ADC数字滤波原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机的数字滤波器设计
(2010-07-25 10:02:47)
转载▼
摘要
数据采集,又称数据获取,是利用一种装置,从系统外部采集数据并输入到系统内部的一个接口。

数据采集技术广泛引用在各个领域。

比如摄像头,麦克风,都是数据采集工具。

被采集数据是已被转换为电讯号的各种物理量,如温度、水位、风速、压力等,可以是模拟量,也可以是数字量。

在互联网行业快速发展的今天,数据采集已经被广泛应用于互联网及分布式领域,数据采集领域已经发生了重要的变化。

而在数据采集中存在着各种噪声。

滤除噪声的方法有很多种,既有数字滤波器,也有模拟滤波器。

这里我们采用了基于单片机和C语言来设计并开发数字滤波系统。

我们针对于单片机数据采集系统中经常出现的随机干扰,通过手动输入来模拟数据采集过程,验证了几种使用较为普遍的克服随机干扰的单片机数字滤波算法,并给出了相应的C程序,尤其对中位值滤波和中位值平均滤波算法程序进行了改进。

同时也对这几种滤波算法进行了比较,并指出了每一种算法的具体适用范围和注意事项。

另外我们使用了 proteus进行仿真验证这几种滤波方法。

另外我们还使用了AD和DA来采集及输出数据。

关键词:单片机、proteus、C语言、数字滤波。

1数字滤波设计原理
这里有很多种数字滤波方法,我们见选用其中几种来进行设计,如中值滤波、算术平均滤波、加权平均滤波等等。

所以下面我将详细介绍它们。

1.1中值滤波
中位值滤波是先对某一参数连续采样N次(一般N取奇数),然后把N次采样值按从小到大排列,取中间值为本次采样值。

该滤波方法实际上是一种排序方法,我在此采用的是冒泡法排序。

由于在冒泡法排序中,每出现一次前者数据大于后者数据,就要进行二者数据的交换。

该算法的样例子程序如下:
#define N 11 //N值可根据实际情况调整
char filter()
{
char value_buf[];
char count,i,j,k,temp;
for(count=0;count<N;count++) //获取数据
{
value_buf[count]=get_data();
delay();
}
for(i=0;i<N-1;i++) //选择排序
{k=i;
for(j=i+1;j<N;j++)
if(value_buf[j]<value_buf[k]) k=j;
temp=value_buf[k];
value_buf[k]=value_buf[i];
value_buf[i]=temp;
}
return value_buf[(N-1)/2];
}
中位值滤波能有效地克服偶然因素引起的波动或采样器不稳定引起的误码等脉冲干扰。

对温度、液位等缓慢变化的被测参数采用此算法能收到良好的滤波效果,但对于流量、压力等快速变化的数据,不宜采用中位值滤波。

1.2算术平均滤波
算术平均滤波法适用于对一般的具有随机干扰的信号进行滤波。

这种信号的特点是信号本身在某一数值范围附近上下波动,如测量流量、液位时经常遇到这种情况。

算术平均滤波法是要按输入的N 个采样数据,寻找这样一个Y,使得Y 与各个采样值之间的偏差的平方和最小。

具体实现此算法的子程序如下:
#define N 12
char filter()
{
int count;
int sum=0;
for(count=0;count<N;count++)
{
sum+=get_ad();
delay();
}
return (char)(sum/N);
}
算术平均滤波适用于对一般具有随机干扰的信号进行滤波。

这种信号的特点是有一个平均值,信号在某一数值范围附近做上下波动,在这种情况下仅取一个采样值做依据显然是不准确的。

算术平均滤波对信号的平滑程序完全取决于N,当N较大时,平滑度高,但灵敏度低;当N
较小时,平滑度低,但灵敏度高,应视具体情况选取N,以便既少占用计算时间,又达到最好的效果。

