不定方程的求解方法汇总
不定方程解题最快的方法
![不定方程解题最快的方法](https://img.taocdn.com/s3/m/4ac9e7b8710abb68a98271fe910ef12d2bf9a941.png)
不定方程解题最快的方法不定方程是数学中一类非常常见的方程,其特点是未知数的个数多于方程个数,无法通过直接列方程求解。
面对这种类型的问题,快速有效的解题方法对于学生和研究者来说至关重要。
在这篇文章中,我们将探讨不定方程解题最快的方法。
一、理解不定方程的特点不定方程的特点在于未知数的个数多于方程个数,因此无法直接列方程求解。
这种类型的方程常常出现在日常生活中,如人数、物品数量等不确定的场合。
因此,掌握不定方程的特点是解决这类问题的第一步。
二、观察法与列举法观察法是解决不定方程的初步方法,通过观察已知条件,可以发现一些规律或线索。
列举法则是将所有可能的答案列举出来,逐一验证是否符合题意。
这两种方法在解决简单的不定方程问题时非常有效。
三、代数法与公式法当不定方程的个数较少,可以通过列方程求解时,代数法和公式法就变得非常有用。
代数法是通过建立方程组,利用代数知识求解未知数。
公式法则是在某些特殊情况下,利用已知条件通过公式求解未知数。
这两种方法需要一定的数学基础和技巧。
四、技巧与策略除了上述方法外,解决不定方程还有一些技巧和策略。
首先,对于简单的方程组,可以通过枚举部分答案,利用排除法快速找到答案。
其次,对于较大规模的不定方程问题,可以利用数学软件或计算机程序进行求解,提高解题效率。
最后,理解不定方程的本质和特点,根据实际情况灵活选择合适的方法,是提高解题速度的关键。
五、案例分析假设有10个人参加一场聚会,每人至少有一种饮料选择(果汁、咖啡、茶)。
已知聚会场所提供了三种饮料(牛奶、可乐、啤酒),且每种饮料的数量都足够。
为了方便起见,我们设聚会场所提供的饮料数量分别为:牛奶10瓶,可乐20瓶,啤酒15瓶。
现在我们需要求解在这些人中,至少有一种饮料选择的人数。
这是一个典型的不定方程问题。
策略:根据上述技巧和策略,我们可以采取列举法逐一列举所有可能的选择,再排除不符合条件的答案。
答案:15人。
这是因为每个人至少有一种饮料选择,而聚会总共有10个人,因此至少有一种饮料选择的人数为10+1=11-3=8+2=7+4=15人。
不定方程的基本解法 - 成长博客博客教育博客教师博客
![不定方程的基本解法 - 成长博客博客教育博客教师博客](https://img.taocdn.com/s3/m/92608ff304a1b0717fd5dd9f.png)
不定方程的基本解法湖北省仙桃一中(433000) 林明祥不定方程是指末知数的个数多于方程的个数的方程,它形式多样,应用广泛,解法灵活,通常只求它的整数解。
下面介绍不定方程的基本解法,以期从中找到解不定方程的钥匙。
一、运用公式和辗转相除法例1 求方程15x+52y=6的所有整数解。
解一 观察得x 0=42,y 0=-12,原方程的整数解为X=42-52t,Y=-12+15t. (t 为整数 )解二 原方程变为x=-4y +1586y + , 令1586y +=t 1 得y=2t 1-86-t , 令86+t =t 2 得 t 1=8t 2-6, 故 X=42-52t 2Y=-12+15 t 2 (t 2为整数 )【注】上述两种解法是求不定方程通解的一般方法。
二、运用配方法例2 求方程x 2 +y 2+2x-4y+4=0的整数解解:把原方程配方,得(x+1)2+(y-2)2=1由x 、y 是整数,得 (x+1)2=0, 或 (x+1)2=1,(y-2)2=1; (y-2)2=0. 解得 x=-1 , x=-1, x=0 , x=2 , Y=3 ; y=1 ; y=2 ;y=2 . 【注】解此类不定方程的依据是整数的性质。
例3 已知a+b-21-a -42-b = 33-c -21c - 5,求a+b+c. (2000年武汉市选拔赛试题)解:把原方程配方,得 (1-a -1)2 +(2-b -2)2 +(3-c -3)2= 0 ⎩⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧∴1-a -1=0 ,2-b -2 =0 ,3-c -3 =0解得 a =2 ,b =6 , c =12。
∴a+b+c =20。
【注】解此类方程的依据是非负数的性质。
三、运用奇偶性分析法例4 若质数m 、n 满足5m +7n=129,则m +n= .(河北省竞赛题)解:若m 、n 都是奇数,则和必为偶数,故m 、n 中必有一个为偶质数。
不定方程解法范文
![不定方程解法范文](https://img.taocdn.com/s3/m/c82b79fa8ad63186bceb19e8b8f67c1cfbd6ee7f.png)
不定方程解法范文不定方程是指形如 ax + by = c 的方程,其中 a、b、c为已知数,x、y为未知数,且要求x、y为整数。
解不定方程的方法有多种,下面将介绍三种常见的解法。
1.暴力穷举法暴力穷举法是最简单直接的方法,通过遍历所有可能的x、y的取值,寻找满足方程的整数解。
步骤如下:-首先确定x、y的取值范围。
可以通过观察方程中系数的最小公倍数来确定。
-在确定的范围内,依次计算所有可能的x、y的组合,直到找到满足方程的解。
例如,求解方程3x+7y=91,观察发现3和7的最小公倍数为3*7=21,因此x、y的范围可以设定为0到21依次计算3x+7y是否等于91,直到找到满足条件的x、y。
2.辗转相除法辗转相除法是一种通过求解方程的最大公约数来求解不定方程的方法。
步骤如下:- 首先求解方程的最大公约数gcd(a, b),可以使用欧几里得算法来求解。
- 如果 c mod gcd(a, b) 不等于 0,则方程无整数解,结束。
- 如果 c mod gcd(a, b)等于 0,则方程有整数解。
-通过扩展欧几里得算法求解方程的一组特解x0、y0。
- 方程的所有解可以通过 x = x0+ k * b/gcd(a, b),y = y0 - k * a/gcd(a, b) 来表示,其中k取任意整数。
例如,求解方程 3x + 7y = 91,首先求解gcd(3, 7),得到1,因此方程有整数解。
然后使用扩展欧几里得算法求解方程3x+7y=1的一组特解,得到x0=3,y0=-1再根据公式x=3+k*7,y=-1-k*3,可以得到方程3x+7y=91的所有解。
3.模线性方程组模线性方程组的方法适用于形式为 ax + by ≡ c (mod m) 的不定方程,其中 a、b、c、m为已知数,x、y为未知数,且要求x、y为整数。
步骤如下:- 首先求解方程的最大公约数gcd(a, m),如果 c mod gcd(a, m)不等于 0,则方程无整数解,结束。
