平面问题的有限元法-Read

合集下载

弹性力学—第六章—用有限单元法解平面问题

弹性力学—第六章—用有限单元法解平面问题
- 在整体刚度矩阵中引入边界条件
1
需求解的结点还剩:
2
I III IV II 4 5 3
因此关于这六个零分量的六个平衡方程不 用建立,须将整体刚度矩阵的第1,3,7, 8,10,12以及同序列的各列去掉。最后 得到:
6
结构整体分析(10)
- 结点载荷
j
I II IV
1N/m
i
III i
m
1
I
m
j
2
例如,设单元 ij 边上受有x方向上的均布面力q,试求等效 结点载荷
载荷向结点移臵(7)
结构整体分析(1)
对于每个单元,我们已经知道了如何计算单元的劲度矩 阵以及载荷列阵:
结构整体分析(2)
根据虚功原理,我们也推导了结点力与结点位移的关系:
对于 i 点, 一个单元上的结点力为:
i 点的力平衡要求围绕 i 点的各单元产生的结点力与各单 元分配到 i 点的结点载荷相等。
3
6
结构整体分析(15)
1. 有限元法的求解步骤: 2. 划分有限元, 3. 利用已知的结点坐标以及结构的物理特性写出单元劲度 矩阵, 4. 利用整体编码与局部编码的关系写出整体刚度矩阵以及 力列阵, 5. 在整体刚度矩阵以及力列阵中将对应于零位移的行与列 划去,得到引入边界条件后的平衡方程组。 6. 求解平衡方程组,得到结点位移,并由此分析应力分布。
有限单元法的单元划分(2)

当结构具有凹槽或孔洞时,为了正确地描述应力集中效 应,必须把该处的网格画得很密。

当计算容量不允许时,可以分两次计算。第一次计算时, 将需要细化网格的目标区域的网格画得稀疏一点,甚至 和其他区域的网格大致相同,第二次计算时,将需要细 化的部分区域(区域边界上的结点位移是第一次计算后 的已知值)取出,利用第一次计算的计算结果,就可以 计算分析网格很密的目标区域了。

有限元分析——平面问题

有限元分析——平面问题

Re=
NT
s
Pstds
江西五十铃发动机有限公司
技术中心 12 /33
4、整体分析 整体刚度矩阵 整体刚度矩阵组装的基本步骤:
先求出各个单元的单元刚度矩阵; 将单元刚度矩阵中的每个子块放在整体刚度矩阵中的对应位置上,得到单 元的扩大刚度矩阵; 将全部单元的扩大矩阵相加得到整体刚度矩阵。
不失一般性,仅考虑模型中有四个单元,如图所示,四个单元的整体节点位 移列阵为
τZX z= + t/2 =0
因板很薄,载荷又不沿厚度变化,应力沿板 的厚度方向是连续分布的,可以认为,在整
Z
个板内各点都有
σZ=0 τYZ=0 τZX=0
O
tX
图1 平面应力问题
根据剪应力的互等性、物理方程,可得描述平面应力问题的八个独立的基本变量 为
江西五十铃发动机有限公司
技术中心 4 /33
σ=[σX σY τXY]T ε=[εX εY γXY]T
x2 y2 ɑ1= x 3 y 3
1 y2 b1=- 1 y 3
1 c1= 1
x2 x3
(1,2,3)
上式表示下标轮换,即1 2,2 3,3 1同时更换。
江西五十铃发动机有限公司
技术中心 9 /33
重写位移函数,并以节点位移的形式进行表达,有
uv((xx,,yy))N(x,y)qe
其中形函数矩阵为
Y
江西五十铃发动机有限公司
图2 平面应变问题
技术中心 5 /33
根据几何方程、物理方程可得,描述平面应变问题的独立变量也是八个,且与 平面应力问题的一样。只是弹性矩阵变为
1
D=
E1
1 1 2 1
1

