不定方程的解法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次不定方程的解法

求a * x + b * y = n的整数解。

1、先计算Gcd(a,b),若n不能被Gcd(a,b)整除,则方程无整数解;否则,在方程两边同时除以Gcd(a,b),得到新的不定方程a' * x + b' * y = n',此时Gcd(a',b')=1;

2、利用上面所说的欧几里德算法求出方程a' * x + b' * y = 1的一组整数解x0,y0,则n' * x0,n' * y0是方程a' * x + b' * y = n'的一组整数解;

3、根据数论中的相关定理,可得方程a' * x + b' * y = n'的所有整数解为: x = n' * x0 + b' * t y = n' * y0 - a' * t (t为整数) 上面的解也就是a * x + b * y = n 的全部整数解。

我们知道,如果未知数的个数多于方程的个数,那么,一般来说,它的解往往是不确定的,例如方程 x-2y=3,方程组等,它们的解是不确定的.像这类方程或方程组就称为不定方程或不定方程组.不定方程(组)是数论中的一个古老分支,其内容极其丰富.我国

我们知道,如果未知数的个数多于方程的个数,那么,一般来说,它的解往往是不确定的,例如方程x-2y=3,

方程组

等,它们的解是不确定的.像这类方程或方程组就称为不定方程或不定方程组.不定方程(组)是数论中的一个古老分支,其内容极其丰富.我国对不定方程的研究已延续了数千年,“百鸡问题”等一直流传至今,“物不知其数”的解法

被称为中国剩余定理.近年来,不定方程的研究又有新的进展.学习不定方程,不仅可以拓宽数学知识面,而且可以培养思维能力,提高数学解题的技能.我们先看一个例子.

例小张带了5角钱去买橡皮和铅笔,橡皮每块3分,铅笔每支1角1分,问5角钱刚好买几块橡皮和几支铅笔?

解设小张买了x块橡皮,y支铅笔,于是根据题意得方程

3x+11y=50.

这是一个二元一次不定方程.从方程来看,任给一个x值,就可以得到一个y 值,所以它的解有无数多组.

但是这个问题要求的是买橡皮的块数和铅笔的支数,而橡皮的块数与铅笔的支数只能是正整数或零,所以从这个问题的要求来说,我们只要求这个方程的非负整数解.

因为铅笔每支1角1分,所以5角钱最多只能买到4支铅笔,因此,小张买铅笔的支数只能是0,1,2,3,4支,即y的取值只能是0,1,2,3,4这五个.

若y=3,则x=17/3,不是整数,不合题意;

若y=4,则x=2,符合题意.

所以,这个方程有两组正整数解,即

也就是说,5角钱刚好能买2块橡皮与4支铅笔,或者13块橡皮与1支铅笔.像这个例子,我们把二元一次不定方程的解限制在非负整数时,那么它的解就确定了.但是否只要把解限制在非负整数时,二元一次不定方程的解就一定能确定了呢?不能!现举例说明.

例求不定方程x-y=2的正整数解.

解我们知道:3-1=2,4-2=2,5-3=2,…,所以这个方程的正整数解有无数组,它们是

其中n可以取一切自然数.

因此,所要解的不定方程有无数组正整数解,它的解是不确定的.

上面关于橡皮与铅笔的例子,我们是用逐个检验的方法来求它们的非负整数解的,但是这种方法在给出的数比较大的问题或者方程有无数组解的时候就会遇到麻烦.那么能不能找到一个有效而又方便的方法来求解呢?我们现在就来研究这个问题,先给出一个定理.

定理如果a,b是互质的正整数,c是整数,且方程

ax+by=c ①

有一组整数解x0,y0则此方程的一切整数解可以表示为

其中t=0,±1,±2,±3,….

证因为x0,y0是方程①的整数解,当然满足ax0+by0=c,②

因此a(x0-bt)+b(y0+at)=ax0+by0=c.

这表明x=x0-bt,y=y0+at也是方程①的解.

设x',y'是方程①的任一整数解,则有ax'+bx'=c. ③

③-②得a(x'-x0)=b'(y'-y0).④

由于(a,b)=1,所以a|y'-y0,即y'=y0+at,其中t是整数.将y'=y0+at 代入④,即得x'=x0-bt.因此x', y'可以表示成x=x0-bt,y=y0+at的形式,所以x=x0-bt,y=y0+at表示方程①的一切整数解,命题得证.

有了上述定理,求解二元一次不定方程的关键是求它的一组特殊解.

例1求11x+15y=7的整数解.

解法1将方程变形得

因为x是整数,所以7-15y应是11的倍数.由观察得x0=2,y0=-1是这个方程的一组整数解,所以方程的解为

解法2先考察11x+15y=1,通过观察易得11×(-4)+15×(3)=1,

所以11×(-4×7)+15×(3×7)=7,

可取x0=-28,y0=21.从而

可见,二元一次不定方程在无约束条件的情况下,通常有无数组整数解,由于求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是一样的.将解中的参数t做适当代换,就可化为同一形式.

例2求方程6x+22y=90的非负整数解.

解因为(6,22)=2,所以方程两边同除以2得3x+11y=45.①

由观察知,x1=4,y1=-1是方程3x+11y=1 ②

的一组整数解,从而方程①的一组整数解为

由定理,可得方程①的一切整数解为

因为要求的是原方程的非负整数解,所以必有

由于t是整数,由③,④得15≤t≤16,所以只有t=15,t=16两种可能.当t=15时,x=15,y=0;当t=16时,x=4,y=3.所以原方程的非负整数解是

例3求方程7x+19y=213的所有正整数解.

相关文档
最新文档