有限元经典算例2 正方形薄板平面应力问题的求解

有限元经典算例2 正方形薄板平面应力问题的求解
有限元经典算例2 正方形薄板平面应力问题的求解

算例2: 正方形薄板平面应力问题的求解

已知图示正方形薄板,沿其对角线承受压力作用,载荷沿厚度为均匀分布,P=20kN/m 。设泊松比u=0,板厚t=1m ,求此薄板应力。

课本第42页3.7节计算结果如下: 变形:

????????????????????----=???????????????????

?76.176.172.388.052.1252.32653321u u v u v v 应力:

)/(40.40.2088.02

1

m kN xy y x ?

????

?????--=??????????τσσ; )/(052.1276.12

2

m kN xy y x ?????

?????-=????

??????τσσ; )/(08.372.388.023

m kN xy y x ?????

?????--=????

??????τσσ; )/(32.172.3024

m kN xy y x ??????????--=????

??????τσσ

下面用Pantran/Nastran 软件计算:

Plane_stess_square_plate,

[2000 0 0][0 1000 0]

Curve2,

23, curve3, 3

1

edge,option3edge,Auto execute,surface edge 1 list curve 1,surface edge 2 list curve 2,surface edge 3 list curve 3,

2,Surface 1.2 1.3 1.4(按住shift键,可

连续选取三条边),

surface,elem shape tria,

mesher Isomesh,Topology tria3,surface surface 1,

划分网格如下:

New set name d1,<0., ,>,

2,3,

即在面的左上两个节点处施加x方向约束。

同理,New set name d2,< , 0.,>,

Node5,6,

即在面的右下两个节点处施加y方向约束。

New set name d3,< 0, 0.,>,

Node1,

即在面的左下一个节点处施加x、y两方向约束。

<0., -10000., 0.>,

3,即在节点1处施加10kN的集中力;

施加了边界条件的图形如下:

m,

1,

2D ,2D Solid ,

plane

strain

m :m ,

surface 1,

此时,Patran 会产生一个bdf 文件。运行Nastran ,打开Plane_stess_square_plate.bdf

文件,Nastran 开始计算,几秒钟后会有“滴”一声,计算完毕,产生一个

Plane_stess_square_plate.xdb 文件。

Plane_stess_square_plate.xdb ,

1)显示节点位移值:Action creat ,object ,Method Vector ,Select Result Cases Default A2:Static Subcase; Select Vector Result Displacements ,translational ,show as

component

xx 、yy ,

教材计算结果:??????

??????????????----=???????????????????

?E E E E E E u u v u v v /76.1/76.1/72.3/88.0/52.12/52.32653321

2)显示单元应力值:Action Create ,Object Marker ,Method Tensor ;Select Result

Cases Default,A2:Static Subcase; Select Tensor Result Stresses Tensor, show as component xx 、yy 、xy; 点图标(Target Entities ),Target Entity Elements ,Select Elements

Elm1:4,Apply 。显示截面各单元的三个方向的应力如下图:

所得计算结果与理论解相同。

有限元分析 均布荷载作用下深梁的变形和应力

有 限 元 分 析 上 级 报 告 学院: 专业: 姓名: 班级: 学号:

均布荷载作用下深梁的变形和应力 两端简支,长度l=5m,高度h=1m的深梁,在均布荷载q =5000N/m作用下发生平面弯曲(如图4.1所示)。已知弹性模量为30Gpa,泊松比为0.3,试利用平面应力单元PLANE82,确定跨中的最大挠度,和上下边缘的最大拉压应力。 4.1 均布荷载作用下深梁计算模型 1.理论解 具有两个简支支座支承的简支梁,它的变形和应力分布在理论上是没有解析表达式。 在一般的弹性力学教科书中,只有将两边支座简化为等效力的条件,即在两个支座的侧表面上作用有均匀分布的剪力情况,才可以得到理论解答。 (1) 设定应力函数。 获得这种情况下的解答的主要思路是:按照应力解法,考虑到应力分量关于该梁中心 位置(x=2.5,y=0.5)有对称和反对称关系。可以首先假定一个应力函数为: Φ = A(y - 0.5)5+ B(x - 2.5)2 (y -0.5)3 +C(y -0.5)3+ D(x- 2.5)2+ E(x -2.5)2 (y - 0.5) (4.1) 依据这个应力函数,可以获得各个应力分量,按照上表面受均布压力作用简支梁的上 下表面和左右侧表面的应力边界条件,确定出应力函数(4.1)中的各个待定系数A,B,C,D和E。 按照应力求解平面应力问题方法,应力函数应该满足双调和函数: ?2?2Φ = 0 (4.2) 将(4.1)应力函数代入上式后,得到: 24 B( y - 0.5) +120A(y - 0.5) = 0 (4.3) 即: B = -5A (4.4) (2)确定应力分量。 应力函数与应力分量之间的关系为: (3) 利用梁的上下表面边界条件确定积分常数。 上表面受均布压力作用简支梁的上表面(y=h=1m)的应力边界条件:

有限元2-弹性力学平面问题有限单元法(2.1三角形单元,2.2几个问题的讨论)综述

第2章 弹性力学平面问题有限单元法 2.1 三角形单元(triangular Element) 三角形单元是有限元分析中的常见单元形式之一,它的优点是: ①对边界形状的适应性较好,②单刚形式及其推导比较简单,故首先介绍之。 一、结点位移和结点力列阵 设右图为从某一结构中取出的一典型三角形单元。 在平面应力问题中,单元的每个结点上有沿x 、y 两个方向的力和位移,单元的结点位移列阵规定为: 相应结点力列阵为: (式2-1-1) 二、单元位移函数和形状函数 前已述及,有限单元法是一种近似方法,在单元分析中,首先要求假定(构 造)一组在单元内有定义的位移函数作为近似计算的基础。即以结点位移为已知量,假定一个能表示单元内部(包括边界)任意点位移变化规律的函数。 构造位移函数的方法是:以结点(i,j,m)为定点。以位移(u i ,v i ,…u m v m )为定点上的函数值,利用普通的函数插值法构造出一个单元位移函数。 在平面应力问题中,有u,v 两个方向的位移,若假定单元位移函数是线性的,则可表示成: (,)123 u u x y x y ααα==++ 546(,)v v x y x y ααα==++ (2-1-2)a 式中的6个待定常数α1 ,…, α6 可由已知的6个结点位移分量(3个结点的坐标) {}??? ?? ?????=????? ???? ?????????????=m j i m e d d d d m j j i v u v u v u i {} i i j j m X Y X (2-1-1)Y X Y i e j m m F F F F ?? ?? ???? ???? ??==??????????????????

有限元分析中的一些问题

有限元分析的一些基本考虑-—-—-单元形状对于计算精度的影响 笔者发现,在分析复杂问题时,我们所可能出现的错误,竟然是一些很根本的错误,这些根本错误是由于对有限元的基本理论理解不清晰而造成的。 鉴于这个原因,笔者决定对一些基本问题(例如单元形状问题,单元大小问题,应力集中问题等)展开调查,从而形成了一系列文章,本篇文章是这些系列文章中的第一篇. 本篇文章先考虑有限元分析中的第一个基本问题:单元形状问题。 我们知道,单元形状对于有限元分析的结果精度有着重要影响,而对单元形状的衡量又有着诸多指标,为便于探讨,这里首先只讨论第一个最基本的指标:长宽比(四边形单元的最长尺度与最短尺度之比),而且仅考虑平面单元的长宽比对于计算精度的影响。 为此,我们给出一个成熟的算例。该算例是一根悬臂梁,在其端面施加竖直向下的抛物线分布载荷,我们现在考察用不同尺度的单元划分该梁时,对于A点位移的影响。 这五种不同的划分方式,都使用矩形单元,只不过各单元的长宽比不同。 例如第一种(1)AR=1.1,就是长宽比接近1; 第二种(2)AR=1.5,就是长宽比是1。5.其它类推。 第五种(5)AR=24,此时单元的长度是宽度的24倍。 现在我们看看按照这五种单元划分方式对于A点位移的影响,顺便我们也算出了B点的位移,结果见下表.

我们现在仔细查看一下上表,并分析其含义。 我们先考虑第一行,它是第一种单元划分情况,此时每个单元的长宽比是1。1,由此我们计算出A点,B点的垂直位移,可以看到,A点的竖直位移是—1.093英寸,而B点的竖直位移是-0。346英寸。而这两点我们都是可以用弹性力学的方式得到精确解的,其精确解分别是-1。152以及—0。360。这样,我们可以得到此时A点位移误差的百分比是[(—1.093)—(-1。152)]/1。152 =5。2%. 对于其它情况,也采用类似的方式得到A点位移误差的百分比。 从上表可以看出来,随着长宽比的增加,位移误差越来越大,竟然大到56%.因此,如果我们是用长宽比为24的单元进行划分的话,那么我们的结果可以说是完全错误的. 下面按照上表绘制出一张图,该图从形象的角度表达了上表的含义.

基于有限元ANSYS的压力容器应力分析报告

压力容器分析报告

目录 1 设计分析依据 (1) 1.1 设计参数 (1) 1.2 计算及评定条件 (1) 1.3 材料性能参数 (1) 2 结构有限元分析 (2) 2.1 理论基础 (2) 2.2 有限元模型 (2) 2.3 划分网格 (3) 2.4 边界条件 (5) 3 应力分析及评定 (5) 3.1 应力分析 (5) 3.2 应力强度校核 (6) 4 分析结论 (8) 4.1 上封头接头外侧 (9) 4.2 上封头接头内侧 (11) 4.3 上封头壁厚 (13) 4.4 筒体上 (15) 4.5 筒体左 (17) 4.6 下封头接着外侧 (19) 4.7 下封头壁厚 (21)

