菌根简介

合集下载

菌根真菌的基因序列-概述说明以及解释

菌根真菌的基因序列-概述说明以及解释

菌根真菌的基因序列-概述说明以及解释1.引言1.1 概述菌根真菌是一类与植物根系共生的真菌,其与植物根系形成一种特殊的关系,被认为是一种重要的共生生物。

菌根真菌通过生长在植物根系内部的细丝(也称为菌丝)与植物根系进行共生,形成一种菌根结构。

这种共生结构能够提供植物所需的水分和养分,并在环境压力下提高植物的耐受性。

菌根真菌的基因序列研究是对菌根真菌进行全面深入了解的重要途径。

通过分析和解读菌根真菌的基因序列,我们可以揭示菌根真菌的遗传信息、功能基因和代谢途径,从而进一步了解其与植物共生的机制。

在过去的几十年中,随着高通量测序技术的发展,菌根真菌基因序列的研究取得了长足的进展。

通过对菌根真菌的基因组进行测序和分析,我们发现了许多与菌根共生相关的基因,如菌根形成基因催化酶、信号转导通路相关基因等。

这些研究成果为我们深入理解菌根真菌与植物的共生关系提供了重要的基础。

然而,菌根真菌的基因序列研究仍处于起步阶段,并且在一些方面还存在着挑战和问题。

例如,菌根真菌基因组的复杂性和多样性使得对其基因序列的分析存在一定的困难,同时,对菌根真菌基因功能的进一步解读和验证仍需更多的研究工作。

未来,我们可以进一步深入研究菌根真菌的基因序列,包括菌根真菌与植物共生的信号通路、菌根真菌对环境变化的响应等方面。

这些研究将有助于揭示菌根真菌与植物共生的机制,为农业生产、环境保护等领域提供重要的科学依据。

1.2 文章结构文章结构部分的内容应该包括对整篇文章的章节和内容的概述。

以下是一种可能的写作方式:在本文中,我们将讨论菌根真菌的基因序列。

首先,我们将在引言部分提供对本文的概述,描述菌根真菌的基本概念、生命周期和分类与特征。

接着,在正文部分,我们将详细解析菌根真菌的基本概念,包括其定义、特点和作用。

然后,我们将介绍菌根真菌的生命周期,探讨它在不同阶段的生物学行为和遗传特征。

在这一过程中,我们将重点关注其基因序列的研究进展和意义,以及未来的研究展望。

简要说明植物菌根的作用

简要说明植物菌根的作用

简要说明植物菌根的作用1.引言1.1 概述概述植物菌根是一种特殊的共生关系,指的是植物根系与真菌根系相结合的现象。

植物通过与菌根真菌建立联系,能够从土壤中获取更多的水分和营养物质,同时也为菌根提供能量来源。

这种共生关系对植物的生长和土壤的改善具有重要的作用。

本文将对植物菌根的定义和分类进行介绍,探讨植物菌根的生理作用,并总结植物菌根对植物生长的促进作用以及对土壤环境的改善作用。

植物菌根的研究已经有相当长的历史,其对于植物生长的促进作用被广泛认可。

它能够提供植物无法直接获取的营养物质,如磷、氮、钾等,同时还能够增加植物的吸收表面积,提高植物对水分和养分的利用效率。

此外,植物菌根还能增强植物的抗逆性,使植物对各种环境胁迫具有更好的适应能力。

植物菌根可以根据菌丝是否侵入植物根部来进行分类,主要包括内生菌根和外生菌根。

内生菌根是指菌根真菌侵入植物细胞内部形成菌核,如丛枝菌根和松露菌根等。

而外生菌根则是菌根真菌与植物根部形成菌丝网络,如担子菌根和牛肝菌根等。

不同类型的植物菌根在生理和形态上有所差异,但其作用机制和效益都是相似的。

通过本文的阐述,我们能够更全面地了解植物菌根的重要性和作用机制。

进一步探究植物菌根的应用价值,可以为农业生产和土壤修复提供更科学的方法和技术。

因此,本文的目的是通过简要说明植物菌根的作用,为读者提供对该领域的初步认识和理解。

1.2 文章结构文章结构部分应包括本文的主要章节和内容概述,以引导读者对整篇文章的理解和阅读。

在本文中,主要包含以下章节:1. 引言:本章节将概述植物菌根的作用,并介绍文章的结构和目的。

2. 正文:本章节将探讨植物菌根的定义和分类,以及其在植物生理方面的作用。

3. 结论:本章节将总结植物菌根的作用,重点讨论其对植物生长的促进作用和对土壤环境的改善作用。

文章的目的是简要说明植物菌根的作用。

通过对植物菌根的定义、分类和生理作用的介绍,我们将探讨植物菌根如何促进植物生长并改善土壤环境。

第9章菌根技术

第9章菌根技术

第9章菌根技术第一节菌根的概念及类型一、菌根的概念•菌根(mycorrhiza)是植物的根系与土壤真菌形成的一种互惠共生体系。

•菌根形成后菌根真菌从植物体内获取必要的碳水2菌根形成后菌根真菌植物体内获取要的碳水化合物及其他营养物质,而植物也从真菌那里得到所需的营养及水分,从而它们达到一种互利互助,互通有无的高度统一的关系,菌根既具有一般植物根系所具有的特征,又有专性真菌所具有的特征。

