将薄板的应力、应变和内力用挠度函数表达。然后根据薄板单元体的平衡,建立挠度函数表达到平衡方程。 对于薄板问题,边界条件的处理与弹性力学平面等问题有所不同,典型形式有几何边界、混合边界和面力边界条件。 二、重点 1、基尔霍夫假设; 2、薄板的应力、广义力和广义位移; 3、薄板小 挠度弯曲问题的基本方程;4、薄板的典型边界条件及其简化。 §12.1 薄板的基本概念和基本假设

学习要点: 本节讨论薄板的基本概念和基本假设。 薄板主要几何特征是板的中面和厚度。首先,根据几何尺寸,定义薄板为0.5≤δ/b≥1/80,并且挠度小于厚度的五分之一,属于小挠度问题。对于小挠度薄板,在横向载荷作用下,将主要产生弯曲变形。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。 薄板的小挠度弯曲理论是由三个基本假设作为基础的,因为这些基本假设是由基尔霍夫首先提出的,因此又称为基尔霍夫假设。 根据上述假设建立的薄板小挠度弯曲理论是弹性力学的经典理论,长期应用于工程问题的分析。实践证明是完全正确的。 学习思路: 1、薄板基本概念; 2、基尔霍夫假设 1、薄板基本概念 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板 薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。 薄板的上下两个平行面称为板面,垂直于平行面的柱面称为板边,如图所示。两个平行面之间的距离称为板厚,用δ 表示。平分板厚的平面称为板的中面。 设薄板宽度为a、b,假如板的最小特征尺寸为b,如果δ/b≥1/5,称为厚板;

第十四讲 薄板小挠度弯曲(一)汇总

第十四讲 薄板小挠度弯曲理论(一) 概念和假定 薄板:板的厚度远小于中面最小尺寸的板。 荷载 纵向荷载:作用在板中面以内的荷载,可以认为沿板的厚度均布,按平面应力计算。 横向荷载:使薄板弯曲,按薄板弯曲问题计算。 中面弯曲所形成的曲面称为薄板的 弹性曲面,中面内各点的横向位移 称为挠度。 薄板弯曲的基本假设(基尔霍夫假设) (1)垂直于中面方向的正应变εz 可以不计,由?w /?z = 0得到 w = w (x , y ) 板厚度内各点具有相同的挠度。 放弃物理方程:)]([1 y x z z E σσμσε+-= 目地:允许σz -μ(σx +σy ) ≠ 0 (2)应力分量τxz 、τyz 、σz 远小于其余三个应力分量,它们所引起的应变可以不计(它们本身是平衡所需,不能不计),即认为γxz = γyz = 0(一般,薄板弯曲问题中,τxz 、τyz 是次要应力,σz 则为更次要应力) 0=??+??x w z u ,x w z u ??-=?? 0=??+??y w z v ,y w z v ??-=?? x

放弃物理方程:xz xz E τμγ)1(2+= ,yz yz E τμγ) 1(2+= 即:允许γxz 和γyz 等于零,但τxz 和τyz 不为零。 只有三个物理方程 )(1 y x x E μσσε-= )(1 x y y E μσσε-= xy xy E τμγ) 1(2+= 与平面应力问题相同。 (3)薄板中各点都没有平行于中面的位移,(u )z = 0 = 0,(v )z = 0 = 0,因此,(εx )z = 0 = 0,(εy )z = 0 = 0,(γxy )z = 0 = 0 薄板弯曲后,在xy 平面的投影形状不变。 弹性曲面微分方程 按位移求解,基本未知量为挠度w ,需将其它物理量用w 表示,由 x w z u ??-=??,y w z v ??-=?? 积分得到:),(1y x f z x w u +??- =,),(2y x f z y w v +??-= 由:(u )z = 0 = 0,(v )z = 0 = 0得到:f 1(x , y ) = f 2(x , y ) = 0,因此 z x w u ??- =,z y w v ??-= 则: z x w x u x 22??-=??=ε,z y w y v y 22??-=??=ε,z y x w x v y u xy ???-=??+??=22γ 将应力分量σx 、σy 、τxy 用w 表示 ??? ? ????+??--=+-=2222221)(1y w x w Ez E y x x μμμεεμσ