1 设计分析依据 (1)压力容器安全技术监察规程 (2)JB4732-1995 《钢制压力容器-分析设计标准》-2005确认版 1.1 设计参数 表1 设备基本设计参数 正常设计压力MPa 7.2 最高工作压力MPa 6.3 设计温度℃0~55 工作温度℃5~55 工作介质压缩空气46#汽轮机油 焊接系数φ 1.0 腐蚀裕度mm 2.0 容积㎡ 4.0 容积类别第二类 计算厚度mm 筒体29.36 封头29.03 1.2 计算及评定条件 (1)静强度计算条件 表2 设备载荷参数 设计载荷工况工作载荷工况 设计压力7.2MPa 工作压力6.3MPa 设计温度55℃工作温度5~55℃ 注:在计算包括二次应力强度的组合应力强度时,应选用工作载荷进行计算,本报告中分别选用设计载荷进行计算,故采用设计载荷进行强度分析结果是偏安全的。 1.3 材料性能参数 材料性能参数见表3,其中弹性模型取自JB4732-95表G-5,泊松比根据JB4732-95的公式(5-1)计算得到,设计应力强度分别根据JB4732-95的表6-2、表6-4、表6-6确定。 表3 材料性能参数性能

基于ANSYS的齿轮应力有限元分析

本科毕业设计 论文题目:基于ansys的齿轮应力有限元分析 学生姓名: 所在院系:机电学院 所学专业:机电技术教育 导师姓名: 完成时间:

摘要 本文主要分析了在ansys中齿轮参数化建模的过程。通过修改参数文件中的齿轮相关参数,利用APDL语言在ANSYS软件中自动建立齿轮的渐开线。再利用图形界面操作模式,通过一系列的镜像、旋转等命令,生成两个相互啮合的大小齿轮。运用有限元分析软件ANSYS对齿轮齿根应力和齿轮接触应力进行分析计算,得出两个大小齿轮的接触应力分布云图。通过与理论分析结果的比较,验证了ANSYS在齿轮计算中的有效性和准确性。 关键词 :ANSYS,APDL,有限元分析,渐开线,接触应力。

Modeling and Finite Element Analysis of Involute Spur Gear Based on ANSYS Abstract We have mainly analyzed spur gear parametrization modelling process in the ansys software. using the APDL language through revises the gear related parameter in the parameter document,we establishes gear's involute automatically in the ANSYS software.Then, using the graphical interface operator schema, through a series of orders ,mirror images, revolving and so on, we produce the big and small gear which two mesh mutually. Carring on the stress analysis of the gear by using the finite element analysis software-- ANSYS, we obtain two big and small gear's contact stress distribution cloud charts. through with the theoretical analysis result's comparison,we explain ANSYS in the gear computation validity and the accuracy. Keywords: ANSYS; APDL;finite element analysis;involute line;contact stress

基于ANSYS的有限元分析

有限元大作业 基于ansys的有限元分析 班级: 学号: 姓名: 指导老师: 完成日期:

ANSYS软件是美国ANSYS公司研制的大型通用有限元分析(FEA)软件,是世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计(CAD,computer Aided design)软件接口,实现数据的共享和交换,如Creo,NASTRAN, Alogor, I-DEAS, AutoCAD 等。是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。在核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、日用家电等领域有着广泛的应用。ANSYS功能强大,操作简单方便,现在已成为国际最流行的有限元分析软件,在历年的FEA评比中都名列第一。目前,中国100多所理工院校采用ANSYS软件进行有限元分析或者作为标准教学软件。 2D Bracket 问题描述: We will model the bracket as a solid 8 node plane stress element. 1.Geometry: The thickness of the bracket is 3.125 mm 2.Material: steel with modulus of elasticity E=200 GPa. 3.Boundary conditions: The bracket is fixed at its left edge. 4.Loading: The bracket is loaded uniformly along its top surface. The load is 2625 N/m. 5.Objective: a.Plot deformed shape b.Determine the principal stress and the von Mises stress. (Use the stress plots to determine these) c.Remodel the bracket without the fillet at the corner or change the fillet radius to 0.012 and 0.006m, and see how d.principal stress and von Mises stress chang e.

第三章平面问题的有限元法作业及答案

第三章 平面问题的有限元法作业 1. 图示一个等腰三角形单元及其节点编码情况,设μ=0,单元厚度为t 。求 1)形函数矩阵[]N ;2)应变矩阵[]B ;3)应力矩阵[]S 。 4 第1题图 第2题图 2. 如题图所示,结构为边长等于a 的正方形,已知其节点位移分别为:11(,)u v 、 22(,)u v 、33(,)u v 、44(,)u v 。试求A 、B 、C 三点的位移。其中A 为正方形形心,B 为三角形形心。 3.直角边边长为l 的三角形单元,如题图所示。试计算单元等效节点载荷列阵(单元厚度为t ,不计自重)。 第3题图 第4题图 4. 如题图所示,各单元均为直角边边长等于l 的直角三角形。试计算(1)单元等效节点载荷列阵;(2)整体等效节点载荷列阵。已知单元厚度为t ,不计自重。

5.下列3个有限元模型网格,哪种节点编号更合理?为什么? 9 34 6 7912 11 34 6 12142 (a) (b) (c) 第5题图 6.将图示结构画出有限元模型;标出单元号和节点号;给出位移边界条件;并计算半带宽(结构厚度为t )。 2a (a) (b) 无限长圆筒 (c) 第6题图 7. 结构如图所示,已知结构材料常数E 和 ,单元厚度为t 。利用结构的对称性,采用一个单元,分别计算节点位移和单元应力。 第7题图