第4章 平面问题的有限元法-4收敛准则

第4章 平面问题的有限元法-4收敛准则
1 2 3 4 5 6 7 1 3 5 7 9 11 13
8
9 10 11 12 13 14
2
4
6
8 10 12 14
(a)
(b)
图4-13
四. 单元节点i、j、m的次序 在前面章节中,我们曾指出,为了在计算中保证单元的 面积 不会出现负值,节点i、j、m的编号次序必须是逆时 针方向。事实上,节点i、j、m的编号次序是可以任意安排 的,只要在计算刚度矩阵的各元素时,对取绝对值,即可 得到正确的计算结果。在实际计算时,应该注意所选有限元 分析软件的使用要求。 五. 边界条件的处理及整体刚度矩阵的修正 在前面讨论整体刚度矩阵时,已经提到,整体刚度矩阵 的奇异性可以提高考虑边界约束条件来排除弹性体的刚体位 移,以达到求解的目的。
B =2(d+1)
若采取带宽压缩存储,则整体刚度矩阵的存储量N 最 多为N =2nB = 4n(d+1) 其中:d为相邻节点的最大差值,n为节点总数。 例如在图4-13中,(a)与(b)的单元划分相同,且节点 总数都等于14,但两者的节点编号方式却完全不同。(a) 是按长边进行编号, d =7, N =488;而(b)是按短边进行 编号,d =2,N =168。显然(b)的编号方式可比(a)的编号 方式节省280个存储单元。
为了保证解答的收敛性,要求位移模式必须满足以下三 个条件,即 ⑴ 位移模式必须包含单元的刚体位移。也就是说,当 节点位移是由某个刚体位移所引起时,弹性体内将不会产生 应变。所以,位移模式不但要具有描述单元本身形变的能力 ,而且还要具有描述由于其它单元形变而通过节点位移引起 单元刚体位移的能力。 例如,三角形三节点单元位移模式中,常数项1、4 就 是用于提供刚体位移的。 ⑵ 位移模式必须能包含单元的常应变。每个单元的应变 一般都是包含着两个部分:一部分是与该单元中各点的坐标 位置有关的应变(即所谓各点的变应变);另一部分是与位 置坐标无关的应变(即所谓的常应变)。从物理意义上看,

第七章 平面问题的有限单元法(Q4)

第七章  平面问题的有限单元法(Q4)
b y3 y2 y y1 4 2 2
8
4节点四边形单元
y, v
u1 v 1 u2 u de 2 u3 u3 u4 u 4 displacements at node 1 displacements at node 2 displacements at node 3 displacements at node 4
x 1 2 3 4 N1 x1 N 2 x2 N 3 x3 N 4 x4 y 1 2 3 4 N1 y1 N 2 y2 N 3 y3 N 4 y4
1 N (1 )(1 ) 1 4 N 1 (1 )(1 ) 2 4 1 N (1 )(1 ) 3 4 N 1 (1 )(1 ) 4 4
1 4
Nj 1 4 (1 j )(1 j )
4 ( 1, +1) ( u4, v4)
1
N3 1 4 (1 )(1 ) N4 1 4 (1 )(1 )
N 3 at node 1 1 4 (1 )(1 ) 1 0 N 3 at node 2 1 4 (1 )(1 ) 1 0
同理:
1 1 1 1 1 y1 2 1 1 1 1 1 y2 1 1 1 1 4 3 y3 1 1 1 1 y4 4
K e B DBtd
e
T

11
等参单元

对于一般的四边形单元,在总体坐标系下构造 位移插值函数,则计算形状函数矩阵、单元刚 度矩阵及等效节点载荷列阵时十分冗繁;而对 于矩形单元,相应的计算要简单的多。 矩形单元明显的缺点是不能很好的符合曲线边 界,因此可以采用矩形单元和三角形单元混合 使用(网格划分困难)。更为一般的方法是通 过等参变换将局部自然坐标系内的规格化矩形 单元变换为总体坐标系内的任意四边形单元( 包括高次曲边四边形单元)。 等参单元的提出为有限元法成为现代工程实

有限元分析第四章

有限元分析第四章

19
4)形函数的性质
形函数是有限单元法中的一个重要函数,它具 有以下性质: 性质1 形函数Ni在节点i上的值等于1,在其它节点 上的值等于0。对于本单元,有
20
Ni ( xi , yi ) 1 Ni ( x j , y j ) 0 Ni ( xm , ym ) 0
(i、j、m)
利用 N i 1 (ai bi x ci y )和ai、bi、ci公式证明 2A
对于一个具体问题进行分析,不管采用什么样的单元, 分析过程与思路是一样的,所不同的只是各种单元的位移模 式和单元刚度矩阵不一样,其他的包括整体刚度矩阵的组装 过程都完全一样,所以我们仅仅对矩形单元位移模式的求取 和单元刚度矩阵的求解加以介绍。
4.7 收敛准则
可以证明,对于一个给定的位移模式,其刚度系统的数 值要比精确值大。所以,在给定载荷的作用下,有限元计算 模型的变形要比实际结构的变形小。因而,当单元网格分得 越来越细时,位移的近似解将由下方收敛于精确解,即得到 真实解的下界。 为了保证解答的收敛性,要求选取的位移模式必须满足 以下三个条件: 1)位移模式必须包含单元的刚体位移 也就是说,当节点位移是某个刚体位移所引起时,弹 性体内将不会产生应变。所以位移模式不但要具有描述单元 本身形变的能力,而且还要具有描述由其他变形而通过节点 位移引起单元刚体位移的能力。例如,三角形三节点位移模 式中,常数项就是用于提供刚体位移的。
Ni(x、y)
1 i(xi,yi) x xi
x xi N i ( x, y ) 1 x j xi
N m ( x, y ) 0

