新技术在中药制药领域的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新技术在中药制药领域的应用姓名:汪岩学号:S2010210 专业:中药学
中药为我国传统医药,用中药防病治病在我国具有悠久的历史。由于化学药品的毒副作用逐渐被人们所认识及合成一个新药又需巨大的投资,西医西药对威胁人类健康的常见病、疑难病的治疗药物还远远不能满足临床的需要,因此,全世界范围内掀起了中医中药热。面对科学技术,特别是中医药制药企业的迅猛发展,国际间医药学术交流活动的日益频繁以及药品市场竞争越来越激烈,实现中药现代化,与国际接轨,已成为中医药工作者的共识。改革开放到今,我国明确了中药发展的战略方向和思路,提出”科教兴业”的战略主体目标,中药的发展迈进了一大步。中药生产中的大桶煮提、大锅蒸熬及匾、勺、缸类生产器具当家的状况大为改善,进而出现不锈钢多功能提取罐、外循环蒸发、多效蒸发器,流化干燥器等设备,中成药的剂型也有较大的发展,由丸、散、膏、丹剂为主发展成为具有颗粒剂、片剂、胶囊剂、口服液及少量粉针等剂型。那么到现在为止,在中药制药领域又有哪些新技术、新设备应用到其中呢?现作如下综述:
1粉碎技术
利用超声粉碎、超低温粉碎等技术把原材料加工成微米甚至纳米级的微粉。细胞破壁率达95%以上。超微粉碎以剪切为主,得到超细粉体再进行提取。提高药物的吸收率、生物利用度,增强靶向性,主要用于一些贵重、稀有药材的粉碎[1]。其中超微粉碎技术在中药领域的应用将带来中药传统剂型的革新和发展,推动中药剂型现代化。以生药人药的传统剂型有汤剂、散剂、膏剂和丸剂等,超微粉碎技术的应用可以拓宽以生药人药的剂型,如片剂、胶囊剂、软膏剂、吸人剂、涂膜剂等,也可促进先进制剂技术(如固体分散技术和药物缓释技术)在这些生药剂型中的应用。
2浸提技术
2.1超临界流体萃取
利用超临界流体的独特溶解能力和物质在超临界流体中的溶解度对压力、温度的变化非常敏感的特性,通过升温、降压手段(或两者兼用)将超临界流体中所溶解的物质分离出来,达到分离提纯的目的,兼有精馏和萃取两种作用。超临界流体萃取由于可通过调控压力和温度,选择性地萃取某些成分,可以兼具提取和分离的功能,适用于提取分离挥发性成分、脂溶性物质、高热敏性物质及亲脂性、分子量较小物质的萃取,但对极性大、分子量大的物质如苷类、多糖类,需要加夹带剂[2]。
2.2超声提取
超声提取技术是以超声波辐射压强产生的骚动效应、空化效应和热效应引起机械搅拌、加速扩散溶解的一种新型提取方法。超声提取能够增大物质分子运动频率和速度,增加溶剂穿透力,提高药物溶出速度和溶出次数,缩短提取时间,提高有效部位提取率,且瞬间稳定升高温度,对热不稳定成分影响较小[2]。
2.3微波萃取
是指使用适合的溶剂在微波反应器中从天然药用植物、矿物、动物组织中提取各种化学成分的技术和方法。微波萃取的机理可从两方面考虑:一方面是微波射线自由透过透明的萃取介质,深入到生物材料的内部维管束和腺胞系统。由于吸收微波能,物料内部温度突然升高,在天然物料中的维管束和腺胞系统升温更快,保持此温度直至其内部压力超过细胞壁膨胀的能力,细胞破裂。位于细胞内的有效成分从细胞壁自由流出,传递到萃取溶剂里。另一方面,由于不同物质的tanδ值不同,对微波能的吸收程度也不同,微波可以对体系中不同组分进行选择性加热,从而使被萃取物质从基体或体系中分离出来,进入到萃取溶剂中[3]。