因此,菌根被认为是植物与菌根真菌共同进化的产物。

二、菌根的主要类型•根据菌根形态学及鹪剖学特征的不同可把菌根分为3个主要类型:外生型菌根、内生型菌根和内外生型菌根。

3•目前,研究最多的是外生型菌根和内生型菌根中的丛枝菌根。

(1)外生型茵根(ectomycorrhiza)•外生型菌根又称菌套菌根,它是菌根真菌的菌丝体包围宿主植物尚未木栓化的营养根,其菌丝不穿透宿主植物的细胞壁,在宿主植物细胞壁之间蔓延生长。

•外生菌根具有以下主要特征:•①在植物营养根表面,形成一层由菌根真菌的菌丝体4紧密交织而形成的菌套,在菌套表面往往有特征不同的外延菌丝;•②在根皮层细胞闯,由于菌丝体的生长,宿主植物外皮层细胞一个个地被真菌菌丝所包围,形成了网格状的结构,称之为“哈蒂氏网”;•③宿主植物营养根通常变短、变粗、变脆;•④植物营养根发生明显的颜色变化;•⑤营养根无根冠和根毛。

5外生菌根根据真菌、树种和环境的不同,会形成不同形状的菌根形态。

如棒状、二叉状、羽状、塔状、疣状或块状等(图9.2)。

6•外生菌根的颜色就是菌套的颜色,新鲜菌根的颜色十分繁多,这也是外生菌根重要的形态特征之一。

其颜色的变化主要取决于菌根真菌菌丝的颜色、菌套的厚度和树木营养根的底色。

但受真菌菌丝体颜色的影响最大。

•土生空团菌菌丝为黑色形成的菌根就是7土生空团菌,菌丝为黑色,形成的菌根就是黑色;•卷边桩菇菌丝为浅黄褐色,形成的菌根多为黄褐色;•彩色豆马勃菌丝为黄褐色,形成的菌根也是黄褐色。

菌根1

菌根1

菌根科技名词定义定义1:真菌与高等植物根系的结合而形成的一种共生现象。

所属学科:地理学(一级学科);生物地理学(二级学科)定义2:由真菌侵染高等植物根部而形成的共生体系,分为外生菌根和内生菌根两类。

所属学科:土壤学(一级学科);土壤生物与土壤生物化学(二级学科)本内容由全国科学技术名词审定委员会审定公布百科名片菌根是指土壤中某些真菌与植物根的共生体。

菌根真菌与植物之间建立相互有利、互为条件的生理整体,并各有形态特征,这是真核生物之间实现共生关系的典型代表。

菌根的作用主要是扩大根系吸收面,增加对原根毛吸收范围外的元素(特别是磷)的吸收能力。

菌根真菌菌丝体既向根周土壤扩展,又与寄主植物组织相通,一方面从寄主植物中吸收糖类等有机物质作为自己的营养,另一方面又从土壤中吸收养分、水分供给植物。

简介能引起植物形成菌根的真菌称为菌根真菌,大部分属担子菌亚门,小部分属子囊菌亚门。

菌根真菌的寄主有木本和草本植物约2000种。

菌根真菌与植物之间建立相互有利、互为条件的生理整体,并各有形态特征,这是真核生物之间实现共生关系的典型代表。

兰科植物的种子萌发,若没有菌根真菌共生,则不能成苗;杜鹃科植物若没有菌根真菌的共生,则植物发育不良。

内生菌根菌与植物间长期的共同演化,其展现出的外观特徵与生态机能等都与其它的菌类有明显的不同,惟这群土壤微生物因为没有醒目的子实体,因此较无法吸引人们的注意,然而它们却在生态系中扮演著重要的角色。

随著生物学家的探索,它们的基本生物学特性和它们如何与植物产生互利共生之机制,渐渐为大家所了解,然而我们至今却仍然无法预测它在人为过度干扰的生态系中将如何继续完成其任务。

土壤、阳光、空气和水是植物生长的重要元素,尤其是土壤之於树木更是不可或缺的基础,它提供植物体固著及供给其生长所需的养分来源。

原来这些松树的树根会和一种菌根菌形成共生关系,而结合成独特的菌根。

菌根菌的菌丝能交织成鞘套式的结构,将松树幼根外表包起来,菌鞘套内和幼根接触的菌丝,会侵入幼根间隙,菌鞘外的菌丝则呈绒毛状向四周岩石细缝或土壤延伸,将土壤和根系紧紧结合,以其巨大的表面,帮助植物吸收悬崖上的无机物质,并能从泥炭、腐植质、木质素和蛋白质等有机物中吸收被分解的养分,使得松树能在极端恶劣的环境下,依然挺拔傲立。