N
y j (xj,yj)
m (xm,ym)
xj
x
N i ( x, y )

有限元分析 第二章 平面问题的有限元方法

有限元分析 第二章 平面问题的有限元方法
当采用有限元方法求解时,第一步是将平板离散成有 限个小单元。
A:
梁结构的离散:取一段梁为一单元 单元类型:简单直线段 离散原则:几何上真实模拟原结构及其变形
平板的离散:取一小面积板为一单元 单元类型:由最基本的平面图形构成 三角形、四边形(如正方形、长方形、梯形) 而五边形、圆、扇形不宜作为单元。 离散原则:几何上真实模拟原结构(无缺陷、重叠) 模拟变形状态
(2.3)
对于平面问题:
u x x v y y u v xy y x
(2.4)
x x y 0 z y
0 u y v x
简记,
u H ( x, y)a v
u H a v
(2.14)
e e Ⅱ、单元节点位移 与 a 之关系
u l 1 xl v 0 0 l u m 1 x m v m 0 0 u n 1 x n vn 0 0
第2章 平面问题的有限元方法
2.1 弹性理论基础
Ⅰ、基本假设: • 连续性-物质连续。相应的应力应变,位移等连续变量可 以用坐标的连续函数表示; • 均质各向同性——物体内部各点,各方向上物理性质相同, 材料常数(弹性模量,泊松比)不随坐标方向而变; • 完全弹性——材料服从Hooke定律; • 小变形(几何假设)——略去二阶小量,所有微分方程为 线性的; • 无初应力——加载前物体内无初应力。
yl 0 ym 0 yn 0
0 1
0 xl
0 0 1 xm 0 1 0 xn
0 a1 a yl 2 0 a3 y m a 4 0 a 5 yn a 6

有限元分析第4章 平面问题有限单元法1

有限元分析第4章 平面问题有限单元法1
1
6
P
3
4 5
4
2
位移协调条件:各单元共享节点的位移相等 节点平衡条件:各节点单元内力与节点外力构成平衡力系
最终数学模型: K Q
基本概念
单元(element) 节点 (node)
回顾
单元节点位移 (node displacement)
单元节点内力 (node force)
单元刚度矩阵 (element stiffness matrix)
e
bx u by v
d
S
e p
px u py v dS
代入
u v



N

e
{} [B]{ }e
{ } [S]{ }e

内力虚功=
e x x y y xy xy d
T d
cj
y)v j

(am
bmx

cm y)vm ]
二、平面问题三角形单元分析
三角形单元形函数
形函数
u x,
y

1 2A
[(ai

bi x

ci
y)ui

(a j

bj x

cj
y)u j

(am

bm x

cm
y)um ]
v x,
y

1 2A
[(ai

bi x

ci
y)vi

(a j

插值系数的确定:待定系数法
ui a1 a2 xi a3 yi u j a1 a2 x j a3 y j um a1 a2 xm a3 ym

第4章 平面问题的有限元法-1离散化ppt课件

第4章 平面问题的有限元法-1离散化ppt课件
第4章 平面问 题的有限元法1离散化
第四章 平面问题的有限单元法
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 第九节 有限元法基本思想和解题步骤 三角形常应变单元 形函数的性质 刚度矩阵 等效节点力载荷列阵 矩形单元 收敛准则 有限元分析的步骤 计算实例
第一节
有限元法基本思想和解题步骤
R y R y R
o R
(a)
x R
o
(b)
x
四、有限元计算中要解决的二个问题
划分单元后,得到有限元的计算模型,按照分析杆 件结构同样的思路去分析平面问题,但在分析中要解决 两个问题: 1.有限元模型中各单元之间只以节点相连,为了 与真实问题一致,应保证受力变形过程中单元之间在边 界上“不开裂”也不互相“挤入”,即:应该保证在变 形过程中,相邻单元的位移在交界边上是相同的、连续 的。 2.单元刚度矩阵的确定。平面问题的单元刚度矩 阵本身就是一个连续体问题,不能像杆单元一样直接通 过计算得到。
②单元的大小,可根据部位不同而有所不同。 一般在应力比较大的、变化较快的、有应力集中的部位取较 小的单元;在不太重要的、应力较小、变化不大的部位取较 较大的单元。 如图所示受拉的带孔平板,在孔心有应力集中,为危险 区域,所以取较密网格。
③单元各边的长度(或三个顶角)不要相差太大,否则会在 计算中出现过大的误差,影响求解的精度。
问题: 单元的选取、结构的离散化应考虑哪些因素?
3. 选择单元的位移模式
结构离散化后,要用单元内节点的位移通过插值(?)来获 得单元内各点的位移。在有限元法中,通常都是假定单 元的位移模式是多项式,一般来说,单元位移多项式的 项数应与单元的自由度数相等。它的阶数至少包含常数 项和一次项。至于高次项要选取多少项,则应视单元的 类型而定。 (4-1) f N e