有限元复习题答案

1、何为有限元法?其基本思想是什么? 有限元法是一种基于变分法而发展起来的求解微分方程的数值计算方法,该方法以计算机为手段,采用分片近似,进而逼近整体的研究思想求解物理问题。 基本思想是化整为零集零为整。 2、为什么说有限元法是近似的方法,体现在哪里? 有两点:用离散单元的组合体来逼近原始结构,体现了几何上的近似;而用近似函数逼近未知变量在单元内的真实解,体现了数学上的近似。 3、单元、节点的概念? 节点:表达实际结构几何对象之间相互连接方式的概念 单元:网格划分中的每一个小部分称为单元,网格间相互联结点称为节点 4、有限元法分析过程可归纳为几个步骤? 结构离散化、单元分析、整体分析 5、有限元方法分几种?本课程讲授的是哪一种? 位移法、力法、混合法本课程讲授位移法 6、弹性力学的基本变量是什么?何为几何方程、物理方程及虚功方程?弹性矩阵的特点? 弹性力学变量:外力、应力、应变和位移。 描述弹性体应变分量与位移分量之间的方程称为几何方程;物理方程描述应力分量与应变分量之间的关系;弹性体上外力在虚位移发生过程中所做的虚功与储存在弹性体内的需应变能相等。 弹性矩阵由材料的弹性模量和泊松比确定,与坐标位置无关。 7、何为平面应力问题和平面应变问题? 平面应力问题:在结构上满足a几何条件:研究对象是等厚度薄板。b载荷条件:作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面无外力作用。 平面应变问题:满足a几何条件:长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变。b载荷条件:作用于长柱体结构上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力两条件的弹性力学问题。 1、何为结构的离散化?离散化的目的?何为有限元模型? ①离散化:把连续的结构看成由有限个单元组成的集合体。②目的:建立有限元计算模型③通常把由节点,单元及相应的节点载荷和节点约束构成的模型称为有限元模型2、结构离散化时,划分单元数目的多少以及疏密分布,将直接影响到什么?确定单元数量的原则?通常如何设置节点?

有限元分析大作业试题

有限元分析习题及大作业试题 要求:1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方 案、载荷及边界条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分 析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单 元改变对精度的影响分析、不同网格划分方案对结果的 影响分析等) E、建议与体会 4)11月1日前必须完成,并递交计算分析报告(报告要求打印)。

习题及上机指南:(试题见上机指南) 例题1 坝体的有限元建模与受力分析 例题2 平板的有限元建模与变形分析 例题1:平板的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: plane 0.5 m 0.5 m 0.5 m 0.5 m 板承受均布载荷:1.0e 5 P a 图1-1 受均布载荷作用的平板计算分析模型 1.1 进入ANSYS 程序 →ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: plane →Run 1.2设置计算类型 ANSYS Main Menu : Preferences →select Structural → OK 1.3选择单元类型 ANSYS Main Menu : Preprocessor →Element T ype →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element T ypes window) → Options… →select K3: Plane stress w/thk →OK →Close (the Element T ype window) 1.4定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY :0.3 → OK 1.5定义实常数 ANSYS Main Menu: Preprocessor →Real Constant s… →Add … →select T ype 1→ OK →input THK:1 →OK →Close (the Real Constants Window)