菌根菌与根际微生物的生态与分子生物学

菌根菌与根际微生物的生态与分子生物学

菌根菌与根际微生物的生态与分子生物学植物与土壤之间的互动非常复杂,植物需要吸收营养和水分,这些物质是通过它们的根从土壤中获得的。

但是,土壤中的这些物质并不总是容易获取的,往往需要通过其他微生物的帮助。

其中,菌根菌和根际微生物是影响植物生长和健康的两个重要因素。

本文将介绍菌根菌和根际微生物的生态学和分子生物学研究进展,深入分析它们在土壤生态系统中的作用和相互关系。

一、菌根菌菌根是一种生长在植物根系统中的真菌群体,与根毛形成真正的内生菌根。

菌根可以分为两种类型:外生菌根和内生菌根。

外生菌根(Arbuscular Mycorrhizae,简称AM)是被子植物中最普遍的一种菌根类型,它们在植物的细胞外形成菌丝,与植物根毛形成联系。

内生菌根(Ectomycorrhizae,简称EM)主要分布在针叶树、某些阔叶树和一些地生植物中,它们形成菌丝网络,包围着根,但不穿透细胞壁。

这两种菌根类型具有不同的形态和生物学特性,对植物的生长和生态系统的功能也有不同的影响。

1. 菌根菌的分类和特点菌根菌是一类不断变化的分子类型,被分类到地衣菌门中。

地衣菌门包含由外部真菌与内部藻类或蓝细菌之间的共生关系形成的群体。

它包括多种和土地使用方式有关的物种。

菌根菌与其他一些土壤微生物一起组成植物根系统的生态系统。

这些微生物影响了植物对水分、营养和抗病能力的吸收,进而影响了植物的生长、产量和健康状态。

2. 菌根菌与植物菌根菌通过以下方式与植物共生:①菌根菌通过菌丝直接进入植物的根毛,并在根毛内部形成菌丝网络,与植物细胞贴近在一起,吸收植物根系释放的营养物质;②菌根菌通过与植物细胞交互作用,激活和维持植物的免疫系统;③菌根菌通过增强植物的根系系统,提高植物的耐受性。

菌根菌在植物生长和健康方面有很多好处,具有以下作用:①增加植物的养分吸收能力:由于菌根菌具有趋向关系,能够寻找和发掘植物根系周围土壤中的营养物质,进而促进植物吸收。

②提高植物的耐受性:菌根菌可以促进植物释放植物生长调节物质,进而促进植物对各种逆境的适应性。

植物菌根对植物光合作用及生长的影响

植物菌根对植物光合作用及生长的影响

植物菌根对植物光合作用及生长的影响
植物菌根是一种利用植物根系提供的营养而生长的真菌,与植物根系形成共生
关系。

这种关系主要表现在菌根菌(mycorrhizal fungus)能为植物提供养分(如磷
和氮)的同时,植物也向菌根菌输送一部分固定的碳,这样就形成了一种互利共生的关系。