第2章 弹性力学平面问题有限单元法(1-3节)

第2章 弹性力学平面问题有限单元法(1-3节)

第二章 弹性力学平面问题有限单元法§2-1 三角形单元(triangular Element)三角形单元是有限元分析中的常见单元形式之一,它的优点是:①对边界形状的适应性较好,②单刚形式及其推导比较简单,故首先介绍之。

一、结点位移和结点力列阵设右图为从某一结构中取出的一典型三角形单元。

在平面应力问题中,单元的每个结点上有沿x 、y 两个方向的力和位移,单元的结点位移列阵规定为: 相应结点力列阵为: (式2-1-1)二、单元位移函数和形状函数前已述及,有限单元法是一种近似方法,在单元分析中,首先要求假定(构造)一组在单元内有定义的位移函数作为近似计算的基础。

即以结点位移为已知量,假定一个能表示单元内部(包括边界)任意点位移变化规律的函数。

构造位移函数的方法是:以结点(i,j,m)为定点。

以位移(u i ,v i ,…u m v m )为定点上的函数值,利用普通的函数插值法构造出一个单元位移函数。

在平面应力问题中,有u,v 两个方向的位移,若假定单元位移函数是线性的,则可表示成:(,)123u u x y x y ααα==++546(,)v v x y x y ααα==++ (2-1-2)a{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=m j i m ed d d d m j j i v u v u v u i {}ii j j m X Y X (2-1-1)Y X Y iej m m F F F F ⎧⎫⎪⎪⎪⎪⎧⎫⎪⎪⎪⎪⎪⎪==⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎪⎪⎪⎪⎪⎪⎩⎭式中的6个待定常数α1 ,…, α6 可由已知的6个结点位移分量(3个结点的坐标)确定。

将3个结点坐标(x i,y i ),(x j,y j ),(x m,y m )代入上式得如下两组线性方程:123i i i u x y ααα=++123j j j u x y ααα=++ (a)123m m m u x y ααα=++和546i i i v x y ααα=++546j j j v x y ααα=++ (b)546m m m v x y ααα=++利用线性代数中解方程组的克来姆法则,由(a)可解出待定常数1α 、2α 、3α :11A Aα=22A Aα=33A Aα=式中行列式:1i i i j j j m m m u x y A u x y u x y =2111i i j j m mu y A u y u y =3111i i j jm mx u A x u x u =2111i i j j m mAx y A x y x y ==A 为△ijm 的面积,只要A 不为0,则可由上式解出:11()2m m i ij j a u a u a u A α=++ 21()2m m i ij j bu b u b u A α=++ (C )31()2m mi i j j c u c u c u A α=++式中:m m i j j a x y x y =- m m j i i a x y x y =- m i j j i a x y x y =-m i j b y y =- m j i b y y =- m i j b y y =- (d )m i j c x x =- m j i c x x =- m j i c x x =-为了书写方便,可将上式记为:m m i j i a x y x y =-m ij by y =- (,,)i j mm i jc x x =-(,,)i j m表示按顺序调换下标,即代表采用i,j,m 作轮换的方式便可得到(d)式。

有限元 2-弹性力学平面问题有限单元法(2.6四结点四边形等参元,2.7八结点曲线四边形等参元,2.8问题补充)

有限元 2-弹性力学平面问题有限单元法(2.6四结点四边形等参元,2.7八结点曲线四边形等参元,2.8问题补充)

存在的。换句话说,为了使上述等参元能保持较好的精度,整体坐标系下所划分的任意四边形单元必须是
凸四边形,即任意内角都不能大于180°。四边形也不能太歪斜,否则会影响其精度。
利用雅可比的逆矩阵,即可求出整体坐标系下形函数的偏导数:
⎧∂Ni ⎫
⎧∂Ni ⎫
⎪ ⎪ ⎨
∂x