1.3加权平均滤波
在算术平均滤波和移动平均滤波中,N次采样值在输出结果中的权重是均等的,取1/N。

用这样的滤波算法,对于时变信号会引入滞后,N值越大,滞后越严重。

为了增加新采样数据在移动平均中的权重,以提高系统对当前采样值中所受干扰的灵敏度,可采用加权平均滤波,它是移动平均滤波算法的改进。

加权平均滤波是对连续N次采样值分别乘上不同的加权系统之后再求累加和,加权系统一般先小后大,以突出后面若干采样的效果,加强系统对参数变化趋势的辨识。

各个加权系统均为小于1的小数,且满足总和等于1的约束条件。

这样,加权运算之后的累加和即为有效采样值。

为方便计算,可取各加权系数均为整数,且总和为256,加权运算后的累加和除以256,即舍去低字节后便是有效采样值。

具体的样例子程序如下:
//code数组为加权系统表,存在ROM区。

#define N 12
char code jq[N]={1,2,3,4,5,6,7,8,9,10,11,12};
char code sum_jp=1+2+3+4+5+6+7+8+9+10+11+12;
char filter_5()
{
char count;
char value_buf[N];
int sum=0;
for(count=0;count<N;count++)
{
value_buf[count]=get_data();
delay();
}
for(count=0;count<N;count++)
sum+=value_buf[count]*jq[count];
return (char)(sum/sum_jq);
}
1.4中位值平均滤波
它相当于是“中位值滤波法”和“算术平均滤波法”的结合。

它连续采样N个数据,然后去掉一个最大值和一个最小值,最后计算N-2个数据的算术平均值。

一般N值的选取:3-14。

具体算法程序如下:
#define N 12
char filter()
{
char count,i,j;
char value_buf[N];
int sum=0;
for (count=0;count<N;count++)
{
value_buf[count] = get_ad();
delay();
}
for (j=0;j<N-1;j++)
{
for (i=0;i<N-j;i++)
{
if ( value_buf[i]>value_buf[i+1] )
{
temp = value_buf[i];
value_buf[i] = value_buf[i+1];
value_buf[i+1] = temp;
}
}
}
for(count=1;count<N-1;count++)
sum += value[count];
return (char)(sum/(N-2));
}
这种滤波方法兼容了移动平均滤波算法和中位值滤波算法的优点,所以无论对缓慢变化的信号,还是对快速变化的信号,都能取得较好的滤波效果。

1.5限幅滤波
限幅滤波的基本原理是把两次相邻时刻(n和n-1)的采样值Yn和Yn-1相减,求出其差值,以绝对值表示,然后将这个差值与两次采样允许的最大偏差值ΔY比较,如果两次采样值的差值超过了允许的最大偏差值ΔY,则认为发生了随机干扰,并认为最后一次采样值Yn非法,应予剔除。

剔除Yn后,可用Yn-1代替Yn;若未超过允许的最大偏差值范围,则认为本次采样值有效。

可用如下公式表示:
|Yn-Yn-1|≤ΔY;则Yn有效
|Yn-Yn-1|>ΔY;则Yn-1有效
此算法的样例子程序如下:
#define A 10 //A值可根据实际情况调整
char data; //上一次的数据
char filter_1()
{
char datanew; //新数据变量
datanew=get_data(); //获得新数据
//滤波算法
if ((datanew-data>A)||(data-datanew>A)
return data;
return datanew;
}
该算法主要用于处理变化比较缓慢的数据,如温度、物体的位置等。

使用时关键在于最大偏差值的Δy的选择,通常可根据经验获得,也可按照输出参数可能的最大变化速度Vmax及采样周期T来决定ΔY的值,即ΔY=VmaxT。

2原理图设计
2.1单片机AT89C51
这里我们使用了51系列单片机——AT89C51,利用这个单片机进行编程,实现对输入信号的滤波。

我使用了P0口作为接受AD转换的结果的端口,而P1口则输出数据到DA转换器。

另外还利用了P2作为控制端口,P2.0-P2.2用来控制AD转换器,而P2.3-P2.6外接四个开关,用来实现滤波方式的选择。

2.2数据采集
另外我还使用了AD0808进行数据采集。

这里AD0808是并联AD转换器,AD0808的引脚图如下图:
图1 AD0808的引脚图
IN0-IN8是八个模拟量输入端口,AD0808可以一次对八个模拟量进行模数转换,但是在这里我们只使用了其中的一个输入端IN0,所以ADDDA、ADDB、ADDC都应为0,所以我
让它们都接地。