有限元分析及其应用思考题附答案2012

有限元分析及其应用-2010 思考题: 1、有限元法的基本思想是什么?有限元法的基本步骤有那些?其中“离散”的含义是什 么?是如何将无限自由度问题转化为有限自由度问题的? 答:基本思想:几何离散和分片插值。 基本步骤:结构离散、单元分析和整体分析。 离散的含义:用假想的线或面将连续物体分割成由有限个单元组成的集合,且单元之间仅在节点处连接,单元之间的作用仅由节点传递。当单元趋近无限小,节点无限多,则这种离散结构将趋近于实际的连续结构。 2、有限元法与经典的差分法、里兹法有何区别? 区别:差分法:均匀离散求解域,差分代替微分,要求规则边界,几何形状复杂精度较低; 里兹法:根据描述问题的微分方程和相应的定解构造等价的泛函表达式,求得近似解; 有限元:基于变分法,采用分片近似进而逼近总体的求解微分方程的数值计算方法。 3、一根单位长度重量为q的悬挂直杆,上端固定,下端受垂直向下的外力P,试 1)建立其受拉伸的微分方程及边界条件; 2)构造其泛函形式; 3)基于有限元基本思想和泛函求极值构造其有限元的计算格式(即最小势能原理)。4、以简单实例为对象,分别按虚功原理和变分原理导出有限元法的基本格式(单元刚度矩 阵)。 5、什么是节点力和节点载荷?两者有何区别? 答:节点力:单元与单元之间通过节点相互作用 节点载荷:作用于节点上的外载 6、单元刚度矩阵和整体刚度矩阵各有何特点?其中每个矩阵元素的物理意义是什么(按自 由度和节点解释)? 答:单元刚度矩阵:对称性、奇异性、主对角线恒为正 整体刚度矩阵:对称性、奇异性、主对角线恒为正、稀疏性、带状性。 Kij,表示j节点产生单位位移、其他节点位移为零时作用i节点的力,节点力等于节点位移与单元刚度元素乘积之和。 7、单元的形函数具有什么特点?有哪些性质? 答:形函数的特点:Ni为x,y的坐标函数,与位移函数有相同的阶次。 形函数Ni在i节点的值为1,而在其他节点上的值为0; 单元内任一点的形函数之和恒等于1; 形函数的值在0~1间变化。 8、描述弹性体的基本变量是什么?基本方程有哪些组成? 答:基本变量:外力、应力、应变、位移 基本方程:平衡方程、几何方程、物理方程、几何条件 9、何谓应力、应变、位移的概念?应力与强度是什么关系? 答:应力:lim△Q/△A=S △A→0 应变:物体形状的改变 位移:弹性体内质点位置的变化 10、问题的微分方程提法、等效积分提法和泛函变分提法之间有何关系?何谓“强形 式”?何谓“弱形式”,两者有何区别?建立弱形式的关键步骤是什么?