⎪ ⎬
=
[J
]−1
⎪ ⎨
∂ξ
⎪ ⎪ ⎬
i=i,j,m,p
为了实现上述结点坐标之间的变换,可利用母元的形函数,得出(ξ,η)和(x,y)之间的坐标变换式。
图形变换具有如下性质: 1. 母元中的坐标线对应于等参元的直线; 2. 四结点正方形母元对应于四个结点可以任意布置的直边四边形等参元; 3. 变换式(2-6-1)能保证相邻等参元的边界位移彼此协调。
《有限元》讲义
2.6 四结点四边形单元
(The four-node quadrilateral element)
前面介绍了四结点的矩形单元 其位移函数:
U = α1 + α 2 x + α3 y + α 4 xy V = α5 + α 6 x + α 7 y + α8 xy
为双线性函数,应力,应变在单元内呈线性变化, 比常应力三角形单元精度高。但它对边界要求严格。本 节介绍的四结点四边形等参元,它不但具有较高的精度,而且其网格划分也不受边界的影响。
对任意四边形单元(图见下面)若仍直接采用前面矩形单元的位移函数,在边界上它便不再是线性 的(因边界不与x,y轴一致),这样会使得相邻两单元在公共边界上的位移可能会出现不连续现象(非协 调元),而使收敛性受到影响。可以验证,利用坐标变换就能解决这个问题,即可以通过坐标变换将整体 坐标中的四边形(图a)变换成在局部坐标系中与四边形方向无关的边长为2的正方形。

弹性力学第6章:用有限元法解平面问题(徐芝纶第五版)

弹性力学第6章:用有限元法解平面问题(徐芝纶第五版)
其中,
Ni (ai bi x ci y) / 2A。 (i, j, m)
第六章 用有限单元法解平面问题
应变
应用几何方程,求出单元的应变列阵 :
ε ( u v v u )T x y x y
ui
1 2A
b0i ci
0 ci bi
bj 0 cj
0 cj bj
bm 0 cm
0
vi
cm bm
于单元,称为结点力,以正标向为正。
Fi (Fix Fiy T
--单元对结点的 作用力,与 Fi 数值 相同,方向相反,作 用于结点。
Fiy vi
Fix i
ui
Fiy
y v j Fjy i
Fix
j
uj
F jx
vm Fmy
um
m Fmx
o
x
第六章 用有限单元法解平面问题
求解方法
(5)将每一单元中的各种外荷载,按虚功 等效原则移置到结点上,化为结点荷 载,表示为
第六章 用有限单元法解平面问题
FEM的概念
§6-2 有限单元法的概念
FEM的概念,可以简述为:采用有限自由度的离 散单元组合体模型去描述实际具有无限自由度的 考察体,是一种在力学模型上进行近似的数值计 算方法,其理论基础是分片插值技术与变分原理。
FEM的分析过程:
1.将连续体变换为离散化结构; 2.单元分析; 3.整体分析。
第六章 用有限单元法解平面问题
FEM
第六章 用有限单元法解平面问题
概述 1.有限元法(Finite Element Method)
简称FEM,是弹性力学的一种近似解法。 首先将连续体变换为离散化结构,然后再利用 分片插值技术与虚功原理或变分方法进行求解。

弹性力学平面问题的有限元法

弹性力学平面问题的有限元法
形状函数
用于描述四节点四边形单元内任意一点的位移和 应力状态。
刚度矩阵
由四节点四边形单元的形状函数和弹性力学基本 公式构建,用于描述单元的刚度特性。
平面六面体八节点单元
六面体八节点单元
是一种三维有限元单元, 具有六个面和八个节点。
形状函数
用于描述六面体八节点 单元内任意一点的位移 和应力状态。
刚度矩阵
对复杂问题的处理能力有限
对于一些高度非线性或耦合问题,有限元法可能难以获得准确解,需要采用其他数值方法 或实验手段。
对高维问题的处理难度较大
随着问题维度的增加,有限元法的计算量和内存消耗会急剧增加,限制了其在高维问题中 的应用。
未来发展方向与挑战
高效算法设计
研究更高效的有限元算法,提高计算速度和精度,降低计算成本。
载荷向量的确定
根据边界条件和外力分布,确定每个节点的载荷 向量。
3
系统刚度矩阵与总载荷向量
将各个单元的刚度矩阵和载荷向量组合起来,形 成系统刚度矩阵和总载荷向量。
求解线性方程组
线性方程组的求解
利用数值方法(如Gauss消去法、迭代法等)求解由 系统刚度矩阵和总载荷向量构成的线性方程组。
解的收敛性与稳定性
02 弹性力学基本方程
应力和应变的关系
01
02
03
胡克定律
在弹性范围内,应力与应 变之间存在线性关系,即 应力与应变成正比。
应变分量
描述物体变形的量,包括 线应变和角应变。
应力分量
描述物体内部受力情况的 量,包括正应力和剪切应 力。
平衡方程
静力平衡
物体在无外力作用下保持静止状态, 即合力为零。
弹性力学平面问题的有限元法