不定方程的求解方法汇总
![不定方程的求解方法汇总](https://img.taocdn.com/s3/m/478c06e24128915f804d2b160b4e767f5acf8086.png)
不定方程的求解方法汇总不定方程的求解方法汇总行测数量运算的考查中,不定方程是计算问题的常考题型,难度不大,易求解。
但是想要快速正确的求解出结果,还是需要一些技巧和方法的。
专家认为,掌握了技巧和方法,经过大量练题一定可以实现有效的提升,不定方程的题目必定成为你的送分题。
一、不定方程的概念在学习之前,首先了解一下不定方程的概念:指对于一个方程或者方程组,未知数的个数大于独立方程的个数,便将其称为不定方程或者不定方程组。
在这里解释一下独立方程。
看个例子大家便可以明白了:4x+3y=26①,8x+6y=52②因为①×2=②,相互之间可以进行转化得到,所以①、②两个式子并不是两个独立的方程,。
二、求解不定方程的方法1、奇偶性奇数+奇数=偶数奇数×奇数=奇数偶数+偶数=偶数偶数×偶数=偶数奇数+偶数=奇数奇数×偶数=偶数性质:奇偶奇7x为奇数,x也为奇数。
x可能的取值有1、3、5。
当x=1时,y=9,满足题干要求,凳子数量大于桌子数量,其余情况不符合要求,故答案选择B。
2、尾数法当看到未知数前面的系数为0或者5结尾时,考虑尾数法。
任何正整数与5的乘积尾数只有两种可能0或5。
性质:奇偶奇5x 为奇数,则其尾数必定为5,则4y的尾数为4,y可能为1、6、11,这三种可能。
但已知乙部门人数超过10人,则y=11,求得x=3,故答案选择C。
3、整除法当未知数前面的系数与和或差有除1之外的公因数时,考虑用整除法。
4、特值法当题目考察不定方程组,且一般情况下,求解(x+y+z)之和时考虑特值法。
不定方程组拥有无数组解,而(x+y+z)的结果是唯一的,那么我们便可以随便找一组解代入即可。
同时要使计算相对简单,便可以将系数较为复杂的未知数设为特值0,简化运算。
中考数学复习指导:不定方程的求解方法与技巧
![中考数学复习指导:不定方程的求解方法与技巧](https://img.taocdn.com/s3/m/91421dd8d5bbfd0a7956739a.png)
不定方程的求解方法与技巧所谓不定方程是指方程的个数少于未知量的个数,且未知量又受某些限制(如为整数、正整数等)的一类方程,在初中数学竞赛中,不定方程问题是一类综合性较强的问题,对于此类问题,如能仔细分析,掌握题目的一般规律,找出其隐含条件,或根据其自身特点和已学过的知识,灵活运用一些方法,就能迎刃而解.以下介绍几种常用的方法:一、分解因式降次法降次是解方程常用的方法,在处理某些不定方程中,可利用因式分解化成型如(ax+b)(cx+d)=0的方程,再利用因式的性质,帮助找到隐含的条件,求得一些未知参数的关系式.例1 求方程1117x y+=的正整数解.例2若△ABC的三条边a,b,c满足关系式a4+b2c2-a2c2-b4=0,则△ABC的形状是什么?综上,△ABC 为等腰三角形或直角三角形.二、配方法配方法是数学很常用的方法,在某些不定方程中,通过配方后,再利用非负数的性质,帮助找出隐含的条件,解决一些代数式的求值问题.例3 若x 2+y 2+54=2x +y ,那么x y +y x =. 解 由题意,得例4 求不定方程3x 2-4xy +3y 2=35的全部整数解.三、整体代入法应用整体代人法解决求值问题,能简化运算.在某些不定方程中,把不定方程中的某个式子当作一个“整体”,并把“整体”代入求值,往往可以提高解题效率,简化解题过程.例5 若x+y=1,则x4+6x3y一2x2y+10x2y2-2xy2+6xy3+y4的值等于( )分析此题由x+y=1求出x(或y)后,再代入求值繁难可想而知,若是由题意把所求的式子整理成有关并+y的式子,再利用“整体代入”的思想求值,就可简化运算.四、选取主元法在不定方程中,我们可以选取一个未知数作为“主元”,其余的未知数为“辅助元”,利用解的存在性达到降元的目的.例6 求满足方程x2+y2=2(x+y)+xy的所有正整数解.分析此不定方程,可以选取未知数x作为主元,y作为辅助元.五、整式分离法在不定方程中将某一个未知数的整式从中分离出来,再由题意求出符合题意的解.例7 求不定方程6xy+4x-9y-7=0的所有整数解.解不定方程变形为六、不等式分析法对不定方程利用不等式的逼近方法,逼出某一未知数的范围,再加以讨论,求出符合题意的解.例8 求不定方程x2-2xy+14y2=217的所有正整数解.解不定方程整理得。
不定方程的所有解法
![不定方程的所有解法](https://img.taocdn.com/s3/m/3a2c9cbc7d1cfad6195f312b3169a4517623e55f.png)
不定方程的所有解法全文共四篇示例,供读者参考第一篇示例:不定方程是指含有未知数的方程,且未知数的值不受限制,可以是整数、分数、无理数等。
解不定方程的方法有很多种,根据方程的形式和要求选择不同的解法。
本文将介绍不定方程的所有解法,包括质因数分解法、辗转相除法、模运算法、裴蜀定理、试错法等各种方法。
1. 质因数分解法对于形如ax+by=c的不定方程,可以通过质因数分解的方法来求解。
首先分别对a和b进行质因数分解,得到a=p1^a1 * p2^a2 * ... * pn^an,b=q1^b1 * q2^b2 * ... * qm^bm。
然后利用质因数分解的特性,可知如果c不能被a和b的所有质因数整除,那么方程就无整数解;如果c能被a和b的所有质因数整除,那么方程就有整数解。
这个方法在求解一些简单的不定方程时很有效。
2. 辗转相除法辗转相除法又称为欧几里德算法,用于求两个整数的最大公约数。
对于形如ax+by=c的不定方程,可以先利用辗转相除法求出a和b的最大公约数d,然后如果c能被d整除,就存在整数解;如果不能被d整除,那么方程就无解。
这个方法比较简单,但只适用于求解一次不定方程。
3. 模运算法模运算法是一种基于模运算的解法,对于形如ax≡b(mod m)的不定方程,可以通过求解同余方程得到解。
将方程转化为标准形式ax-my=b,然后求解同余方程ax≡b(mod m),如果方程有解,则可以通过一些变换得到原方程的解。
这个方法适用于求解模运算的不定方程。
4. 裴蜀定理裴蜀定理也称为贝祖定理,是解一元不定方程的重要方法。
对于形如ax+by=c的不定方程,根据裴蜀定理,当且仅当c是a和b的最大公约数的倍数时,方程有整数解。
此时可以通过扩展欧几里德算法求出一组解,然后通过变换得到所有解。
这个方法适用于求解一元不定方程的情况。
5. 试错法试错法是一种通过列举所有可能解,然后逐一验证的方法。
对于一些简单的不定方程,可以通过试错法找到所有整数解。