答案: 1. 1)形函数 i x N a = , j y N a = , 1m x y N a a =-- 2)应变矩阵 []1000101 000101011011B a -????=-??--???? 3)应力矩阵 []100010100 01 0111 110022 2 2S a ? ???-? ?=-????- -? ?? ? 2. A 点的位移为 ()2312A u u u = + , ()231 2A v v v =+ B 点的位移为 ()24313B u u u u = ++ , ()2431 3B v v v v =++ C 点的位移为 ()1223C a u u u = + , ()C 1223 a v v v =+ 3. 单元等效节点载荷列阵为 {}11 11 00003 663 T e i j i j R q q q q ?? =++?? ?? 4. (2)整体等效节点载荷向量为 {}111100006 322T R qlt P qlt P P qlt qlt ?? =-???? 7. (1) 减缩后的整体刚度方程 22 12 2 1222 22221110222021102(1)2 2102x x b b ab R b ab b P v Et ab a b ab ab R v b a μμμ μμμμμμ---??- - ??????????--?????? -??? ?=????---+ +? ???? ?????????-????+?? ? ? 节点位移

有限元分析中的一些问题

有限元分析的一些基本考虑-----单元形状对于计算精度的影响 笔者发现,在分析复杂问题时,我们所可能出现的错误,竟然是一些很根本的错误,这些根本错误是由于对有限元的基本理论理解不清晰而造成的。 鉴于这个原因,笔者决定对一些基本问题(例如单元形状问题,单元大小问题,应力集中问题等)展开调查,从而形成了一系列文章,本篇文章是这些系列文章中的第一篇。 本篇文章先考虑有限元分析中的第一个基本问题:单元形状问题。 我们知道,单元形状对于有限元分析的结果精度有着重要影响,而对单元形状的衡量又有着诸多指标,为便于探讨,这里首先只讨论第一个最基本的指标:长宽比(四边形单元的最长尺度与最短尺度之比),而且仅考虑平面单元的长宽比对于计算精度的影响。 为此,我们给出一个成熟的算例。该算例是一根悬臂梁,在其端面施加竖直向下的抛物线分布载荷,我们现在考察用不同尺度的单元划分该梁时,对于A点位移的影响。 这五种不同的划分方式,都使用矩形单元,只不过各单元的长宽比不同。 例如第一种(1)AR=1.1,就是长宽比接近1; 第二种(2)AR=1.5,就是长宽比是1.5.其它类推。 第五种(5)AR=24,此时单元的长度是宽度的24倍。 现在我们看看按照这五种单元划分方式对于A点位移的影响,顺便我们也算出了B点的位移,结果见下表。

我们现在仔细查看一下上表,并分析其含义。 我们先考虑第一行,它是第一种单元划分情况,此时每个单元的长宽比是1.1,由此我们计算出A点,B点的垂直位移,可以看到,A点的竖直位移是-1.093英寸,而B点的竖直位移是-0.346英寸。而这两点我们都是可以用弹性力学的方式得到精确解的,其精确解分别是-1.152以及-0.360.这样,我们可以得到此时A点位移误差的百分比是 [(-1.093)-(-1.152)]/1.152 = 5.2%. 对于其它情况,也采用类似的方式得到A点位移误差的百分比。 从上表可以看出来,随着长宽比的增加,位移误差越来越大,竟然大到56%。因此,如果我们是用长宽比为24的单元进行划分的话,那么我们的结果可以说是完全错误的。 下面按照上表绘制出一张图,该图从形象的角度表达了上表的含义。 由此可见,长宽比越接近于1,那么结算结果越精确,越远离1,则误差越大。

平面问题的有限元法-Read

3 弹性力学平面问题的有限元法 本章包括以下的内容: 3.1弹性力学平面问题的基本方程 3.2单元位移函数 3.3单元载荷移置 3.4单元刚度矩阵 3.5单元刚度矩阵的性质与物理意义 3.6整体分析 3.7约束条件的处理 3.8整体刚度矩阵的特点与存储方法 3.9方程组解法 3.1弹性力学平面问题的基本方程 弹性力学是研究弹性体在约束和外载荷作用下应力和变形分布规律的一门学科。在弹性力学中针对微小的单元体建立基本方程,把复杂形状弹性体的受力和变形分析问题归结为偏微分方程组的边值问题。弹性力学的基本方程包括平衡方程、几何方程、物理方程。 弹性力学的基本假定如下: 1)完全弹性,2)连续,3)均匀,4)各向同性,5)小变形。 3.1.1基本变量 弹性力学中的基本变量为体力、面力、应力、位移、应变,各自的定义如下。 体力 体力是分布在物体体积内的力,例如重力和惯性力。 面力 面力是分布在物体表面上的力,例如接触压力、流体压力。 应力 物体受到约束和外力作用,其内部将产生内力。物体内某一点的内力就是应力。 图3.1