它的八个输出端接在单片机上,CLOCK接数据采样时钟,它可以接在单片机上由单片机控制,也可接在另外的数字时钟上,这里我选用外接别的时钟。

START为转换启动信号,在其上跳变时,所有内部寄存器清零,在其下调变时,开始进行AD转换。

ALE是地址锁存信号。

这里我让START和ALE均接在单片机的同一个端口上,即P2.1,让单片机实现程序控制AD的转换。

OE是输出允许信号,OE=1时,才能允许输出,这里我让它也接在单片机的端口P2.1上,也是为了让单片机实现程序控制AD0808的输出。

EOC 是转换结束信号,EOC=1时,表示转换结束。

这个信号可以用来提醒单片机AD已经转换完毕,程序中即可以用查询方式,也可以用中断方式,这里我使用查询方式,所以把它接在P2.2上。

VREF(+)和VREF(-)都是参考电压信号端口,这里我让VREF(-)的参考电压为零,VREF(+)的参考电压为+3V。

2.3数模转换输出
这里我用了DA0832来进行数模转换。

DA0832的引脚图如下图所示:
图2 DA0832的引脚图
DA0832有三种数模转换方法,直通方式、单缓冲方式、双缓冲方式,因为单片机输出后可以直接进行数模转换,所以这里我采用了不需要单片机控制的最为简单的直通方式,但是DA0832若用于直通方式,则在接单片机的输出端口之间还要接一个缓冲器件,如74LS373。

若用于直通方式下,则、、、和GND均接地,而VCC和ILE则接正电源。

VREF是参考电源。

IOUT1、IOUT2是两个输出端。

DA0832输出的是电流,要利用运算放大器转换成电压。

数模转换输出电路如下图所示:
图3 数模转换输出电路2.4总体电路图
总体电路图如下图所示:
图4 总体电路图
3程序设计
3.1滤波算法设计
这个在前面介绍滤波原理时已经说过了,在此就不再次重复了。

因为设计时采集的时钟频率很大,所以在一定范围内采集的数据都差不多,因此对一系列的数据进行滤波处理时就好像是在对同一个数据进行滤波处理
但是因为这些算法处理的数据时连续采集了N个的,所以要设立一个变量数组来存储这些
输入的数据,而且要记得及时更新。

我利用了队列的思想,如果输入一个新的数据,则丢弃最原始的一个数据,把新数据插入进来,就好像队列一样,对头删除数据,对位插入新的数据。

这个程序如下:
void change()
{
int i;
for(i=0;i<N-1;i++)
buf[i]=buf[i+1];
buf[N-1]=a;
}
而获得这一系列中的某一个数据就用了一个函数就可以了,直接返回队列中的第n项的数据。

这个程序如下:
uchar get_data(n)
{
change();
return buf[n];
}
3.2 AD转换器
因为START为转换启动信号,在其上跳变时,所有内部寄存器清零,在其下调变时,开始进行AD转换。

所以设计程序时,要先让START为0,在让START为1,最后让START
为0。

开始采集数据后就要让OE为1,进行数据输入。

同时数据采集结束时,利用查询语句,查看EOC是否为1,如果是1,则处于等待状态,如果变成1,则可以进行数据输入了。

AD转换的程序如下:
START = 0;
START = 1;
START = 0;
while(EOC==0);
OE = 1;
a = P0;
这里a是一个变量,用来存储AD输入的数据。

3.3滤波算法的选择
我在电路上采用的是开关控制选择,所以这里只需要一系列的if选择语句就可以完成率把
算法的选择。

程序如下:
if(con==0)
{ if((con1==0)&&(con2==0)&&(con3==0))
res=filter1();
if((con1==0)&&(con2==0)&&(con3==1))
res=filter2();
if((con1==1)&&(con2==0)&&(con3==0))
res=filter5();
if((con1==1)&&(con2==0)&&(con3==1))
res=filter6();
if((con1==1)&&(con2==1)&&(con3==1))
res=filter8();
}
else
res=a;
con1、con2、con3三位用来控制滤波算法的选择,而con用来控制是否要进行滤波。

3.4总体程序
总体程序见附录。

相关文档
最新文档