2.4酶法提取
酶法的基本原理是选用合适的酶将中草药中的杂质(如淀粉、果胶、蛋白质等)予以分解除去,最大限度地提取中草药有效成分。酶法提取要求酶有极高的活性、高度的专一性和温和的反应条件。酶法提取的效果主要取决于酶的种类、用量、酶解时间、温度、酸碱度、物料细度、搅拌强度等多种因素[4]。
2.5半仿生提取
半仿生提取法是将整体药物研究法与分子药物研究法相结合,从生物药剂学角度,模拟口服给药及药物经胃肠道转运的原理,为经消化道给药的中药制剂设计的一种新的提取工艺。具体做法是,将提取液的酸碱度加以生理模仿,先将药材用酸水提取,再以碱水提取,提取液分别滤过、浓缩,制成制剂。对提取液的最佳pH值和其它工艺参数的选择用一种或几种有效成分结合主要药理作用为指标用正交试验法、比例分割法进行优选[5]。
2.6亚临界水萃取
常温常压下水是极性很大的溶剂,随着温度的升高,水的极性会降低,对中极性和非极性有机物的溶解能力也会增加,在适度的压力下,将水加热到100℃以上临界温度374℃以下的高温,水体仍然保持在液体状态,它的极性会随温度变化而改变,这种水称为亚临界水。亚临界水与常温常压下的水在性质上有较大差别,更类似于有机溶剂。当温度为250℃,压力10.0 MPa时,水的极性与甲醇相当[6]。
2.7双水相萃取技术
将两种不同的水溶性聚合物的水溶液混合,当聚合物达到一定浓度,体系会分成互不相溶的两相,形成双水相体系。双水相体系的形成主要是由于高聚物之间的不相溶性即高聚物分子的空间阻碍作用,相互无法渗透,不能形成均一相,从而具有分离倾向。基于物质在双水相体系中的选择性分配,不同物质在特定的体系中有着不同的分配系数,当物质进入双水相体系后,在上相和下相间进行选择性分配,表现出一定的分配系数,从而达到分离纯化之目的[7]。
2.8反胶团萃取
表面活性剂分子溶于非极性溶剂中自发形成的聚集体,其中表面活性剂的极性头朝内而非极性头朝外与有机溶液接触。胶团内可溶解少量水而形成微型水池,蛋白质、核酸、氨基酸等生物物质溶解在其中,由于胶团的屏蔽作用,这些生物物质不与有机溶液直接接触,起到保护生物物质的活性的作用,从而实现生物物质的溶解和分离[8]。
2.9液动分级逆流技术
液动分级逆流提取是工业生产技术,在提取方法上采用新工艺、新技术的产物,适合于动物类、矿物类、根茎类等原材料,进行常温或加温浸提、常温或加温动态提取、常温或加温阶段连续逆流提取。对各种药材的提取时间、提取温度、溶媒及溶媒用量、颗粒饮片尺寸、提取单元组数、药效成分提取率等工艺参数等,可根据不同药材的特性进行优化。
3分离纯化技术
3.1膜分离
膜分离是以压力为推动力,根据体系中分子的大小和性状,通过膜的筛分作用,在分子水平上进行分离,可分离分子量为1000~1000000道尔顿的物质。起到精制、富集及浓缩的作用。目前,膜滤主要用于浓缩、分级、大分子溶液的净化等。
3.2大孔吸附树脂
大孔吸附树脂是由不含离子交换基团的由许多微观小球组成的多孔球状交联聚合物,是由有机单体加交联剂、致孔剂、分散剂等添加剂聚合而成。其理化性质稳定,不溶于酸、碱及有机溶媒,不受无机盐类及强离子低分子化合物存在的影响。它具有的吸附性是由于范德华力或产生氢键的结果。大孔吸附树脂具有的筛选性原理是由其本身的多孔结构所决定。3.3分子蒸馏