如图3.1假想用通过物体内任意一点p 的一个截面mn 将物理分为Ⅰ、Ⅱ两部分。将部分Ⅱ撇开,根据力的平衡原则,部分Ⅱ将在截面mn 上作用一定的内力。在mn 截面上取包含p 点的微小面积A ?,作用于A ?面积上的内力为Q ?。 令A ?无限减小而趋于p 点时,Q ?的极限S 就是物体在p 点的应力。 S A Q A =??→?0lim 应力S 在其作用截面上的法向分量称为正应力,用σ表示;在作用截面上的切向分量称为剪应力,用τ表示。 显然,点p 在不同截面上的应力是不同的。为分析点p 的应力状态,即通过p 点的各个截面上的应力的大小和方向,在p 点取出的一个平行六面体,六面体的各楞边平行于坐标轴。 图3.2 将每个上的应力分解为一个正应力和两个剪应力,分别与三个坐标轴平行。用六面体表面的应力分量来表示p 点的应力状态。应力分量的下标约定如下: 第一个下标表示应力的作用面,第二个下标表示应力的作用方向。 xy τ,第一个下标x 表示剪应力作用在垂直于X 轴的面上,第二个下标y 表示剪应力指 向Y 轴方向。 正应力由于作用表面与作用方向垂直,用一个下标。x σ表示正应力作用于垂直于X 轴的面上,指向X 轴方向。 应力分量的方向定义如下: 如果某截面上的外法线是沿坐标轴的正方向,这个截面上的应力分量以沿坐标轴正方向为正; 如果某截面上的外法线是沿坐标轴的负方向,这个截面上的应力分量以沿坐标轴负方向为正。 剪应力互等:xz zx zy yz yx xy ττττττ===,, 物体内任意一点的应力状态可以用六个独立的应力分量x σ、y σ、z σ、xy τ、yz τ、zx τ

弹性力学平面问题的有限元法

Mmm 3 弹性力学平面问题的有限元法 本章包括以下的内容: 3.1弹性力学平面问题的基本方程 3.2单元位移函数 3.3单元载荷移置 3.4单元刚度矩阵 3.5单元刚度矩阵的性质与物理意义 3.6整体分析 3.7约束条件的处理 3.8整体刚度矩阵的特点与存储方法 3.9方程组解法 3.1弹性力学平面问题的基本方程 弹性力学是研究弹性体在约束和外载荷作用下应力和变形分布规律的一门学科。在弹性力学中针对微小的单元体建立基本方程,把复杂形状弹性体的受力和变形分析问题归结为偏微分方程组的边值问题。弹性力学的基本方程包括平衡方程、几何方程、物理方程。 弹性力学的基本假定如下: 1)完全弹性,2)连续,3)均匀,4)各向同性,5)小变形。 3.1.1基本变量 弹性力学中的基本变量为体力、面力、应力、位移、应变,各自的定义如下。 体力 体力是分布在物体体积内的力,例如重力和惯性力。 面力 面力是分布在物体表面上的力,例如接触压力、流体压力。 应力 物体受到约束和外力作用,其内部将产生内力。物体内某一点的内力就是应力。

图3.1 如图3.1假想用通过物体内任意一点p 的一个截面mn 将物理分为Ⅰ、Ⅱ两部分。将部分Ⅱ撇开,根据力的平衡原则,部分Ⅱ将在截面mn 上作用一定的内力。在mn 截面上取包含p 点的微小面积A ?,作用于A ?面积上的内力为Q ?。 令A ?无限减小而趋于p 点时,Q ?的极限S 就是物体在p 点的应力。 S A Q A =??→?0lim 应力S 在其作用截面上的法向分量称为正应力,用σ表示;在作用截面上的切向分量称为剪应力,用τ表示。 显然,点p 在不同截面上的应力是不同的。为分析点p 的应力状态,即通过p 点的各个截面上的应力的大小和方向,在p 点取出的一个平行六面体,六面体的各楞边平行于坐标轴。 图3.2 将每个上的应力分解为一个正应力和两个剪应力,分别与三个坐标轴平行。用六面体表面的应力分量来表示p 点的应力状态。应力分量的下标约定如下: 第一个下标表示应力的作用面,第二个下标表示应力的作用方向。 xy τ,第一个下标x 表示剪应力作用在垂直于X 轴的面上,第二个下标y 表示剪应力指 向Y 轴方向。