在光合作用中,植物将光能转化为化学能并储存在有机化合物中,这能够促进
植物的生长和发育,使其具备更强的应对外界环境的能力。

植物菌根对植物光合作用的影响主要表现在两方面:
1. 提高光合效率
植物菌根能够通过增加植物根系的利用面积而促进养分的吸收,尤其是磷的吸收。

此外,菌根菌所分泌的植物生长有关的激素,如茉莉酸和赤霉素等,也有助于植物的生长和发育。

这样就能够提高植物的光合效率,促进植物体内有机物质的合成。

2. 增加植物耐受性
植物菌根除了能够增加植物光合效率外,还能够增加植物的耐受性。

研究表明,菌根菌能够增加植物的抗逆性,如抗旱性、耐寒性、耐盐性和抗病性等。

这主要是因为菌根菌通过为植物提供养分和化感物质,促进了植物体内保护机制的增强。

此外,植物菌根还能促进植物的根系生长,从而增加植物的吸收面积和吸收能力。

菌根菌在植物根系上形成的菌实体和菌根毛也能够增加植物根系表面积,从而提高植物对光和水的利用效率。

总之,植物菌根对植物光合作用及生长有着重要的影响。

它可以提高植物的光
合效率和产量,同时增加植物的抗逆性,使植物更能适应环境的变化。

因此,在植物生产中,应当注重菌根菌的利用与培育,以提高农作物的产量和品质。

菌根

菌根

应用
1、菌根化育苗造林
我国是一个林业大国,但随着人口的不断增加和全球生态环境的改变,天然林的覆盖面积逐年减少。面对这 一严重问题,近些年我国加大了人工林的种植面积,为了提高造林成活率,科研工作者提出利用菌根真菌和林木 之间的互惠共生关系,来增加逆境造林的成功率。菌根真菌广泛存在于各个生态系统的土壤中,其中外生菌根在 森林生态系统中起着重要的作用。菌根化育苗造林技术的应用在提高我国森林覆盖面积和维持森林生态系统稳定 性等方面已经取得了初步成效。采用菌根化育苗不仅可以提高苗木的成活率、提高苗木对土壤中营养元素的吸收 和利用、促进苗木生长,而且还能够增强苗木对植物病害、干旱、有机污染物及重金属胁迫的抗性。研究发现, 接种菌根真菌可提高种子出苗率,缩短出苗时间,并显著提高松苗的苗高、地径、侧根数和干重。在Cu和Cd胁迫 条件下对中国松接种外生菌根真菌不仅促进寄主植物的生长发育和生物量的增加,而且显著降低了松树体内重金 属的浓度,抑制了重金属由植物根部向地上部转移,提高其对重金属胁迫的抗性,提高造林成活率。在川东南地 区酸化土壤中接种外生菌根真菌,可以提高马尾松在贫瘠土壤中的生存能力和抗铝性,增加当地马尾松的盖度。 外生菌根真菌的存在还可增强树木抵抗干旱、病害等胁迫的能力,阻止或延缓了科尔沁樟子松人工林的生长衰退, 在维持森林生态系统稳定性和生物多样性方面发挥着重要的作用。林业是我国经济发展的一个重要组成部分,又 是一项重要的公益事业和基础产业,将菌根技术应用于我国林业经济发展中,不仅提高了林木的质量,而且对于 实施林业经济走可持续发展道路及生态建设和林业产品供给等方面都发挥着重要的作用。
菌根是自然界中普遍存在的一种共生现象,它是由土壤中的菌根真菌与高等植物根系形成的一种共生体。鉴 于其在自然界中的重要作用,菌根研究日益引起世界各国学者的普遍。目前,有关菌根共生体在生态系统中可以 提高植物对土壤矿质营养元素的吸收和累积、促进植物的抗旱、抗涝、抗盐、抗病、耐受重金属胁迫等方面的作 用已经得到普遍认同。

菌根

菌根
Arbuscular Mycorrhiza and Nutrient Availability
Company
LOGO
菌根与养分有效性
Contents

1 2 3 4
AM definition The role of AM in plant phosphorus acquisition Possible mechanisms of AM The difficulty in AM production
Company Logo
2.1 Phosphorus property in soil

P is critical for plant growth and makes up about 0.2% of dry weight, but it is one of the most difficult nutrients for plants to acquire. In soil, it may be present in relatively large amounts, but much of it is poorly available because of the very low solubility of phosphates of iron, aluminum, and calcium, leading to soil solution concentrations of 10 mM or less and very low mobility.
Company Logo
2.2 Two pathways for phosphorus uptake from soil

High-P fertilizer application can greatly lower the percentage of root length colonized. The lower percentage of root length colonized at high P availability does not necessarily imply plant suppression or control of fungal activity, because high P increases root growth and hence reduces the ratio of colonized to noncolonized root length; there may be no effects of P on the fungus. However, very high P application can certainly alter characteristics of root colonization (particularly reducing arbuscule development) and markedly decrease AM fungal biomass per plant, including both biomass in roots and in soil.

菌根及菌根真菌介绍

菌根及菌根真菌介绍

菌根及菌根真菌介绍菌根(Mycorrhiza)是土壤中的菌根真菌与高等植物根系形成的一种共生体,是自然界中最普遍的共生现象之一。

早在19世纪中期,很多学者就已经发现在水晶兰的根上都包围着一层稠密的真菌菌丝。

1881年,俄国学者Kamineksi指出水晶兰上的真菌可为植物提供营养,是一种共生体。

之后,一些研究者在松树等植物的根部也发现了类似的现象,并且发现根部长有真菌的植物长势较好。

1885年,菌根学的奠基人德国科学家Frank发现一些真菌菌丝可与树木根系共生结合,其将此类共生体命名为“菌根”。

Boyer和Pau研究发现菌根真菌与寄主建立一种互惠的共生关系,有助于寄主吸收水分和养分。

之后,菌根共生体在松树、悬铃木、杜鹃花科及兰科植物等多种植物上被发现。

根据形态结构的不同,可将菌根分为6类:丛枝菌根(Ambuscular mycorrhiza,AM);浆果鹃类菌根(Arbutoid mycorrhiza);外生菌根(Ectomy-corrhiza,EM);杜鹃花类菌根(Ericoidmycorrhi-za);水晶兰类菌根(Monotropoid mycorrhiza);兰科菌根(Orchidmycorrhiza)。

