拉伸性能测试

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拉伸性能测试(静态)

拉伸性能测试主要确定材料的拉伸强度,为研究、开发、工程设计以及质量控制和标准规范提供数据。在拉伸测试中,薄的薄膜会遇到一定困难。拉伸试样的切边必须没有划痕或裂缝,避免薄膜从这些地方开始过早破裂。

对于更薄的薄膜,夹头表面是个问题。必须避免夹头发滑、夹头处试样破裂。任何防止夹头处试样发滑和破裂,而且不干扰试样测试部分的技术如在表面上使用薄的橡胶涂层或使用纱布等都可以接受。

从拉伸性能测试中可以得到拉伸模量、断裂伸长率、屈服应力和应变、拉伸强度和拉伸断裂能等材料性能。ASTM D 638 (通用)[4]和ASTM D 882 [5](薄膜)中给出了塑料的拉伸性能(静态)。

拉伸强度

拉伸强度是用最大载荷除以试样的初始截面面积得到的,表示为单位面积上的力(通常用MPa为单位)。

屈服强度

屈服强度是屈服点处的载荷除以试样的初始截面面积得到的.用单位面积上的力(单位MPa)表示,通常有三位有效数字。

拉伸弹性模量

拉伸弹性模量(简称为弹性模量,E)是刚性指数,而拉伸断裂能(TEB,或韧性)是断裂点处试样单位体积所吸收的总能量。拉伸弹性模量计算如下:在载荷-拉伸曲线上初始线性部分画一条切线,在切线上任选一点,用拉伸力除以相应的应变即得(单位为MPa),实验报告通常有三位有效数字。正割模量(应力-应变间没有初始线性比值时)定义为指定应变处的值。将应力-应变曲线下单位体积能积分得到TEB,或者将吸收的总能量除以试样原有厚度处的体积积分。TEB表示为单位体积的能量(单位为MJ/m3),实验报告通常有两位有效数字。

拉伸断裂强度

拉伸断裂强度的计算与拉伸强度一样,但要用断裂载荷,而不是最大载荷。应该注意的是,在大多数情况中,拉伸强度和拉伸断裂强度值相等。

断裂伸长率

断裂伸长率是断裂点的拉伸除以初始长度值。实验报告通常有两位有效数字。

屈服伸长率

屈服伸长率是屈服点处的拉伸除以试样的初始长度值,实验报告通常有两位有效数字。

塑料薄膜的包装产率

有一种专门的ASTM测试方法(ASTMD 4321[6])测定塑料薄膜的“包装产率”,以试样单位质量上的面积表示。在这种测试中,定义并得到标称产率(用户和供应商之间达成的目标产率值)、包装产率(按标准计算的产率)、标称厚度(用户和供应商之间达成的薄膜厚度目标值)、标称密度和测量密度等值。对于加工厂商来说包装产率值很重要,因为它决定了某种应用中一定质量的薄膜可以得到的实际包装数量。

薄薄膜测试用ASTM D 882标准

拉伸测量中,结果可能并且经常出现偏差,要么是因为用了不同几何形状的不同试样,和/或是测试过程中采用了不同的测试速度。但这种测试得到的数据不能认为适用于载荷时标准与测试中实际所用的有很大差异的应用。实际上,薄膜厚度不同,建议采用的试样形状会不同,不同标准中都有规定(如ISO 527对厚薄膜作了规定[7-9],ISO 1184[9]和ASTM D 882对厚度≤0.25mm的薄膜作了规定[5])。下面简述ASTM D 882—95a。

选用的载荷范围应使试样在其上限三分之二内断裂,建议进行几次试验。在几点测量试样的截面面积、宽度(精确到0.25mm)和厚度(厚度≤0.25mm的薄薄膜精确到0.025mm,更厚的薄膜精确到1%)。设定夹头分开速率,将试样放在夹头间,均匀夹紧,启动机器,记录载荷与伸长值曲线。

ASTM D 882—95a的表中给出了不同塑料薄膜的特征拉伸值。就拉伸强度(11〜37.9MPa)而言,LDPE是用作大棚覆盖材料的薄膜中最弱的一种[10]。聚乙烯(PE)的密度从LDPE增加到高密度聚乙烯(HDPE),拉伸屈服强度和刚性也在增加,而伸长率和柔性降低[11]。这是因为结晶区大大提高了弹性模量和高温时塑料的承载能力[12]。

从ASTM D 882—95a中的表看到的另外一种作用是增强影响,这是薄膜吹胀过程中产生的分子取向造成的,因为在分子水平上,分子链上共价C—C键方向上的拉伸性能高于横向,后者是非常弱的范德华键决定的。由于LDPE薄膜的晶体优先朝平行于机器方向(纵向)取向,沿机器方向作用的载荷产生的拉伸强度值高于其垂直方向。事实上,不仅是薄膜方向,熔体温度、机头参数、吹胀比、拉伸比、霜白线高度和冷却条件等参数都会使组分相同的两种薄膜的力学性能不同[13](详见第2章)。

冲击强度

冲击值表示材料吸收冲击能的总能力,由两部分组成:(a)键断裂所需的能量;(b) —定体积的材料变形所消耗的功。

对较脆的试样来说,ASTM D 256[14]将塑料总的冲击性能规定为标准化锤摆一个摆作用于辊磨的缺

口(Izod测试和Charpy测试)或无缺口试样所释放的能量。结果表示为单位试样宽度所吸收的能量。

而对韧性塑料薄膜来说,建议采用自由落镖法。自由落镖法(ASTM D1709[15]

或ISO 7765-1[16]和ISO 7765-2[17])测量LDPE的冲击性能有一个专门的ASTM标准,结果有两种情况,即260g和881g (厚0.20mm)薄膜。LDPE有良好的韧性,但随着材料密度降低。

ASTM D 1790[17a]和ASTM D 746[18]是特定“脆性”温度常规测量的测试方法,在“脆性”温度处,塑料在规定的冲击条件下发生脆性断裂。第一种方法用于薄(≤0.25mm)塑料薄膜;第二种方法用于实际承载条件。这样就可以得出预测低温时材料性能的方法,这对于在各种温度条件下使用的塑料薄膜来说非常重要。这种测试也适用于类似的变形条件.而且在测试中用统计方法估算脆性温度,即50%试样断裂时的温度。

自由落镖法测冲击强度

ASTM D 1709—91[15]给出了在自由落镖冲击规定的条件下使塑料薄膜断裂的

能量的测量,单位为质量单位(发射体的质量),落镖从规定高度处落下,使50%试样断裂。塑料薄膜的冲击强度尽管部分取决于其厚度,但与试样厚度没有

简单的关系。

测试的试样应该足够大,所有点都伸到试样夹具垫外。试样应代表所研究的薄膜.应该没有针孔、摺皱、折叠和其他明显缺陷,除非这种缺陷是研究中的参数。

抗摆锤冲击性

相关文档
最新文档