行测数学运算:不定方程的求解方法汇总
![行测数学运算:不定方程的求解方法汇总](https://img.taocdn.com/s3/m/2b99b248bb4cf7ec4bfed032.png)
行测数学运算:不定方程的求解方法汇总一、不定方程的概念在学习之前,首先了解一下不定方程的概念:指对于一个方程或者方程组,未知数的个数大于独立方程的个数,便将其称为不定方程或者不定方程组。
在这里解释一下独立方程。
看个例子大家便可以明白了:4x+3y=26①,8x+6y=52②因为①×2=②,相互之间可以进行转化得到,所以①、②两个式子并不是两个独立的方程,。
二、求解不定方程的方法1、奇偶性奇数+奇数=偶数奇数×奇数=奇数偶数+偶数=偶数偶数×偶数=偶数奇数+偶数=奇数奇数×偶数=偶数【例题】某学校购买桌凳,已知每张桌子单价70元,每张凳子单价40元,且购买凳子的数量大于购买的桌子的数量,购买桌凳共花费了430元,问购买凳子多少张?A.8B.9C.10D.11【解析】B。
设桌子和凳子的单价分别为x元、y元,得到式子:70x+40y=430,化简得7x+4y=43。
7x+4y=43。
性质:奇偶奇7x为奇数,x也为奇数。
x可能的取值有1、3、5。
当x=1时,y=9,满足题干要求,凳子数量大于桌子数量,其余情况不符合要求,故答案选择B。
2、尾数法当看到未知数前面的系数为0或者5结尾时,考虑尾数法。
任何正整数与5的乘积尾数只有两种可能0或5。
【例题】某单位分发报纸,共有59份。
甲部门每人分的5份,乙部门每人分的4份,且已知乙单位人员超过十人,问甲部门人数为多少?A.1B.2C.3D.4【解析】C。
设甲部门的人数为x人,乙部门的人数为y人,得到方程为:5x+4y=59,性质:奇偶奇5x为奇数,则其尾数必定为5,则4y的尾数为4,y可能为1、6、11,这三种可能。
但已知乙部门人数超过10人,则y=11,求得x=3,故答案选择C。
3、整除法当未知数前面的系数与和或差有除1之外的公因数时,考虑用整除法。
【例题】某单位分发办公笔用具,甲部门每人分的4个办公用具,乙部门每人分的3个办公用具,正好将32个办公用具分完。
求不定方程整数解的常用方法
![求不定方程整数解的常用方法](https://img.taocdn.com/s3/m/5c35177886c24028915f804d2b160b4e767f81a2.png)
求不定方程整数解的常用方法一、分情形讨论法分情形讨论法根据不同的系数情况进行分类,找出整数解的条件。
1.一次齐次不定方程Ax+By=C的整数解求法当A和B不互质时,可通过A和B的最大公约数(gcd(A,B))来判断是否存在整数解。
如果C是gcd(A,B)的倍数,则有整数解,否则无整数解。
当A和B互质时,可通过贝祖等式(Bézout's identity)来求解。
贝祖等式表示为gcd(A,B) = Ax + By,其中x和y是整数解。
由贝祖等式可得到一组整数解。
然后根据一组特殊解,得到通解(general solution)。
2. 二次齐次不定方程Ax^2 + Bxy + Cy^2 = 0的整数解求法当A、B和C不全为0时,可通过判别式(discriminant)来判断是否存在整数解。
当判别式为完全平方数时,存在整数解;否则不存在整数解。
3.一次非齐次不定方程Ax+By=C的整数解求法当A和B不互质时,可通过A和B的最大公约数(gcd(A,B))来判断是否存在整数解。
如果C是gcd(A,B)的倍数,则有整数解,否则无整数解。
当A和B互质时,可通过扩展的欧几里得算法(extended Euclidean algorithm)求解。
首先利用一次齐次方程的解法得到一组特殊解,然后根据一组特殊解,得到通解。
二、裴蜀定理裴蜀定理是数论中的一个重要定理,也是求不定方程整数解的常用方法。
裴蜀定理的全称是裴蜀等式(Bézout's identity),它表明对任意两个整数a和b,存在整数x和y,使得ax + by = gcd(a,b)。
1.判断是否存在整数解的条件当C是gcd(A,B)的倍数时,一次齐次不定方程Ax + By = C存在整数解;否则不存在整数解。
2.求解整数解的方法通过扩展的欧几里得算法(extended Euclidean algorithm),可以求出一组特殊解x0和y0。
3.2 不定方程的常用解法
![3.2 不定方程的常用解法](https://img.taocdn.com/s3/m/bd08e39633687e21ae45a91d.png)
3.2 不定方程的常用解法对于高次不定方程,求出其通解然后再讨论有时是不现实的,因为我们甚至还没有找到判别一个高次不定方程是否有解的统一方法,当然要求出通解就更难了.或许正是因为没有统一的方法来处理高次不定方程,对具体的问题往往有许多方法来处理,并且每一种方法都表现出一定的创造性,所以,高次不定方程的问题频繁在数学竞赛中出现.当然,结合整除与同余的一些理论,求解高次不定方程也有一些常见的处理思路和解决办法. 一、因式分解法将方程的一边变为常数,而含字母的一边可以进行因式分解,这样对常数进行素因数分解后,对比方程两边,考察各因式的每种取值情况就可将不定方程变为若干个方程组去求解.这就是因式分解法处理不定方程的基本思路.例1 求方程()101xy x y -+= ① 的整数解.解:利用十字相乘,可将①变形为()()1010101x y --= 而101为素数,故()1010x y -,-=(1,101),(101,1),(-1,-101),(-101,-1). 分别求解,得方程的整数解为()x y ,=(11,111),(111,11),(9,-91),(-91,9). 例2 是否存在整数x 、y 、z ,使得44422222222224x y z x y y z z x ++=+++?解:若存在整数x 、y 、z 满足条件,则()22222244424222x y y z z x x y z -=++-++ =()()22222242224x yx y z z x y-+++-+=()2222224x y zxy -+-+=()()22222222xy x y z xy x y z ++---+=()()()()2222x y z z x y +---=()()()()x y z x y z z x y y z x +++-+-+-,这要求-24能表示为4个整数x y z ++,x y z +-,z x y +-,y z x +-的乘积的形式,而这4个数中任意两个数之差都为偶数,故这4个数具有相同的奇偶性,由-24为偶数,知它们都是偶数,但这要求42|24,矛盾. 所以,不存在符合要求的整数.说明 熟悉海伦公式的读者可以一眼看穿问题的本质.