目前已发现自然界中绝大部分的植物都具有菌根;而且菌根真菌在高等植物产生以前,就已经同古老的陆生植物形成了共生体。

目前已有大量不同种属的菌根真菌已被分离并鉴定,如早在1936年,Frieslehen自越橘根系中分离出了菌根真菌。

菌根真菌可改变土壤结构,扩大根系吸收范围,特别是能够增加对原根毛吸收范围外的元素(如磷、氮)的吸收能力。

菌根真菌菌丝体一方面可向根周土壤扩展,另一方面又可与寄主植物组织相通,因而可从寄主中吸收有机质作为自身养分,同时也从土壤中吸收养分、水分来供给植物生长。

一些菌根真菌可合成生理活性物质,如抗生素、植物激素、酶类等,上述物质利于其发挥促生、抗逆能力。

总体来看,菌根真菌可改善植株营养状况,调节宿主的代谢活性,增强植株的抗逆性,使其能够在土壤贫瘠、有机物降解不完全、土壤重金属含量高等各种不利生境条件下生存。

根瘤与菌根

根瘤与菌根

根瘤与菌根
一、根瘤:根瘤的形成是由于土壤中的根瘤菌侵入到根部组织所引起的。

根瘤细菌首先侵入根毛,然后进入根的皮层,并在皮层内大量繁殖,皮层细胞受到刺激而大量分裂,使细胞数目和体积增大,皮层膨大,向外突出形成根瘤。

作用:将大气中游离的氮(N2)转变为(NH3)。

二、菌根:同真菌共生的根。

根据菌丝在根中存在部位分为三种:外生菌根、内生菌根、内外生菌根。

(一)外生菌根:真菌菌丝包被在幼根表面,或进入皮层细胞间隙,代替根毛的作用,扩大了根系的吸收面积。

不具根毛。

(二)内生菌根:菌丝侵入到皮层的细胞腔内和细胞间隙中,根尖有根毛,外形呈瘤状突起。

(三)内外生菌根:菌丝不仅包围根尖,还侵入到皮层细胞的细胞腔及腔间隙中。

菌根的名词解释植物学

菌根的名词解释植物学

菌根的名词解释植物学菌根是植物学上一个重要的名词,它指的是植物根系与真菌共生形成的一种复合体。

菌根对植物的生长发育和生态系统的稳定起着重要的作用。

一、菌根的类型菌根按照植物与真菌的共生程度可以分为两种类型:外生菌根和内生菌根。

1. 外生菌根外生菌根是植物根系与真菌菌丝建立起结构上的共生,但不侵入植物根的内部。

这种菌根多见于乔木、灌木及部分草本植物。

外生菌根能增大植物根系表面积,提高植物的养分吸收速率,尤其对矿质养分吸收非常有效。

2. 内生菌根内生菌根是植物根系与真菌菌丝进入植物根的内部形成的一种共生结构。

内生菌根进一步分为两种类型:外围内生菌根和内生菌根。

(1)外围内生菌根外围内生菌根是指真菌菌丝紧贴植物根形成一层菌鞘,菌鞘与植物根系不相连。

这种菌根多见于禾本科植物。

菌鞘能增加植物根系的吸收面积,促进植物的养分吸收。

(2)内生菌根内生菌根是指真菌菌丝穿透植物根壁形成菌丝鞭毛与植物细胞形成共生结构。

这种菌根多见于杂草和一些庭园植物中。

内生菌根能与植物根系建立更为密切的关系,促进营养物质的传递和植物的生长。

二、菌根的形成过程菌根的形成主要经历三个阶段:诱导期、发展期和稳定期。

1. 诱导期诱导期是指真菌通过分泌化合物激活植物根系细胞,使其分泌出锁定真菌的化合物,并吸引真菌菌丝向植物根迁移。

这个过程中,真菌会通过根毛进入植物根,形成付于根尖的菌丝。

2. 发展期发展期是指真菌在植物根内形成复杂的菌丛,并把菌丝穿透到植物细胞内。

在这个过程中,真菌与植物根形成了密切的结合,彼此之间通过特殊的结构连接。

3. 稳定期稳定期是指真菌与植物根系共生形成的菌根进一步加强,形成稳定的共生结构。

这个时期中,真菌与植物互利共生,真菌为植物提供养分和水分,而植物为真菌提供有机物质。

三、菌根的生态功能菌根在生态系统中起着重要的作用,主要体现在以下几个方面:1. 促进养分吸收菌根能增大植物根系表面积和吸收器官体积,提高植物对养分的吸收能力。

菌根技术

菌根技术
①在植物营养根表面,形成一层由菌根真菌的菌丝体紧密交织而 形成的菌套,在菌套表面往往有特征不同的外延菌丝; ②在根皮层细胞间,由于菌丝体的生长,宿主植物外皮层细胞一 个个地被真菌菌丝所包围,形成了网格状的结构,称之为“哈蒂 氏网”; ③宿主植物营养根通常变短、变粗、变脆; ④植物营养根发生明显的颜色变化:

7.5.1 菌根真菌的固体培养 7.5.2 菌根真菌的液体培养 7.5.3 菌根菌剂的类型及其生产
• (1)液体菌剂 • (2)固体菌剂 • (3)胶囊菌剂
7.5.4 菌剂检测与储存
7.6 菌根技术应用中注意的问题
(1)适地适树适菌 (2)林业技术的配合 (3)正确而灵活运用接种技术