土中应力计算__

第2章土中应力计算 一、知识点: 概述土中自重应力基底压力(接触应力) 2.3.1 基底压力的简化计算基底附加压力 地基附加应力 2.4.1 竖向集中力下的地基附加应力 2.4.2 矩形基础下的地基附加应力 2.4.3 线荷载和条形荷载下的地基附加应力非均质和各向异性地基中的附加应力 地基沉降的弹性力学公式 二、考试内容: 重点掌握内容 1.自重应力在地基土中的分布规律,均匀土、分层土和有地下水位时土中自重应力的计算方法。2.基底接触压力的概念,基底附加压力的概念及计算方法。 3.基底附加压力的概念,基底附加压力在地基土中的分布规律。应用角点法计算地基土中任意一点的竖向附加应力。 三、本章内容: § 概述 建筑物的建造使地基土中原有的应力状态发生变化,从而引起地基变形,出现基础沉降。由于建筑物荷载差异和地基不均匀等原因,基础各部分的沉降或多或少总是不均匀的,使得上部结构之中相应地产生额外的应力和变形。基础不均匀沉降超过了一定的限度,将导致建筑物的开裂、歪斜甚至破坏,例如砖墙出现裂缝、吊车轮子出现卡轨或滑轨、高耸构筑物倾斜、机器转轴偏斜以及与建筑物连接管道断裂等等。因此,研究地基变形,对于保证建筑物的正常使用、经济和牢固,都具有很大的意义。 地基的沉降,必须要从土的应力与应变的基本关系出发来研究。对于地基土的应力一般要考虑基底附加应力、地基自重应力和地基附加应力。地基的变形是由地基的附加应力导致,变形都有一个由开始到稳定的过程。我们把地基稳定后的累计变形量称为最终沉降量。地基应力一般包括由土自重引起的自重应力和由建筑物引起的附加应力,这两种应力的产生条件不相同,计算方法也有很大差别。此外,以常规方法计算由建筑物引起的地基附加应力时,事先确定基础底面的压力分布是不可缺少的条件。 从地基和基础相互作用的假设出发,来分析地基上梁或板的内力和变形,以便设计这类结构复杂的连续基础时,也要以本章的有关内容为前提。 地基土的变形都有一个由开始到稳定的过程,各种土随着荷载大小等条件的不同,其所需时间的差别很大,关于地基变形随时间而增长的过程是土力学中固结理论的研究内容。它是本章的一个重要组成部分。在工程实践中,往往需要确定施工期间和完工后某一时间的基础沉降量,以便控制施工速度,确定建筑物的使用措施,并要考虑建筑物有关部分之间的预留净空和连接方式,还必须考虑地基沉降与时间的关系。 § 土中自重应力 土是由土粒、水和气所组成的非连续介质。若把土体简化为连续体,而应用连续体力学(例如弹性力学)来研究土中应力的分布时,应注意到,土中任意截面上都包括有骨架和孔隙的面积在内,所

基于ansys的齿轮应力有限元分析

河南科技学院 2009届本科毕业设计 论文题目:基于ansys的齿轮应力有限元分析 学生姓名:马跃伟 所在院系:机电学院 所学专业:机电技术教育 导师姓名:逄明华 完成时间:2009年5月25日

摘要 本文主要分析了在ansys中齿轮参数化建模的过程。通过修改参数文件中的齿轮相关参数,利用APDL语言在ANSYS软件中自动建立齿轮的渐开线。再利用图形界面操作模式,通过一系列的镜像、旋转等命令,生成两个相互啮合的大小齿轮。运用有限元分析软件ANSYS对齿轮齿根应力和齿轮接触应力进行分析计算,得出两个大小齿轮的接触应力分布云图。通过与理论分析结果的比较,验证了ANSYS在齿轮计算中的有效性和准确性。 关键词:ANSYS,APDL,有限元分析,渐开线,接触应力。

Modeling and Finite Element Analysis of Involute Spur Gear Based on ANSYS Abstract We have mainly analyzed spur gear parametrization modelling process in the ansys software. using the APDL language through revises the gear related parameter in the parameter document,we establishes gear's involute automatically in the ANSYS software.Then, using the graphical interface operator schema, through a series of orders ,mirror images, revolving and so on, we produce the big and small gear which two mesh mutually. Carring on the stress analysis of the gear by using the finite element analysis software-- ANSYS, we obtain two big and small gear's contact stress distribution cloud charts. through with the theoretical analysis result's comparison,we explain ANSYS in the gear computation validity and the accuracy. Keywords: ANSYS; APDL;finite element analysis;involute line;contact stress

土中基底应力与附加应力计算[详细]

土中应力计算 1 土中自重应力 地基中的 应力分: 自重应力——地基中的 自重应力是指由土体本身的 有效重力产生的 应力. 附加应力——由建筑物荷载在地基土体中产生的 应力,在附加应力的 作用下,地基土将产生压缩变形,引起基础沉降. 计算土中应力时所用的 假定条件: 假定地基土为连续、匀质、各向同性的 半无限弹性体、按弹性理论计算. 地基中除有作用于水平面上的 竖向自重应力外,在竖直面上还作用有水平向的 侧向自重应力.由于沿任一水平面上均匀地无限分布,所以地基土在自重作用下只能产生竖向变形,而不能有侧向变形和剪切变形. 3.1.1均质土的 自重应力 a 、假定:在计算土中自重应力时,假设天然地面是一个无限大的 水平面,因而在任意竖直面和水平面上均无剪应力存在.可取作用于该水平面上任一单位面积的 土柱体自重计算. b 、均质土层Z 深度处单位面积上的 自重应力为: 应力图形为直线形. z cz γσ= σcz 随深度成正比例增加;沿水平面则为均匀分布. 必须指出,只有通过土粒接 触点传递的 粒间应力,才能使土