事实上,ABC S ∆a 、b 、c 为△ABC的三边长,这就是海伦公式.根号里面的式子展开后就是222a b +222b c +222c a -4a -4b -4c .例3 求所有的正整数对(m ,n ),使得5471mn n +=-. ①解:将①移项后作因式分解,得()545433711m n n n n n n =++=++-- =()()()322111n n n n n n ++--++=()()3211n n n n -+++ ② 由①知n >1,而n =2时,可得m =2.下面考虑n >2的情形,我们先看②式右边两个式子的最大公因数.()()()()32322111111n n n n n n n n n n n -+,++=-+-+++-,+=()()()()22212123n n n n n n n n -+,++=-++++-+,+ =()27n -+,.故()3211|7n n n n -+,++.结合②式知31n n -+与21n n ++都是7的幂次,而它们在n ≥3时,都大于7,这导致 ()()2327|11n n n n -+++,与前所得矛盾.综上可知,只有(m ,n )=(2,2)符合要求.说明 对①式变形后,所得②式两边符合因式分解方法解不定方程的套路,但7m并不是一个常数,这里需要有另外的方法来处理才能继续下去.活学活用方能攻城拔寨.二、配方法配方是代数变形中的常见方法,在处理不定方程的问题时还可综合利用完全平方数的特性,因此配方法在求解不定方程时大有用武之地.例4 求不定方程2234335x xy y -+=的全部整数解. 解:对方程两边都乘以3,配方后即得()22325105x y y -+=. ①由①式得 25105y ≤, 所以 4y ≤.当4y =时,325x y -=,此时原方程的解为(x ,y )=(1,4),(―1,―4). 当1y =时,3210x y -=,此时原方程的解为(x ,y )=(4,1),(―4,―1).当023y =,,时,()232x y -分别为105,85,60 .此时,所得的方程组显然无整数解. 上面的讨论表明,原方程有4组解:(x ,y )=(4,1),(1,4),(―4,―1),(―1,―4). 例5 求方程2432x x y y y y +=+++的整数解.解:同上例,对方程两边同乘以4,并对左边进行配方,得()()24322141x y y y y +=++++. ①下面对①式右端进行估计.由于()43241y y y y ++++ ()222212y y y y =++-+ ()2222341y y y y =++++, 从而,当y >2或y <-1时,有()()()2222222121y y x y y +<+<++.由于22y y +与22y y ++1是两个连续的整数,它们的平方之间不会含有完全平方数,故上式不成立. 因此只需考虑当-1≤y ≤2时方程的解,这是平凡的,容易得到原方程的全部整数解是 (x ,y )=(0,-1),(-1,-1),(0,0)(-1,0),(-6,2),(5,2). 例6 求所有的正整数n ≥2,使得不定方程组22121222232322112211501612501612501612501612n nn n nn x x x x x x x x x x x xx x x x ⎧⎪⎪⎪⋯⎨⎪⎪⎪⎩--++=+++=+++=+++=+ 有整数解.解:移项后配方,方程组变形为()()()()()()()()122122223221221850850850850n n n n x x x x x x n x x ⎧⎪⎪⎪⎪⋯⎨⎪⎪⎪⎪⎩---+-6=, ①-+-6=, ②-+-6=, -+-6=.由于50表示为两个正整数的平方和只有两种:2222501755=+=+,所以,由①知261x -=、5或7,而由②知281x -=、5或7,从而21x =、7、13.进一步,可知对每个1≤i ≤n ,都有1i x =,7或13,依11x =、7、13 ,分三种情况讨论. 若11x =,则由①知27x =,再由②知313x =,依次往下递推,可知当()1mod3k ≡时,1k x =;当()2mod3k ≡时,7k x =;当()0mod3k ≡时,13k x =.所以,由第n 式,知当且仅当()11mod3n ≡+时,原方程组有整数解,即当且仅当3|n 时,n 符合要求.对另外两种情况17x =和113x =同样讨论,得到的条件是一样的. 综上可知,满足条件的n 是所有3的倍数.说明 进一步讨论可知,当3|n 时,方程组恰有3组整数解.三、不等式估计利用不等式的知识,先确定不定方程中的某个字母的范围,然后逐个枚举得到所有解,这个方法称为不等式估计,它也是我们处理不定方程的常见方法.当然,如果能够恰当地利用字母的对称性等,那么作不等式估计时会简洁很多.例7 求不定方程3361x y xy -=+的正整数解.解:设(x ,y )为方程的正整数解,则x >y .设x =y +d ,则d 为正整数,且()()3361y d y y d y ++=+-22333dy yd d =++,即有 ()()23313161d y d d y d -+-+=.故 361d <, 于是 3d ≤. 分别令1d =、2、3代入,得222161y y ++=, 2510861y y ++=, 28242761y y ++=.只有第一个方程有整数解,并由y 为正整数知y =5,进而x =6.所以,原方程只有一组正整数解(x ,y )=(6,5). 例8 求所有的正整数a 、b ,使得22444aa b ++=. ①解:若(a ,b )是满足①的正整数数对,则2b 为偶数,且24ab >,从而b 为偶数,且2ab >,故22ab ≥+.于是()22244422a aa b ++=≥+4a =+4·2a +4,知22aa ≥,可得4a ≤(对a 归纳可证:当5a ≥时,有22aa <).分别就a =1,2,3,4代入①式,可得方程的所有正整数解为(a ,b )=(2,6)或(4,18).例9 求所有的正整数数组(a ,b ,c ,x ,y ,z ),使得a b c xyz x y z abc ⎧⎨⎩++=,++=,这里a b c ≥≥,x y z ≥≥.解:由对称性,我们只需考虑x a ≥的情形.这时 33xyz a b c a x =++≤≤, 故 3yz ≤,于是 (y ,z )=(1,1),(2,1),(3,1).当(y ,z )=(1,1)时,a b c x ++=且2x abc +=,于是 2abc a b c =+++. 若2c ≥,则2324a b c a a abc +++≤+≤≤, 等号当且仅当2a b c ===时成立.若1c =,则3ab a b =++, 即 ()()114a b --=,得 (a ,b )=(5,2),(3,3).