(2)内生型菌根
内生型菌根是指茵根真菌的菌丝体侵入到宿主植 物细胞内部,在根皮层细胞内形成不同形状的吸器, 宿主植物的根一般无形态及颜色的变化,在根表面也 没有茵套和外延菌丝,仍可见到根毛,用肉眼很难发 现或区别是否有菌根形成。
7.2 菌根对宿主植物的作用
(1)菌根能扩大宿主植物根的吸收面积 (2)增加宿主植物对磷及其他矿质营养 的吸收 (3)菌根真菌能产生植物生长调节物质 (4)菌根可提高植物的抗逆性 (5)菌根可改善植物根际环境 (6)菌根增强植物的防病、抗病能力
第七章 菌根技术
7.1 菌根的概念和类型
7.1.1 菌根的概念
菌根是植物的根系与土壤真菌形成的一种互惠 共生体系。
7.1.2 菌根的主要类型

(1)外生型菌根
外生型菌根又称菌套菌根,它是菌根真菌的菌丝 体包围宿主植物尚未木栓化的营养根,其菌丝不穿透 (1)VA菌根样品的收集 • (2) VA菌根真菌孢子的收集与筛析

菌根真菌

菌根真菌

菌根真菌菌根真菌是自然界中一种能与植物形成共生体的特殊真菌,菌根现象发现于19世纪中期,近一个世纪以来关于菌根的研究不断深人。

研究发现自然界中97%的植物都具有菌根。

有菌根的植物是正常的,而没有菌根的植物则是异常的。

[1,2]有些树木的根上如果没有足够的菌根,往往难以成活。

许多兰科植物没有菌根不能正常地生长发育,甚至其种子没有菌根真菌的感染就不能正常发芽生长。

菌根真菌生活在活的植物根部,从中获取必需的碳水化合物和其他的一些物质,但同时又向植物的根系提供植物生长所需的营养物质、酶类和水分,是一种相互有利的共生关系。

[3]不同的菌根真菌对于不同的植物而言所起的作用也是不同的,一些真菌对某种植物来说是共生的,有利的,而对另一种植物则有可能是是严重致病性的,如假蜜环菌属和丝核菌属的真菌对兰科植物是共生菌根真菌,而对许多木本植物又是严重的致病菌。

1989 年, Harley 根据参与共生的真菌和植物种类及它们形成共生体系的特点, 将菌根分为7 种类型, 即丛枝菌根、外生菌根、内外菌根、浆果鹃类菌根、水晶兰类菌根、欧石楠类菌根和兰科菌根。

早在1900 年, 人们就知道分布最广、与农业生产关系最为密切的是内生菌根真菌, 内生菌根真菌在根的表面不形成菌套,菌丝多数侵人到根的皮层组织内部,但在细胞间隙不形成哈蒂氏网,(哈蒂氏网和君套是外生菌根形成的标志)菌丝穿入皮层细胞内部形成各种吸器。

根据内生菌根真菌的菌丝体在细胞内形成吸器结构的不同,内生菌根又可分①泡囊丛枝菌根(V A菌根)。

菌根的菌丝胞间无隔膜,胞内菌丝呈泡囊状或丛枝状。

故也称其为丛枝菌根(AM)形成这种菌根的真菌属于接合菌亚门内囊霉目,V A菌根是最普遍的一种类型。

V A菌根植物的生长取决于真菌对共生植物提供的营养物质。

此类菌根真菌可以利用土壤中的磷及其他元素,同时V A菌根对豆科植物的根瘤生长发育有促进作用,亦能促进非豆科植物固氮菌的生长发育,并具有防病菌及线虫侵染的作用。

第三章菌根与菌根真菌

第三章菌根与菌根真菌

AM 真菌的最新分类系统及新的分类单元
但保留硬囊霉属( Sclerocystis),。 并把这2 个属归入Paoletti 在1889 年设立的内囊霉科 (Endogonaceae) 。 1922,Bucholtz研究了它们的有性生殖, 指明这一科隶属于 接合菌纲, 毛霉目。
1974年, Gerdemann 和Trappe 重新设立球囊霉属( Glomus ) ,
并描述了2个新属无梗囊霉属(Acaulospora ) 和巨孢囊霉属(Gigaspora) ,
并对内囊霉科重新分类, 下设Glomus 、 Acaulospora、 Gigaspora 、 Sclerocystis 、 Endogone 、 Glaziella 、 Modicella 共7 个属。 实际上这7 个属中只有 Glomus 、 Acaulospora 、Gigaspora 、Sclerocystis 4 个属形成丛枝菌根。
第二节 菌根真菌
1. 概 念
菌根真菌是指能侵染植物形成菌根的真菌。 以前认为大部分属担子菌亚门,小部分属子囊菌 亚门、接合菌门。 现在另立一个门: 球囊菌门( Glomeromycota) 约占土壤微生物生物量的5-10%。
2. 丛枝菌根真菌(AM真菌)的生物多样性
AM 真菌最早被归入Link 1809 年建立的内囊霉属( Endogone ) 1844 年, Tulasne 兄弟描述了球囊霉属( Glomus ) 。 1875年, Berkeley 和 Broome 建立硬囊霉属( Sclerocystis) 。 1912年, Thaxter 将球囊霉属( Glomus )的种归入内囊霉属( Endogone );
体发育作了详尽研究后, 在系统发育和进化树的基础上提出 了能反映亲缘关系的分类系统, 建立了球囊霉目( Glomale) , 下设2 个亚目, 即球囊霉亚目和巨孢囊霉亚目, 包括原来内囊霉科中除内囊霉属( Endogone ) 外的6 个属。