第4章 平面问题的有限元法-3刚度矩阵

第4章 平面问题的有限元法-3刚度矩阵

二、整体刚度矩阵
讨论了单元的力学特性之后,就可转入结构的整体分析
。假设弹性体被划分为N个单元和n个节点,对每个单元 按前述方法进行分析计算,便可得到N组形如(4-25)
式的方程。将这些方程集合起来,就可得到表征整个弹 性体的平衡关系式。
1
i
j
m
n
1

外力在虚位移上所做的虚功
V

F1
* 1

F2
* 2

F3
* 3


* T
F
单位体积内的虚应变能

x
* x


y

* y


z
* z


xy

* xy


yz

* yz


zx
* zx

*
T

整个物体的的虚应变能
U * T dxdydz

e

ui
vi
u j
v j
um
T
vm
且假设单元内各点的虚位移为{f *},并具有与真实位移
相同的位移模式。
故有
f N e
(c)
参照(4-13)式,单元内的虚应变{ *}为
B e
(d)
于是,作用在单元体上的外力在虚位移上所做的功可写为
br cs

1
2
cr bs
cr cs

1
2
brb s

( r = i、j、m;s = i、j、m ) (4-28)

平面问题有限元解法(公式推导讲解)

平面问题有限元解法(公式推导讲解)
位移边界条件:
应力边界条件:
若在su部分边界上给定了面力 和 ,则由平衡条件得出平面应力问题的应力(或面力)边界条件为:
其中,l,m是边界面外法线的方向余弦。
*
圣维南原理
在求解弹性力学问题时,应力分量、形变分量和位移分量必须满足区域内的三套基本方程,还必须满足边界上的边界条件。但是,要使边界条件得到完全满足,往往遇到很大的困难。
有限单元法的分析步骤如下: 物体离散化 单元特性分析 单元组集,整体分析 求解未知节点的位移 由节点的位移求解各单元的位移和应力
*
有限元单元模型中几个重要概念
单元 网格划分中每一个小的块体 节点 确定单元形状、单元之间相互联结的点 节点力 单元上节点处的结构内力 载荷 作用在单元节点上的外力 (集中力、分布力) 约束 限制某些节点的某些自由度 弹性模量(杨式模量)E 泊松比(横向变形系数)μ 密度
由于(d)图中,面力连续分布,边界条件简单,应力容易求得。其它三种情况,应力难以求得。把d情况下的应力解答应用到其它三个情况,虽不能满足两端的应力边界条件,但仍然可以表明离杆端较远处的应力状态,没有显著的误差。 图e,构件右端有位移边界条件, ,d情况的解答,不能满足位移边界条件,但e图右端的面力,一定是合成为经过截面形心的力F。所以把图d情况的解答应用于图e时,仍然只是在靠近两端处有显著的误差,而在离两端较远之处,误差可以不计。
按位移求解的方法,称为位移法。它以位移分量为基本未知函数。
按应力求解的方法,称为应力法。它以应力分量为基本未知函数。
*
按位移法求解平面问题
平面问题中,取位移分量u和v为基本未知函数。 从方程中消去形变分量和应力分量:
将几何方程代入上式
利用平衡微分方程和边界条件,导出用位移表示的平衡微分方程:

平面问题的有限元分析

平面问题的有限元分析

图12-9 图12-8
图12-10
(3)设置实常数 对于“Triangle 6node 2”单元,不需要定义实常数 (4)设置材料属性 运行主菜单Main Menu> Preprocessor> Material Props >Material Models(见图12 -11),弹出“材料属性” 对话框(见图12-12)。 在“材料属性”对话框右侧依 次双击选择Structural > Linear> Elastic> Isotropic,弹 出“弹性模量、泊松比参数设 置”对话框(见图12-1 3)。填写数据后,单击 【OK】按扭,完成设置,如 图12-14所示。SAVE.
平面问题的有限元案例
——————厚壁圆筒承受压力载 荷
例题:
某厚壁圆筒承受压力载 荷如图1所示,压力 p=10Mpa,圆筒内径 Ri=1400mm圆筒外径 R0=1500mm,材料的弹性 模量E=2.1×105Mpa, 泊松比u=0.3。采用平面 问题的有限元法求解圆 筒沿半径方向的径向应 力和图12-30
5.结果分析
(1)位移云图 运行主菜单Main Menu > General Postproc >Read Results >First Set (见图12-32),在运行Main Menu > General Postproc >Plot Results >Contour Plot >Nodal Solu(见图12-33),弹出 “Contour Nodal Solution Data”对 话框(见图12-34).选择结 点位移,左边框选“DOF solution”, 右边框选“USUM”,即选择总的结 点位移,另选择“Def+undeformed” 复选框.图形窗口出现变形前后的 结构图,并显示位移数值云图(见 图12-35).

平面问题有限元

平面问题有限元

aj = xm yi − xi ym = 0
cj = xi − xm = a
am = xi yj − xj yi = a2 bm = yi − yj = −a
3-2 平面问题的常应变(三角形 单元 平面问题的常应变 三角形)单元 三角形
• 据弹性力学几何方程得 单元的应变分量
∂u α2 ∂x εx ∂v ε = εy = = α6 ∂y γ α + α 5 xy ∂u + ∂v 3 ∂x ∂y
INm δ j δ m
ui v i Nm 0 uj 0 Nm vj um δi vm
[I]是单位矩阵, 是单位矩阵, 是单位矩阵 [N]称为形函数矩阵, 称为形函数矩阵, 称为形函数矩阵 Ni只与单元节点坐标有关,称为单元 只与单元节点坐标有关, 的形状函数
1 v = [(ai + bx + ci y)vi + (aj + bj x + cj y)vj + (am + bmx + cm y)vm] i 2A 3/12/2011
3-2 平面问题的常应变 三角形)单元 平面问题的常应变(三角形 单元 三角形