当(y ,z )=(2,1)时,2266abc x a b c =+=+++,与上述类似讨论可知c =1,进而()()212115a b --=,得 (a ,b )=(3,2). 当(y ,z )=(3,1)时,331212abc x a b c =+=+++,类似可知,此时无解.综上所述,可知(a ,b ,c ,x ,y ,z ) =(2,2,2,6,1,1),(5,2,1,8,1,1),(3,3,1,7,1,1), (3,2,1,3,2,1),(6,1,1,2,2,2),(8,1,1,5,2,1), (7,1,1,3,3,1).说明 此题中如果没有条件a ≥b ≥c 和x ≥y ≥z ,也需要利用对称性作出这样的假设后再处理,解题中利用对称性假设x ≥a 是巧妙的,这样问题就转化为只有3种情况而便于处理了.四、同余方法若不定方程()120n F x x x ,,…,=有整数解,则对任意的*m N ∈,其整数解(1x ,2x ,…,n x )均满足()()120mod n F x x x m ≡,,…,.运用这一条件,同余可以作为不定方程是否有整数解的一块试金石. 例10 证明:不定方程22386x y z +-= ①没有整数解.证明 若(x ,y ,z )是方程①的整数解,对①的两边模2,可知x 、y 同奇偶;再对①两边模4可知x 、y 都为奇数,于是()221mod8x y ≡≡,这要求6()22382mod8x y z ≡=+-,矛盾.故方程①没有整数解.说明 利用同余方法解不定方程问题时,选择恰当的数作为模是十分重要的,它不仅涉及问题解决的繁简程度,重要的是能否卡住字母的范围或导出矛盾. 例11 求所有的非负整数x 、y 、z ,使得223xyz +=. ①解:(1)当y =0时,有()()22111xz z z =-=-+,于是可设 2z α-1=,2z β+1=,0αβ≤≤,因此 222βα-=.此时,若2α≥,则4|22βα-,与42矛盾,故1α≤.而0α=导致23β=,矛盾,故1α=,2β=,所以 z =3,x =3,得 (x ,y ,z )=(3,0,3)(2)当y >0时,由于323xy+,故3z ,所以 ()21mod3z ≡.对①两边模3,知()()11mod3x≡-, 故x 为偶数,现在设x =2m ,则 ()()223mmyz z -+=,所以可设 23mz α-=,23m z β+=,0αβ≤≤,y αβ+=, 于是 1332m βα+-=,若α≥1,则3|33βα-,但132m +,矛盾,故α=0,因此1312m β+-=. 当m =0时,β=1,得(x ,y ,z )=(0,1,2); 当m >0时,()120mod4m +=,故 ()31mod4β=, 这要求β位偶数,设β=2n ,则()()122313131m n n n +=-=-+, 同y =0时的讨论,可知 312n-=,即n =1,进而m =2,得 (x ,y ,z )=(4,2,5). 所以(x ,y ,z )=(3,0,3),(0,1,2),(4,2,5).例12 设m 、n 为正整数,且n >1,求25m n -的最小值.解:由于25m n -为奇数,而m =7,n =3时,253m n -=,故若能证明n >1时,251m n -≠,则所求的最小值为3.若存在正整数m 、n ,使得n >1,且251m n -=,则251m n -=或251m n-=-. 如果251mn-=,那么m ≥3,两边模8,要求()57mod8n ≡, 但对任意正整数n ,51n≡或()5mod8,矛盾,故251mn-=不成立. 如果251m n-=-,那么由n >1,知m ≥3.两边模8,得 ()51mod8n≡,可知n 为偶数.设n =2x ,x 为正整数,则 ()()25151m x x =-+, 由于51x-与51x+是两个相邻偶数,这要求512x -=,514x+=, 不可能.所以,25mn-的最小值为3.说明 上面的两个例子都用到了一个结论:两个差为2的正整数之积为2的幂次,则这两个数只能为2和4.该结论在例11的前半段解答中已予以证明.五、构造法有些不定方程的问题只需证明该方程有解或有无穷多个解,这时经常采用构造法来处理. 例13 证明:方程253x y z +=有无穷多组满足0xyz ≠的整数解.证明 取15102k x +=,642k y +=,1072k z +=,k 为非负整数,则这样的x 、y 、z 满足253x y z +=,所以方程有无穷多组满足0xyz ≠的整数解.另证 先求方程的一组特解,易知x =10,y =3,z =7 是方程253x y z +=的一组解.因而1510k x a =,63k y a =,107k z a =(a ,k 为非负整数)是方程的解.例14 证明:对任意整数n ,方程222x y z n +-= ①证明 现有命题“当m 为奇数或4的倍数时,方程22a b m -=有整数解(a ,b )”,它对解决本题是有用的.这个命题基于下面2个恒等式:()22121k k k +-=+,()()2214k k k +--1=.对于方程①,只需取x ,使x 与n 的奇偶性相反(这样的x 有无穷多个),从而利用上述命题,方程 222y z n x -=- 有整数解,可知方程①有无穷多组整数解.例15 是否存在两两不同的正整数m 、n 、p 、q ,使得m n p q +=+2012都成立?解:存在满足条件的正整数.由方程的结构,我们寻找形如2m a =,3n b =,2p c =,3q d =的正整数.这里a 、b 、c 、d 为正整数. 此时,条件转化为2012a b c d +=+>,2323a b c d +=+,即 a c d b -=-,()()()()22a c a c d b d bd b -+=-++.令1d b -=,即1b d =-,且使2012b >,则b 、d 的奇偶性不同,现令2212b bd d a +++=,2212b bd dc ++-=,那么a 、c 为正整数,且由a 、b 、c 、d 确定的m 、n 、p 、q 满足条件.例16 证明:存在无穷多组正整数组()x y z ,,,使得x 、y 、z 两两不同,并且 33xx y z =+.证明 一个想法是:将x 取为3k +1形式的数,这时()3131k x x k +=+()()33131kk k =++ ()()3333131k kk k k =+++因此,如果使3k 为一个完全立方数,那么符合要求的正整数x 、y 、z 就找到了.为此,令323m k +=,这里m 为正整数,那么令31x k =+,()1331km x k +=+,()31kz k =+,则x 、y 、z 两两不同,且满足33xx y z =+.命题获证.说明 如果不要求x 、y 、z 两两不同,我们还可以这样来构造:取2m y z ==,2x α=,则当231m αα•=+时,就有33xx y z =+.容易看出满足231m αα•=+的正整数对()m α,有无穷多对.。