根瘤菌菌根区别

根瘤菌菌根区别

根瘤与菌根植物根系和土壤微生物有着十分密切的关系,它们互相影响、互相制约。

微生物不仅存在于土壤中,也存在于一部分植物的根组织里,与植物构成特殊的共生关系,即根瘤和菌根。

1 基本概念与基本类型1.1 根瘤指豆科等植物根部的瘤状突起。

是土壤中某些细菌或放线菌与植物根部形成的共生体,是由于细菌或放线菌侵入根部组织而形成的瘤状结构,其中能够形成根瘤的细菌一般称为根瘤菌。

根据根瘤中共生菌的种类,可将根瘤分成3大类:根瘤菌根瘤主要存在于豆科植物,也存在于榆科植物;蓝细菌根瘤存在于苏铁等极少数植物;放线菌根瘤主要存在于木本植物。

1.2 菌根指某些土壤真菌与植物根的共生体。

共生部位无瘤状突起。

根据真菌与细胞间的关系,通常将菌根分为3大类型:外生菌根是真菌菌丝侵入到根部的细胞间隙,并在根表面交织成套状体——菌套,多存在于深根性高大乔木;内生菌根是真菌菌丝伸入到根部细胞内部,多存在于草本植物与小乔木或灌木树种;过渡菌根在解剖学上具有介于外生菌根和内生菌根之间的特征,即真菌菌丝一部分伸入到根细胞内部,一部分侵入到根细胞间隙,所以又称为内外生菌根或间生菌根,通常存在于形成外生菌根的植物上,种类较少。

2 形态结构与功能2.1 根瘤的形态结构与功能根瘤菌自根毛侵入根内(有的植物是由侧根穿过表皮的裂隙部位进入根内),存在于根皮层的薄壁细胞中。

根瘤菌在皮层细胞中迅速地分裂繁殖,同时皮层细胞因根瘤菌侵入的刺激,进行细胞分裂,使这一区域的皮层细胞数目增加,体积增大,形成瘤状突起。

蓝细菌、放线菌也都大致如此。

有所不同的是蓝细菌先定居在根瘤表面,在小共生体的外面又覆盖上一层次生皮层细胞,使其成为一种夹在两层宿主细胞间的胞外共生。

而放线菌在感染早期,还需要细菌辅助,但这种辅助细菌并不进入根瘤,它的作用在于促进根毛卷曲,增加放线菌的感染机会。

根瘤的形成过程大体上可分为菌的感染和侵入、根瘤的发生、根瘤的发育3个阶段。

成熟的根瘤具有下列内部结构:根瘤皮层:包括4~10层外围细胞,是未受感染的薄壁细胞,细胞较小,排列紧密。

丛枝菌根(AM)对植物矿质营养的影响

丛枝菌根(AM)对植物矿质营养的影响

2.1.1 AM真菌改善植株碳素营养机制
大量实验表明,AM真菌通过改善作物的光合参数 提高植株叶片光合速率与光合能,间接获得与对 照相比更多的可溶性糖或淀粉等碳水化合物,进 而改善或促进植物的碳素营养。
菌根植物的生长取决于真菌对宿主植物提供的营 养物质的增加( 这是促进因素) 和真菌本身对碳水 化合物的消耗( 这是减弱因素) 之间的平衡。
根据其形态和解剖学特征,菌根可分为外生菌根、内生菌 根和内外生菌根3种类型。
1.1 外生菌根
菌根具有菌丝套。 部分菌丝侵入根的外皮层细胞间隙,形成哈氏网。 菌丝不进入皮层细胞之中。 加强植物对矿质营养元素的吸收。 向植物提供生长素、维生素、细胞分裂素、抗生
素和脂肪酸等代谢产物,促进植物生长。 提高植物对病原菌侵染和对温度、干旱和过酸或
关于丛枝菌根对植物钾素营养的影响作,目前观点 不一。养的作用 , 目前观点不一。菌根感染后植 物体内钾含量有时会升高,有时会下降。
有的试验表明,AM真菌感染植物体后,植物体内 钾含量升高。比如,在丛枝菌根真菌对芋组织培养 苗生长 的影响试验中,接种AM真菌比对照显著提 高了根、叶内钾含量。
也有研究指出,接种AM真菌对马铃薯苗期植物钾 的影响不大,王倡宪等在3种丛枝菌根真菌对黄瓜 幼苗生长的影响研究中发现,接种丛枝菌根真菌, 对钾的吸收影响不大 。
产生这种不同结果的原因可能和试验所用菌种、 寄主植物类别、立地条件等有关。
有研究认为,虽然植物需钾量大大超过需磷量, 但菌丝的直接吸收和运输作用对植物钾营养的贡 献有限,菌根效应的间接作用可能更重要。
另外,有研究表明,AM菌根真菌与根瘤菌双接种 比单独接种能更有效地提高寄主植物的生物量和 钾的积累。对于AM真菌促进吸收钾元素的机理尚 需进一步研究。