有限单元法部分课后题答案

1.1 有限单元法中“离散”的含义是什么?有限单元法是如何将具有无限自由度的连续介质问题转变成有限自由度问题的?位移有限元法的标准化程式是怎样的? (1)离散的含义即将结构离散化,即用假想的线或面将连续体分割成数目有限的单元,并在其上设定有限个节点;用这些单元组成的单元集合体代替原来的连续体,而场函数的节点值将成为问题的基本未知量。 (2)给每个单元选择合适的位移函数或称位移模式来近似地表示单元内位移分布规律,即通过插值以单元节点位移表示单元内任意点的位移。因节点位移个数是有限的,故无限自由度问题被转变成了有限自由度问题。 (3)有限元法的标准化程式:结构或区域离散,单元分析,整体分析,数值求解。 1.3 单元刚度矩阵和整体刚度矩阵各有哪些性质?各自的物理意义是什么?两者有何区别?单元刚度矩阵的性质:对称性、奇异性(单元刚度矩阵的行列式为零)。整体刚度矩阵的性质:对称性、奇异性、稀疏性。单元 Kij 物理意义 Kij 即单元节点位移向量中第 j 个自由度发生单位位移而其他位移分量为零时,在第 j 个自由度方向引起的节点力。整体刚度矩阵 K 中每一列元素的物理意义是:要迫使结构的某节点位移自由度发生单位位移,而其他节点位移都保持为零的变形状态,在所有个节点上需要施加的节点荷载。 2.2 什么叫应变能?什么叫外力势能?试叙述势能变分原理和最小势能原理,并回答下述问题:势能变分原理代表什么控制方程和边界条件?其中附加了哪些条件? (1)在外力作用下,物体内部将产生应力σ和应变ε,外力所做的功将以变形能的形式储存起来,这种能量称为应变能。 (2)外力势能就是外力功的负值。 (3)势能变分原理可叙述如下:在所有满足边界条件的协调位移中,那些满足静力平衡条件的位移使物体势能泛函取驻值,即势能的变分为零 δ∏p=δ Uε+δV=0 此即变分方程。对于线性弹性体,势能取最小值,即 δ2∏P=δ2Uε+δ2V≥0 此时的势能变分原理就是著名的最小势能原理。 势能变分原理代表平衡方程、本构方程和应力边界条件,其中附加了几何方程和位移边界条件。 2.3 什么是强形式?什么是弱形式?两者有何区别?建立弱形式的关键步骤是什么? 等效积分形式通过分部积分,称式 ∫ΩCT(v)D(u)dΩ+∫ΓET(v)F(u)dΓ 为微分方程的弱形式,相对而言,定解问题的微分方程称为强形式。 区别:弱形式得不到解析解。建立弱形式的关键步骤:对场函数要求较低阶的连续性。2.4 为了使计算结果能够收敛于精确解,位移函数需要满足哪些条件?为什么? 只要位移函数满足两个基本要求,即完备性和协调性,计算结果便收敛于精确解。 2.6 为什么采用变分法求解通常只能得到近似解?变分法的应用常遇到什么困难?Ritz 法收敛的条件是什么? (1)在 Ritz 法中,N 决定了试探函数的基本形态,待定参数使得场函数具有一定的任意性。如果真实场函数包含在试探函数之内,则变分法得到的解答是精确的;如果试探函数取自完全的函数序列,则当项数不断增加时,近似解将趋近于精确解。然而,通常情况下试探函数不会将真实场函数完全包含在内,实际计算时也不可能取无穷多项。因此,试探函数只能是真实场函数的近似。可见,变分法就是在某个假定的范围内找出最佳解答,近似性就源于此。 (2)采用变分法近似求解,要求在整个求解区域内预先给出满足边界条件的场函数。通常情况下这是不可能的,因而变分法的应用受到了限制。 (3)Ritz 法的收敛条件是要求试探函数具有完备性和连续性,也就是说,如果试探函数满足完备性和连续性的要求,当试探函数的项数趋近于无穷时,则 Ritz 法的近似解将趋近于数学微分方程的精确解。 3.1 构造单元形函数有哪些基本原则? 形函数是定义于单元内坐标的连续函数。单元位移函数通常采用多项式,其中的待定常数应该与单元节点自由度数相等。为满足完备性要求,位移函数中必须包括常函数和一次式,即完全一次多项式。多项式的选取应由低阶到高阶,尽量选择完全多项式以提高单元的精度。若由于项数限制而不能选取完全多项式时,也应使完全多项式具有坐标的对称性,并且一

第五章 薄板弯曲问题有限元讲义

第五章薄板弯曲问题有限元法 第一节薄板弯曲问题的有关概念 一、基本概念 1.薄板的定义:薄板是由上下两个平行的表面所构成的片状结构,其间距称为板厚。同时,定义等分板厚的面为中面,当中面为平面时,称为平板,当中面为曲面时则称为壳体。 2.挠度; 板结构在承受横向载荷(弯矩、扭矩和横向剪力)作用下,发生弯扭而使薄板中面上各个点沿垂直中面方向发生的横向变形称为挠度,记为w。 3.薄板的两类问题: (1)平面应力板问题,载荷作用于板面内—(薄膜单元);在拉、压力和面内切力作用下,板内将产生薄膜内力,从而使板产生面内变形。。 (2)薄板弯曲问题:其特点为: a) 几何尺寸:板的厚度远较长与宽的几何尺寸为小(一般厚度与板面最小尺寸之比小于1/5-1/10);(否则称为厚板) b) 载荷条件:结构仅承受垂直于板中面的横向载荷作用。 c) 小挠度条件;即挠度与板厚之比值较小,一般为w/t ≤1/5。 研究薄板弯曲问题时,通常以未变形的板的中面为xoy平面,厚度方向为z轴方向,3.板的一般问题: 一般情况下,板既可承受横向载荷作用,也可同时承受平行于板中面的膜载荷作用。 (1) 薄板:在小挠度情况下,当两种载荷同时作用时,可认为两种变形互不影响,因此膜载荷的作用可按平面应力问题进行处理,而横向载荷的作用则按薄板弯曲问题来分析,两种问题引起的薄膜内力和弯曲内力的叠加便是一般载荷综合作用的结果。 (2)厚板:当1