【数论第四讲】不定方程
![【数论第四讲】不定方程](https://img.taocdn.com/s3/m/b8ac4d42f46527d3240ce07d.png)
不定方程一、定义:把未知数的个数多于方程的个数的方程(组)称为不定方程.这里的“不定”指的是方程的解不定.二、基本思路与方法:1.因式分解法,对方程的一边进行因式分解,另一边作质因数分解,对比两边,转化为若干个方程构成的方程组,进而求解。
2.配方法,将方程的一边变为平方和的形式,另一边为常数,再用不等式予以处理。
3.不等式估计,利用不等式工具确定不定方程中某元的范围,再利用整数性“夹逼”出该元的取值。
4.运用整除性把“大数”化为“小数”,使方程的解明朗化。
5.同余方法,如果不定方程12(,,,)0n F x x x =有整数解,则对任意*m N ∈,其整数解12(,,,)n x x x 满足12(,,,)0(mod )n F x x x m ≡。
利用这一条件,同余可以作为探求不定方程整数解的一块试金石。
6.构造法,在不易得出方程的全部解时,通过构造法可以提供其部分解,从而证明该方程有解或者有无穷多个解,适合于处理存在性问题。
7.无穷递降法,适合证明不定方程没有正整数解。
三、例题选讲:例1.求所有满足方程222511(11)x y xy +=-的正整数解(,)x y 。
解:法1(因式分解):方程即2(2)(5)11x y x y --=-,可得解得(,)(14,27)x y =。
法2(配方法):方程即22211812()1148y x y -+=,即222(411)81181x y y -+⨯= 例2.将113表示成k 个连续正整数之和,求项数k 的最大值。
解:设这k 个连续正整数中最小的数为a ,则1113(1)2ka k k =+-,即112(1)23ka k k +-=⋅,作因式分解可得11(21)23k a k +-=⋅。
显然,为了让k 尽量大,则需a 尽量小,故需k 与21a k +-的取值尽量接近,因此令523k =⋅,6213a k +-=,可得122a =,486k =。
行测数学运算不定方程的三种常用解法
![行测数学运算不定方程的三种常用解法](https://img.taocdn.com/s3/m/df77f4900975f46526d3e15a.png)
行测数学运算不定方程的三种常用解法行测数量关系答题技巧你掌握了多少?为大家提供行测数学运算不定方程的三种常用解法,一起来看看吧!祝大家备考顺利!行测数学运算不定方程的三种常用解法在行测运算题当中,设方程是常用的技巧,含有未知数的等式叫做方程。
不定方程中未知数的个数多于独立方程的个数。
比如:x+y=5。
在行测里也经常列出不定方程,但是很多人都不会解。
其实只要掌握好三种常用的方法,问题自然迎刃而解。
1、整除法:利用不定方程中各数能被同一个数整除的关系来求解。
例1:小张的孩子出生的月份乘以29,出生的日期乘以24,所得的两个乘积加起来刚好等于900。
问孩子出生在哪一个季度?A.第一季度B.第二季度C.第三季度D.第四季度【答案】D【解析】关键词:等于,所以找到等量关系。
设出生月份为x,出生的日期为y。
29x+24y=900,24与900的最大公约数为12,意味着24y能被12整除,900能被12整除,29为质数,所以x能被12整除,由于12表示的是月份,所以是第四季度。
2、奇偶性:未知数的系数奇偶性不同例2:办公室工作人员使用红、蓝两种颜色的文件袋装29份相同的文件。
每个红色文件袋可以装7份文件,每个蓝色文件袋可以装4份文件。
要使每个文件袋都恰好装满,需要红色、蓝色文件袋的数量分别为()个。
A.1、6B.2、4C.4、1D.3、2【答案】D【解析】由题可知袋子的个数肯定是为整数,设红色袋子数量为x,蓝色袋子数量为y,由题意可得7x+4y=29,此时未知数的系数为7和4,奇偶性不同。
4y为偶数,29为奇数,则 7x为奇数,得出x为奇数,排除B、C。
接下来代入A选项,x=1,y不是整数,排除A,选择D。
验证:x=3,y=2满足题意。
3、尾数法:未知数的系数是5的倍数超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。
问两种包装盒相差多少个?A.3B.4C.7D.13【答案】D【解析】由题可知,大包装盒的个数和小包装盒的个数为整数,设大包装盒的个数为x,小包装盒为y,可得到12x+5y=99,x+y>10。
不定式方程的四种解法
![不定式方程的四种解法](https://img.taocdn.com/s3/m/a9b82e78b207e87101f69e3143323968011cf486.png)
不定式方程的四种解法一、什么是不定式方程?不定式方程是一类形式为a1·f1(x) + a2·f2(x) + … + an·fn(x) = 0的方程,其中fi(x)是关于未知量x的不同函数,ai是常数系数。
该方程中未知量的次数可以是正整数、负整数、零甚至有理数。
不定式方程求解的目标是找出所有满足该方程的x值。
二、解法一:图像法使用图像法求解不定式方程时,可以根据函数的图像来确定方程的解。
1.将不同函数fi(x)分别绘制出来,并确定它们与x轴的交点。
这些交点将有可能是方程的解。
2.将方程转化为f1(x) + f2(x) + … + fn(x) = 0的形式,即所有函数画在同一坐标系中。
3.根据图像的交点来确定方程的解。
交点的横坐标即为方程的解。
三、解法二:代数法代数法是通过代数运算来求解不定式方程的一种方法。
1.根据方程的形式,可以对方程进行合并和分解,使得方程具有相同的指数。
2.对方程采用因式分解、配方法、换元等代数运算,将方程转化为较简单的形式。
3.根据简化后的方程,可以直接求解得到方程的解。
四、解法三:迭代法迭代法是通过迭代计算来逼近方程解的方法。
1.将方程化为f(x) = 0的形式。
2.选取一个初始解x0,代入方程,计算出f(x0)的值。
3.根据f(x)的性质,使用迭代公式xn+1 = g(xn)来逼近方程的解,直到满足精度要求为止。
4.最终得到的逼近解xn就是方程的解。
五、解法四:数值法数值法是使用数值计算的方法来求解不定式方程的一种方法。
1.将方程化为f(x) = 0的形式。
2.选取一个初始解x0,代入方程,计算出f(x0)的值。
3.根据f(x)的性质,使用数值迭代公式xn+1 = xn - f(xn)/f’(xn)来逼近方程的解,直到满足精度要求为止。