粒彼此挤紧,从而引起土体的 变形,而且粒间应力又是影响土体强度的 —个重要因素,所以粒间应力又称为有效应力.因此,土中自重应力可定义为土自身有效重力在土体中引起的 应力.土中竖向和侧向的 自重应力一般均指有效自重应力.并用符号σcz 表示 . 3.1.2成层土的 自重应力 地基土往往是成层的 ,成层土自重应力的 计算公式:∑== n i i i cz z 1 γ σ 结论:土的 自重应力随深度Z ↑而↑.其应力图形为折线形. 自然界中的 天然土层,一般形成至今已有很长的 地质年代,它在自重作用下的 变形早巳稳定.但对于近期沉积或堆积的 土层,应考虑它在自重应力作用下的 变形.此外,地下水位的 升降会引起土中自重应力的 变化(图2—4). 3.1.3 1、地下水对自重应力的 影响 地下水位以下的 土,受到水的 浮力作用,使土的 重度减轻.计算时采用水下土的 重度(w sat γγγ-=') 2、不透水层的 影响

平面问题有限元应力分析程序

第六章有限元程序设计中的若干问题 基本步骤: ⅰ.结构离散化,输入或生成 结点信息-结点坐标 单元信息-单元结点编号 ⅱ.计算单元刚度矩阵,形成总体刚度矩阵,包括计算[]B ⅲ.形成结点载荷向量 ⅳ.引入约束条件 ⅴ.解线性方程组 ⅵ.求出结点位移 ⅶ.计算单元的应力并输出 §6-1 约束条件的处理 1.对称性与反对称性 (1)对称结构承受对称载荷作用时 (2)对称结构承受反对称载荷作用 2. 约束位移的引入 主元置1法 主元赋大值 §6-2 总刚度矩阵的存贮法 1.半带宽存贮法

2. 一维压缩存贮法 考虑到总体刚度矩阵中各行的带宽并不相等,有时由于结构的几何形状的原因,使总体刚度矩阵某些行的带宽特别大。这种情况下如采用半带宽存贮法,就可能把许多零元素也包含了进去,这对节省计算机的存贮量是很不利的。 一维压缩存贮法是将总体刚度矩阵的下三角形中每一行从第一个非零元素开始按行将元素排成一序列,存放于一维数组)(L SK 中。但是为了确定SK 中的元素在[K]中的行列号,还需要将[K]中各行对角线的元素在伊维数组中的序号存放于另一辅助数组KD (N2)中(N2是总刚度矩阵的阶数)。现举例说明这一存贮法: 设有一系数阵 ???? ? ??? ????????? ?----1.30 .00.00.06.00.00.00.04.87 . 10.00.00.00 .00.01.50.00.07.10.01.50.00.00.00.00.00.02.100.03.10 .03 .52.03.12.05.4 在一维数组SK (13)中依次存放的是 []1.3007.16.04.81.52.1003.13.52.05.4-- 而辅助数组KD (6)中存放的是 []1398631 KD (6)其实就是[K]中对角元素在一维数组SK (13)中的地址。 将一结构离散化后,对结点进行编号,就能依据单元号确定出总刚度矩阵[K]各行的带宽,由它依次累加就可得出其对角线元素一维存贮中的序号。 显然,形成了数组Kd ,就确定了[K]中被存贮的元素分布情况以及SK 和[K]中元素的对应关系,例如可求出[K]中第I 行带宽为

坝体的有限元建模与应力应变分析1

Project2 坝体的有限元建模与应力应变分析 计算分析模型如图2-1 所示, 习题文件名: dam 。 图2-1 坝体的计算分析模型 选择单元类型Solid Quad 4node 42 Options… →select K3: Plane Strain 定义材料参数EX:2.1e11, PRXY:0.3 模型施加约束 ? 分别给下底边和竖直的纵边施加x 和y 方向的约束 ? 给斜边施加x 方向的分布载荷: ANSYS 命令菜单栏: Parameters →Functions →Define/Edit →1) 在下方的下拉列表框内选择x ,作为设置的变量;2) 在Result 窗口中出现{X},写入所施加的载荷函数:1000*{X}; 3) File>Save(文件扩展名:func) →返回:Parameters →Functions →Read from file :将需要的.func 文件打开,任给一个参数名,它表示随之将施加的载荷→OK →ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Pressure →On Lines →拾取斜边;OK →在下拉列表框中,选择:Existing table →OK →选择需要的载荷参数名→OK 单元控制 纵边20等分;上下底边15等分 结果显示 ANSYS Main Menu: General Postproc →Plot Results →Deformed Shape… → select Def + Undeformed →OK (back to Plot Results window)→Contour Plot →Nodal Solu… →select: DOF solution, UX,UY, Def + Undeformed , Stress ,SX,SY,SZ, Def + Undeformed →OK

平面问题的有限元方法-8.6作业-集中力-平面问题

一个受到集中力P 作用的结构,泊松比ν=61,m N P y 16=,t=1cm ,试按平面应力问题计算,采用三角形单元,求出节点位移。 解: 如图所示,划分三角形单元为四部分,并进行单元坐标编号,编程进行求解