薄板有限元分析

板中圆孔的应力集中 问题:如图所示为一个承受单向拉伸的无限大板,在其中心位置有一个小圆孔。材料属性为弹性模量E=Pa,泊松比为0.3,拉伸载荷q=1000Pa,平板厚度t=0.1. 1、定义工作名和工作标题 (1)定义工作文件名:在弹出的Change Jobname对话框中输入Plate。选择New log and error files复选框,单击OK按钮。 (2)定义工作标题:在弹出的的Change Title对话框中输入The analysis of plate stress with small circle,单击OK按钮。 (3)重新显示:执行replot命令。 2、定义单元类型和材料属性 (1)选择单元类型:在弹出的Element Type中,单击Add按钮,弹出所示

对话框,选择Structural Solid和Quad 8node 82选项,单击OK,然后 单击close。 (2)设置材料属性:在弹出的define material models behavior窗口中,双击structural/linear/elastic/isotropic选项,弹出linear isotropic material properties for material number 1对话框,EX和PRXY分别输入2e11和 0.3,单击OK,执行exit命令。 (3)保存数据:单击SAVE_DB按钮。 3、创建几何模型 (1)生成一个矩形面:执行相应操作弹出create rectangle by dimensions对话

框,输入数据,单击OK,显示一个矩形。 (2)生成一个小圆孔:执行创建圆的操作弹出对话框,输入数据,单击OK,生成一个圆。 (3)执行面相减操作:执行Booleans/Subtract/Areas命令,生成结果如图示。 (4)保存几何模型:单击SAVE_DB按钮。 4、生成有限元网格(自由网格划分) (1)设置网格的尺寸大小:执行size cntrlsl-global-size命令,弹出对话框,在element edge lenge文本框中输入0.5,单击OK. (2)采用自由网格划分:执行mesh/areas/free命令,生成网格模型如图示。 (3)保存结果:单击SAVE_DB按钮。 5、施加载荷并求解

有限元复习题答案

1、何为有限元法?其基本思想是什么? 有限元法是一种基于变分法而发展起来的求解微分方程的数值计算方法,该方法以计算机为手段,采用分片近似,进而逼近整体的研究思想求解物理问题。 基本思想是化整为零集零为整。 2、为什么说有限元法是近似的方法,体现在哪里? 有两点:用离散单元的组合体来逼近原始结构,体现了几何上的近似;而用近似函数逼近未知变量在单元内的真实解,体现了数学上的近似。 3、单元、节点的概念? 节点:表达实际结构几何对象之间相互连接方式的概念 单元:网格划分中的每一个小部分称为单元,网格间相互联结点称为节点 4、有限元法分析过程可归纳为几个步骤? 结构离散化、单元分析、整体分析 5、有限元方法分几种?本课程讲授的是哪一种? 位移法、力法、混合法本课程讲授位移法 6、弹性力学的基本变量是什么?何为几何方程、物理方程及虚功方程?弹性矩阵的特点? 弹性力学变量:外力、应力、应变和位移。 描述弹性体应变分量与位移分量之间的方程称为几何方程;物理方程描述应力分量与应变分量之间的关系;弹性体上外力在虚位移发生过程中所做的虚功与储存在弹性体内的需应变能相等。 弹性矩阵由材料的弹性模量和泊松比确定,与坐标位置无关。 7、何为平面应力问题和平面应变问题? 平面应力问题:在结构上满足a几何条件:研究对象是等厚度薄板。b载荷条件: 作用于薄板上的载荷平行于板平面且沿厚度方向均匀分布,而在两板面无外力作用。 平面应变问题:满足a几何条件:长柱体,即长度方向的尺寸远远大于横截面的尺寸,且横截面沿长度方向不变。b载荷条件:作用于长柱体结构上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力两条件的弹性力学问题。 1、何为结构的离散化?离散化的目的?何为有限元模型? ①离散化:把连续的结构看成由有限个单元组成的集合体。②目的:建立有限元计算模型③通常把由节点,单元及相应的节点载荷和节点约束构成的模型称为有限元模型 2、结构离散化时,划分单元数目的多少以及疏密分布,将直接影响到什么?确定单元数量的原则?通常如何设置节点?

相关文档
最新文档