4.最终得到的逼近解xn就是方程的解。
六、总结不定式方程是一类形式为a1·f1(x) + a2·f2(x) + … + an·fn(x) = 0的方程,其求解可以通过图像法、代数法、迭代法和数值法。
五年级不定方程知识点
![五年级不定方程知识点](https://img.taocdn.com/s3/m/c7007be00129bd64783e0912a216147916117e45.png)
五年级不定方程知识点不定方程是数学中的一个重要概念,它是指方程中含有未知数的系数为任意整数的代数方程。
在五年级的数学学习中,我们将接触到一些简单的不定方程,本文将通过逐步思考的方式,帮助同学们掌握不定方程的知识点。
1.引入概念不定方程通常可以表示为:ax + by = c,其中a、b和c是整数,x和y是未知数。
在解决不定方程的过程中,我们的目标是找到使该方程成立的整数解。
2.探索方法为了寻找不定方程的整数解,我们可以使用穷举法。
我们可以从一个整数开始,逐渐增加或减少,看是否存在满足方程的整数解。
3.一元不定方程在一元不定方程中,我们只有一个未知数。
例如,2x+ 3 = 7就是一个一元不定方程。
我们可以通过运算来求解这样的方程,将已知的数字进行运算,找到符合题目要求的未知数的值。
4.二元不定方程在二元不定方程中,我们有两个未知数。
例如,3x +4y = 10就是一个二元不定方程。
对于这样的方程,我们可以使用类似的方法来求解。
通过穷举法,我们可以找到一组整数解,使得方程成立。
5.穷举法举例假设我们要解决方程2x + 3y = 10,我们可以从一个整数开始,逐渐增加或减少。
通过尝试不同的x和y的值,我们可以找到满足方程的整数解。
例如,当x = 2时,我们可以得出y = 2的解。
当x = 4时,我们可以得出y = 1的解。
这样,我们找到了一组整数解(2, 2)和(4, 1),使得方程成立。
6.实际问题的应用不定方程在实际问题中有广泛的应用。
例如,在购买商品时,我们常常会遇到价格折扣的情况。
假设某件商品原价为x元,经过折扣后的价格为y元,我们可以用不定方程来表示折扣前后的价格关系。
通过求解不定方程,我们可以找到商品原价和折扣后的价格。
7.总结通过逐步思考,我们了解了五年级数学中的不定方程知识点。
不定方程是一个重要的概念,在实际问题中有广泛的应用。
通过穷举法,我们可以找到使方程成立的整数解。
希望同学们通过阅读本文的内容,对不定方程有更深入的理解,并能够运用到实际问题的解决中。
不定方程求解题技巧
![不定方程求解题技巧](https://img.taocdn.com/s3/m/3548f2bbed3a87c24028915f804d2b160b4e86d5.png)
不定方程求解题技巧不定方程是指在未知数为整数的条件下,求满足方程的整数解的问题。
解不定方程的方法有很多种,下面将介绍一些常见的技巧和方法。
1. 分类讨论法这种方法适用于一元不定方程,即方程只有一个未知数。
根据方程中未知数的系数,可以将不定方程分为以下几类:A. 当方程中未知数系数为1时,通常可以考虑逐个尝试法,即从0开始尝试,逐渐增加或减少,直到找到满足方程的整数解为止。
B. 当方程中未知数系数为负数时,可以将方程两边同时乘以-1,转化为系数为正数的方程,然后按照分类A的方法求解。
C. 当方程中未知数系数为其他整数时,可以将方程两边同时乘以适当的倍数,转化为系数为1或负数的方程,然后按照分类A或B的方法求解。
2. 辗转相除法辗转相除法是求解线性不定方程(即方程的最高次数为1)的有效方法。
假设要解形如ax + by = c的方程(a、b、c为整数),首先通过欧几里得算法求得a和b的最大公约数d。
然后,如果c不是d的倍数,那么方程无整数解。
如果c是d的倍数,可以将方程两边同除以d,得到形如(a/d)x + (b/d)y = c/d的新方程。
由于a/d和b/d互质,可以通过扩展欧几里得算法求得一个整数解x0和y0。
然后,通解可以表示为x = x0 + (b/d)t和y = y0 - (a/d)t (t为整数),对所有整数t都满足原方程。
3. 特殊解与通解对于一些特殊的不定方程,可以通过观察得到一个或多个特殊解,并通过特殊解推导出通解。
例如,对于二次不定方程x^2 + y^2 = z^2(其中x、y、z为整数),可以取特殊解x = 3,y = 4,z = 5,然后可以推导出通解x = 3(m^2 - n^2),y = 4mn,z = 5(m^2 + n^2)(m、n 为整数)。
通过这个通解,可以找到无穷多个满足方程的整数解。
4. 数论方法数论是研究整数性质的一门学科,其中有许多定理和技巧可以应用于解不定方程。
不定方程的所有解法
![不定方程的所有解法](https://img.taocdn.com/s3/m/db5bb46e0622192e453610661ed9ad51f01d54c4.png)
不定方程的所有解法
不定方程是指含有未知数的方程,但未知数的个数多于方程的个数,因此方程无法唯一确定未知数的值。
不定方程的所有解法取决于方程的具体形式和条件。
以下是解决不定方程的常见方法:
一、列举法:对于简单的不定方程,可以通过列举所有可能的解来确定方程的解。
例如,对于一元一次方程ax = b,其中a和b为已知常数,可以通过计算x = b/a 来确定方程的解。
二、参数法:对于形如ax + by = c的不定方程,可以引入参数t,将方程转化为x = at + x0,y = bt + y0的形式,其中x0和y0为常数,然后通过选择合适的t值来确定方程的解。
三、降维法:对于高维的不定方程,可以通过将方程进行降维处理,转化为更简单的形式来求解。
例如,对于二元二次方程ax^2 + by^2 = c,可以通过代换u = x^2 和v = y^2来将方程转化为线性方程的形式,然后求解。
四、递归法:对于某些特殊形式的不定方程,可以通过递归的方式求解。
例如,对于费马大定理中的不定方程x^n + y^n = z^n,可以利用递归方法求解。
五、数学工具:对于一些复杂的不定方程,可以利用数学工具如数值方法、图形法、线性规划等来求解。
需要注意的是,不定方程的解并不总是存在或唯一的,有时候可能存在无穷多个解,有时候可能不存在解。
因此,在求解不定方程时,需要根据具体的问题和条件来选择合适的解法和策略。
公考行测中的不定方程如何解
![公考行测中的不定方程如何解](https://img.taocdn.com/s3/m/fa4bc8290a4c2e3f5727a5e9856a561252d32122.png)
公考行测中的不定方程如何解中公教育资深专家李海军方程思想在近几年公务员考试行测中占据很大的比例,是国考数量关系考察频率较高的知识点,尤其是不定方程的求解,所以这一部分知识是至关重要的,中公教育专家建议考生们要引起足够重视。