单元①的刚度矩阵为: ???? ??????=333231232221 131211 1K K K K K K K K K K ()3,2,1===m j i 其中子矩阵表达式为: ???? ??????-+-+-+-+?-=s r s r s r s r s r s r s r s r rs b b v c c c b b c b c c b c c v b b Et K 21212121)1(42ννννν()m j i s r ,,,= E E E E E Et 2,,22210944.110944.121)611(401 .0)1(4--==?≈???? ??-??=? -ν 调用 Triangle2D3Node_Stiffness 函数,求出单元刚度矩阵: )3,2,1(0.2143 0 0 0.2143- 0.2143- 0.2143 0 0.5143 0.0857- 0 0.0857 0.5143- 0 0.0857- 0.5143 0 0.5143- 0.0857 0.2143- 0 0 0.2143 0.2143 0.2143- 0.2143- 0.0857 0.5143- 0.2143 0.7286 0.3000- 0.2143 0.5143- 0.0857 0.2143- 0.3000- 0.7286 '1===????????? ???????????=m j i E K

有限元平面问题MATLAB程序

计算力学(有限元方法部分) 程序设计 程序说明书 程序1:平面问题的有限元分析 文件名:h01.m 算例文本:h01.txt 输出文本:result1.txt 使用前请先将h01.txt放入默认的文本读取路径(我的要求与m文件在同一文件夹内)! 文本输入顺序: 材料信息(编号、弹性模量、泊松比) 注意:材料编号须按1、2、3、4……的顺序排列 节点信息(编号、x坐标、y坐标) 注意:节点编号须按1、2、3、4……的顺序排列 约束信息(约束节点号、x方向有无约束、y方向有无约束、x方向位移、y 方向位移)有约束处填一正数,无约束处填0。无约束处请勿输入位移。 单元信息(厚度、材料编号、节点编号,若为3节点单元,则第四个编号填0) 注意:单元编号须按1、2、3、4……的顺序排列 集中力(作用节点号、x方向力、y方向力) 线荷载(作用边上的两个节点号、x方向分布力、y方向分布力) 面荷载(作用单元号、x方向分布力、y方向分布力) 程序可调部分: 4-6行中可以指定输出哪些图像(按顺序依次为节点、单元图像,x、y方向位移图像,xx、yy、xy方向应力图像),第7行中可以指定输入的.txt文本名称。 文本输出内容: 结点位移信息(节点号、x方向位移、y方向位移) 单元形心处的应变信息(单元号、x方向正应变、y方向正应变、xy方向工程切应变)

单元形心处的应力信息(单元号、x方向正应力、y方向正应力、xy方向切应力) 本程序附有三角形单元自动加密前处理部分h01auto.m,其算例文本: h01coarse.txt,输出文本:h01new.txt。它可以适用于本题的要求,在已给定本题所需全部信息的情况下将已有的单元加密为三角形单元。其输出文本可直接作为上面程序的输入文本。 h01.m h01.txt h01auto.m h01coarse.txt 欢迎交流与提问!附上邮箱:x67891@https://www.360docs.net/doc/e42669075.html,。祝力学学习顺利!

土中应力的计算

第2章土中应力分布及计算 一、思考题 1、自重应力,附加应力的大小与地基土的性质是否相关? 2、自重应力与附加应力在地基中的分布各有何特点? 3、基底压力分布的主要影响因素有哪些? 4、在基底总压力不变的前提下,增大基础埋深对土中应力分布有什么影响? 5、宽度相同的矩形和条形基础,其基底压力相同,在同一深度处,哪一个基础下产生的附加应力大? 6、地下水位升降,对土中应力分布有何影响? 7、自重应力,附加应力计算时的起算点是否相同? 二、选择题 1、有两个不同的基础,其基础总压力相同,问在同一深度处,哪一个基础产生的附加应力大?() A、宽度小的基础产生的附加应力大 B、宽度小的基础产生的附加应力小 C、宽度大的基础产生的附加应力小 D、两个基础产生的附加应力相等 2、某场地自上而下的土层分布为:第一层粉土,厚3m,重度γ=18kN/m3;第二层粘土,厚5m,重度γ=18.4kN/m3,饱和重度γsat =19kN/m3,地下水位距地表5m,试求地表下6m处土的竖向自重应力() A、99.8kPa B、109.8kPa C、111kPa D、109.2kPa 3、成层地基土中的自重应力() A、均匀分布 B、直线分布 C、曲线分布 D、折线分布 4、有一基础埋置深度d=1.5m,建筑物荷载及基础和台阶土重传至基底总压力为100KN/m2,若基底以上土的重度为18 KN/m2,基底以下土的重度为17 KN/m2,地下水位在地表处,则基底竖向附加压力为多少() A、85 KN/m2 B、73 KN/m2 C、88 KN/m2 5、一矩形基础,短边b=3m,长边l=4m,在长边方向作用一偏心荷载F+G=1200KN,偏心距为多少时,基底不会出现拉应力() A、0.5m B、0.57m C、0.67m 6、由建筑物荷载或其它外载在地基内产生的应力称为() A、自重应力 B、附加应力 C、基底压力 D、基底附加压力 7、土的自重应力计算中假定的应力状态为() A、σ z ≠0、σ x ≠0、τ xz ≠0 B、σ z ≠0、σ x ≠0、τ xz =0 C、σ z ≠0、σ x =0、τ xz =0 8、当上部结构荷载的合力不变时,荷载偏心距越大,则基底压力平均值() A、越大 B、越小 C、不变

相关文档
最新文档