1 下标i, , 轮换 轮换) Ni = (ai + bx + ci y) (下标 ,j,m轮换) i 2A
边界不协调产生重迭
3-2 平面问题的常应变(三角形 单元 平面问题的常应变 三角形)单元 三角形
例题:图示等腰三角形单元,求其形函数矩阵 。 例题:图示等腰三角形单元,求其形函数矩阵[N]。
ci = xm − xj = 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P点合成位移为,
r为P点到原点的距离,可见ω代表物体绕z轴的刚体转动。
3.1.5物理方程
弹性力学平面问题的物理方程由广义虎克定律得到。
1)平面应力问题的物理方程
(3-3)
平面应力问题有,
2)平面应变问题的物理方程
(3-4)
平面应变问题有,
在平面应力问题的物理方程中,将E替换为 、 替换为 ,可以得到平面应变问题的物理方程;在平面应变问题的物理方程中,将E替换为 、 替换为 ,可以得到平面应力问题的物理方程。
图3.5
求解弹性力学平面问题,可以归结为在任意形状的平面区域 内已知控制方程、在位移边界 上约束已知、在应力边界 上受力条件已知的边值问题。然后以应力分量为基本未知量求解,或以位移作为基本未知量求解。
如果以位移作为未知量求解,求出位移后,由几何方程可以计算出应变分量,得到物体的变形情况;再由物理方程计算出应力分量,得到物体的内力分布,就完成了对弹性力学平面问题的分析。
图3.4
以柱体的任一横截面为XY平面,任一纵线为Z轴。假定该柱体为无限长,则任一截面都可以看作对称面。由对称性,
, ,
由于没有Z方向的位移,Z方向的应变 。
未知量为平行于XY平面的三个应力分量 ,物体在Z方向处于自平衡状态。
3.1.3平衡方程
弹性力学中,在物体中取出一个微小单元体建立平衡方程。平衡方程代表了力的平衡关系,建立了应力分量和体力分量之间的关系。对于平面问题,在物体内的任意一点有,
弹性力学的基本假定如下:
1)完全弹性,2)连续,3)均匀,4)各向同性,5)小变形。
3.1.1基本变量
弹性力学中的基本变量为体力、面力、应力、位移、应变,各自的定义如下。
体力
体力是分布在物体体积内的力,例如重力和惯性力。
面力
面力是分布在物体表面上的力,例如接触压力、流体压力。
应力
物体受到约束和外力作用,其内部将产生内力。物体内某一点的内力就是应力。
(3-5)
显然,点p在不同截面上的应力是不同的。为分析点p的应力状态,即通过p点的各个截面上的应力的大小和方向,在p点取出的一个平行六面体,六面体的各楞边平行于坐标轴。
图3.2
将每个上的应力分解为一个正应力和两个剪应力,分别与三个坐标轴平行。用六面体表面的应力分量来表示p点的应力状态。应力分量的下标约定如下:
3.2单元位移函数
根据有限元法的基本思路,将弹性体离散成有限个单元体的组合,以结点的位移作为未知量。弹性体内实际的位移分布可以用单元内的位移分布函数来分块近似地表示。在单元内的位移变化可以假定一个函数来表示,这个函数称为单元位移函数、或单元位移模式。
对于弹性力学平面问题,单元位移函数可以用多项式表示,
3弹性力学平面问题的有限元法
本章包括以下的内容:
3.1弹性力学平面问题的基本方程
3.2单元位移函数
3.3单元载荷移置
3.4单元刚度矩阵
3.5单元刚度矩阵的性质与物理意义
3.6整体分析
3.7约束条件的处理
3.8整体刚度矩阵的特点与存储方法
3.9方程组解法
3.1弹性力学平面问题的基本方程
弹性力学是研究弹性体在约束和外载荷作用下应力和变形分布规律的一门学科。在弹性力学中针对微小的单元体建立基本方程,把复杂形状弹性体的受力和变形分析问题归结为偏微分方程组的边值问题。弹性力学的基本方程包括平衡方程、几何方程、物理方程。
各线段的单位长度的伸缩,称为正应变,用ε表示。
两个垂直线段之间的直角的改变,用弧度表示,称为剪应变,用γ表示。
物体内任意一点的变形,可以用 六个应变分量表示。
3.1.2平面应力和平面应变问题
弹性体在满足一定条件时,其变形和应力的分布规律可以用在某一平面内的变形和应力的分布规律来代替,这类问题称为平面问题。平面问题分为平面应力问题和平面应变问题。
图3.1
如图3.1假想用通过物体内任意一点p的一个截面mn将物理分为Ⅰ、Ⅱ两部分。将部分Ⅱ撇开,根据力的平衡原则,部分Ⅱ将在截面mn上作用一定的内力。在mn截面上取包含p点的微小面积 ,作用于 面积上的内力为 。
令 无限减小而趋于p点时, 的极限S就是物体在p点的应力。
应力S在其作用截面上的法向分量称为正应力,用σ表示;在作用截面上的切向分量称为剪应力,用τ表示。
1)平面应力问题
设有很薄的等厚薄板,只在板边上受到平行于板面并且不沿厚度变化的面力,体力也平行于板面且不沿厚度变化。
图3.3
设板的厚度为t,在板面上:
, ,
由于平板很薄,外力不沿厚度变化,因此在整块板上有,
, ,
剩下平行于XY平面的三个应力分量 未知。
2)平面应变问题
设有很长的柱形体,支承情况不沿长度变化,在柱面上受到平行于横截面而且不沿长度变化的面力,体力也如此分布。
第一个下标表示应力的作用面,第二个下标表示应力的作用方向。
,第一个下标x表示剪应力作用在垂直于X轴的面上,第二个下标y表示剪应力指向Y轴方向。
正应力由于作用表面与作用方向垂直,用一个下标。 表示正应力作用于垂直于X轴的面上,指向X轴方向。
应力分量的方向定义如下:
如果某截面上的外法线是沿坐标轴的正方向,这个截面上的应力分量以沿坐标轴正方向为正;
由 可得,
将 代入 可得,
积分后得到,
得到位移分量,
当 时,物体内任意一点都沿x方向移动相同的距离,可见 代表物体在x方向上的刚体平移。
当 时,物体内任意一,可以假定 ,此时的物体内任意一点P(x,y)的位移分量为,
P点位移与y轴的夹角为α,
(3-1)
3.1.4几何方程
由几何方程可以得到位移和变形之间的关系。对于平面问题,在物体内的任意一点有,
(3-2)
刚体位移
由位移u=0,v=0可以得到应变分量为零,反过来,应变分量为零则位移分量不为零。应变分量为零时的位移称为刚体位移。刚体位移代表了物体在平面内的移动和转动。

可以得到刚体位移为以下形式,
如果某截面上的外法线是沿坐标轴的负方向,这个截面上的应力分量以沿坐标轴负方向为正。
剪应力互等:
物体内任意一点的应力状态可以用六个独立的应力分量 、 、 、 、 、 来表示。
位移
位移就是位置的移动。物体内任意一点的位移,用位移在x,y,z坐标轴上的投影u、v、w表示。
应变
物体的形状改变可以归结为长度和角度的改变。
相关文档
最新文档