一、什么就是不定方程所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整数或正整数等等)的方程或方程组。
例如:3x+2y=10。
二、不定方程的数学分析1、利用奇偶性解题原理:奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数,奇数*奇数=奇数,奇数*偶数=偶数,偶数*偶数=偶数。
例题:某地劳动部门租用甲、乙两个教室开展农村实用人才计划。
两教室均有5排座位,甲教室每排可坐10人,乙教室每排可坐9人。
两教室当月共举办该培训27次,每次培训均座无虚席,当月共培训1290人次。
问甲教室当月共举办了多少次这项培训?【国考-2021】a.8b.10c.12d.15【中公解析】d。
根据题意,甲教室一次可以坐50人,乙教室可以坐45人,设甲教室举办x次,乙教室举办y次,则可以得到:x+y=27,50x+45=1290。
很多人会去计算,实际上,利用我们讲的方法,就可以“看出”答案。
由x+y=27可知x,y一定是一个奇数,一个偶数。
若x是偶数,y是奇数,则50x是偶数,45y是奇数,加和是奇数,与题干加和为1290(偶数)矛盾,所以x是奇数,y是偶数,答案显然为d。
2、利用质合性解题原理:一般和奇偶性结合使用。
2是唯一的偶质数(既是质数,又是偶数)。
例题:某儿童艺术培训中心存有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均值地让给各个老师老师率领,刚好能分配回去,且每位老师所带的学生数量都就是质数。
后来由于学生人数增加,培训中心只留存了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量维持不变,那么目前培训中心剩学员多少人?【国考-2021】a.36b.37c.39d.41【中公解析】d。
解不定方程的常用技法
![解不定方程的常用技法](https://img.taocdn.com/s3/m/a6c9bc114431b90d6c85c7d6.png)
p ( x , a , b)
2 2 2 = ( a + b) x + ( a + b - 9 ab + 1) x +
数解 . ( 第 12 届全俄数学奥林匹克) 讲解 : 注意到
( a + b) ( ab + 1) =0
© 1994-2007 China Academic Journal Electronic Publishing House. All rights reserved.
8
中 等 数 学
的一组解 ,且 x ≤a ≤b .
ab + 1 由韦达定 理 知 , y = > b 是方程 x p ( x , a , b) = 0 的另一个解 .
5 不等式估计
先通过对所考察的量的放缩得到未知数 取值条件的不等式 , 再解这些不等式得到未 知数的取值范围 , 这是解不定方程的一个常 用技巧 . 例6 试求出所有的正整数 a 、 b、 c ,其 中 1 < a < b < c , 使得 ( a - 1) ( b - 1 ) ( c - 1 ) 是 abc - 1 的约数 . ( 第 33 届 IMO) 讲解 : 首先估计
s= abc - 1 ( s ∈N+ ) ( a - 1 ) ( b - 1) ( c - 1)
设 a0 = a1 = a2 = 1 ,定义
an + 2 an an + 1 + 1 (n≥ = 1) . an - 1
下面证明 : ( 1) an - 1 | ( an an + 1 + 1) ;
( 2) an | ( an - 1 + a n + 1 ) ; ( 3) an + 1 | ( an - 1 a n + 1) .
解不定方程的方法大全
![解不定方程的方法大全](https://img.taocdn.com/s3/m/4f876b5e001ca300a6c30c22590102020740f2ba.png)
解不定方程的方法大全
解不定方程的方法大全:
1. 试错法:通过不断尝试不同的数值来解决方程,直至找到符合条件的解。
2. 消元法:将方程中的变量进行化简,化为具有唯一解的形式。
3. 借用复数方法:将方程中的变量引入到复数范围内,通过复数运算求解出方程的解。
4. 迭代法:通过不断迭代方程的解,直至找到符合条件的解。
5. 矩阵方法:将方程转化为矩阵的形式,通过矩阵运算求解出方程的解。
6. 贝祖定理:通过贝祖定理来判断方程的解的存在性和唯一性。
7. 二分法:通过不断二分解空间来逐步逼近方程的解。
8. 牛顿迭代法:通过牛顿迭代公式来求解方程的解。
9. 高斯消元法:通过高斯消元的方法,将方程的系数矩阵消元为上三角矩阵,从而求解出方程的解。
总之,解不定方程需要依据具体问题具体分析,选择合适的方法进行求解,才能得到正确的答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不定方程的求解方法汇总
行测数量运算的考查中,不定方程是计算问题的常考题型,难度不大,易求解。
但是想要快速正确的求解出结果,还是需要一些技巧和方法的。
专家认为,掌握了技巧和方法,经过大量练题一定可以实现有效的提升,不定方程的题目必定成为你的送分题。
一、不定方程的概念
在学习之前,首先了解一下不定方程的概念:指对于一个方程或者方程组,未知数的个数大于独立方程的个数,便将其称为不定方程或者不定方程组。
在这里解释一下独立方程。
看个例子大家便可以明白了:
4x+3y=26①,8x+6y=52②
因为①×2=②,相互之间可以进行转化得到,所以①、②两个式子并不是两个独立的方程,。
二、求解不定方程的方法
1、奇偶性
奇数+奇数=偶数奇数×奇数=奇数
偶数+偶数=偶数偶数×偶数=偶数
奇数+偶数=奇数奇数×偶数=偶数
性质:奇偶奇
7x为奇数,x也为奇数。
x可能的取值有1、3、5。
当x=1时,y=9,满足题干要求,凳子数量大于桌子数量,其余情况不符合要求,故答案选择B。
2、尾数法
当看到未知数前面的系数为0或者5结尾时,考虑尾数法。
任何正整数与5的乘积尾数只有两种可能0或5。
性质:奇偶奇
5x 为奇数,则其尾数必定为5,则4y的尾数为4,y可能为1、6、11,这三种可能。
但已知乙部门人数超过10人,则y=11,求得x=3,故答案选择C。
3、整除法
当未知数前面的系数与和或差有除1之外的公因数时,考虑用整除法。
4、特值法
当题目考察不定方程组,且一般情况下,求解(x+y+z)之和时考虑特值法。
不定方程组拥有无数组解,而(x+y+z)的结果是唯一的,那么我们便可以随便找一组解代入即可。
同时要使计算相对简单,便可以将系数较为复杂的未知数设为特值0,简化运算。