菌根名词解释

菌根名词解释

菌根名词解释菌根是指一种共生关系,即真菌与植物根系相互作用形成的结构。

菌根由植物根系中的根毛与真菌菌丝组成,通过这种共生关系,植物从真菌中获取养分,而真菌则通过植物根系的碳源获取能量。

这种共生关系对植物的生长发育及生态系统的稳定性起着非常重要的作用。

菌根分为两种类型:外生菌根和内生菌根。

外生菌根形态上表现为真菌菌丝包裹在植物根毛表面,使其呈现灰白色或淡黄色的细丝状结构。

内生菌根则是真菌菌丝穿入植物根内部,真菌菌丝与植物根细胞紧密结合。

这两种类型的菌根在结构上有所不同,但都能有效增加植物的吸收面积,提供更多的养分和水分。

同时,菌根还能增加植物对土壤中有害物质的抗性,增强植物的抗病能力。

菌根的形成是一个复杂的过程,涉及到植物和真菌的分析、识别、相互吸引、共生建立等多个环节。

对植物来说,真菌菌丝发出化感物质,吸引植物根毛的进入;对真菌来说,菌根化学物质也可以促进真菌菌丝的生长。

通过这种相互作用,真菌菌丝在植物根系中逐渐生长壮大,与植物根细胞形成共生关系,最终形成菌根。

菌根对植物的生长发育具有显著的促进作用。

首先,菌根能增加植物的养分吸收能力。

真菌菌丝能延伸到土壤深处,吸收土壤中难以被植物根系吸收的养分,如磷、锌、铁等。

这些养分被真菌吸收后,可以通过菌根转运进入植物根细胞,提供给植物使用。

其次,菌根能增强植物对干旱和盐碱等逆境的耐受性。

真菌菌丝在植物根系周围形成网状结构,增加植物根系的吸水面积,并分泌有机物质,改善土壤结构和保持土壤湿度,减轻植物的逆境状况。

再次,菌根还能提高植物的抗病能力。

真菌菌丝分泌抑制病原微生物的化合物,并促进植物根系产生抗病物质,保护植物免受病原菌的侵害。

总之,菌根是一种重要的共生关系,对植物的生长发育和生态系统的稳定性具有重要作用。

了解菌根的形成机制和功能,对于发展菌根肥料、改善土壤质量、提高植物产量具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

菌根简介
自然界中还有许多高等植物的根与土壤中的真菌形成共生关系,这种同真菌的共生体称为菌根(mycorrhiza)。

根据菌根形态学及解剖学特征,可将菌根分为外生菌根(ectotrophic mycorrhiza)、内生菌根(endotrophic mycorrhiza)和内外生菌根(ectendotrophic mycorrhiza)三种类型。

(一)外生菌根
与根共生的真菌菌丝体包围宿主植物幼根外表,形成菌丝鞘,菌丝一般不穿透组织细胞,而仅在细胞壁之间延伸生长(图4-45)。

形成菌根的根一般较粗,顶端分为二叉,根毛稀少或无。

这类菌根只有少数植物如松科、桦木科、山毛榉科、杜鹃花科等植物形成这类菌根。

(二)内生菌根
真菌菌丝分布于根皮层细胞间隙或侵入细胞内部形成不同形状的吸器,如泡囊和树枝状菌丝体。

因此。

内生菌根也称泡囊-丛枝(VA)菌根或丛枝菌根(AM)(图4-46)。

这类菌根宿主植物的根一般无形态及颜色变化。

90%以上的植物都能形成内生菌根,典型的内生菌根如兰花菌根。

(三)内外生菌根
有外生菌根和内生菌根的某些形态学或生理特征。

它既可在宿主植物根表面形成菌套,又可在根皮层细胞间隙形成VA菌根,亦可在皮层内形成不同形状的菌丝圈。

内外生菌根主要发生于松科、桦木属、杜鹃花科以及水晶兰科植物上。

真菌是低等的异养植物,它不能自己制造有机物,与绿色植物共生后,真菌可以从根中得到它生长发育所需的碳水化合物,而菌丝如同根毛一样,可以从土壤中吸收水和无机盐供植物利用,促进细胞内贮藏物质的分解,增进吸收作用。

菌丝还能产生激素,尤其是维生素B1和B6等生长活跃物质,不仅对根的发育有促进作用,使植物生长良好,还能增加豆科植物固氮和结瘤率;提高药用植物的药用成分含量;提高苗木移栽、扦插成活率等。

如松树在没有与它共生真菌的土壤中,生长缓慢甚至死亡。

因此,在林业上,常用人工方法进行真菌接种,提高抗旱能力,以利于造林成功。

现已发现在根上能形成菌根的高等植物有两千多种,其中很多是造林树种,如银杏、桧、侧柏、毛白杨和椴树等。

相关文档
最新文档