最新构建问题驱动式的数学课堂教学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构建问题驱动式的数学课堂教学
上杭县旧县中心小学钟发阳
问题是数学的心脏,是数学思考的起拔器。高质量的数学活动总是从特定的数学问题开始的。构建问题驱动式数学课堂教学,就是以富有思考价值的数学问题为载体,以数学问题引发的内驱力为助推,以数学问题的探究解决为归宿,让学生参与发现问题、提出问题、分析问题、解决问题的过程,实现对数学活动的深度参与和主动构建。那么,如何构建问题驱动式的数学课堂教学呢?下面,笔者以近日参加我省小学数学教育分会2016年年会观赏到的福清市百合小学林心恩老师执教的人教版四年级上册《速度、时间和路程》为例,谈3点思考体会。
一、以结构问题导趣,激发探究动力
从学生已有的认知经验与数学知识的自身特性入手,创设情境,引发认知矛盾冲突,是激发、维系小学生内在探究学习动力的根本方法。问题驱动式的数学课堂教学,强调有层次地呈现相关联的数学问题,不断打破学生已有的认知平衡,持续激发学生的探究动力。这就要求教师在设计数学问题时,要立足学生的认知发展区,根据数学知识的结构特点,体现问题探索的渐进性、结构性。
例如,在课始,教师以3只羊跑步比赛为情境,利用表格分步出示如下有关数据信息:
1.师(课件先隐去“时间”列的数据):观察表格,你能只根据3只羊跑步的路程,判断出哪只羊跑得更快吗?(学生经过交流、辩论,认识到只知道3只羊跑步的路程是不够的,还要知道所用时间才能比较判断。)
2.师(课件隐去第4行“美羊羊”的数据):喜羊羊和懒羊羊跑的路程不同,可用的时间一样多,谁跑得快?能比较吗?你发现什么?(学生讨论发现:当两者时间相同时,跑的路程越多也就越快。)
师(课件隐去第2行“喜羊羊”的数据):比较懒羊羊和美羊羊的跑步信息,能比较谁跑得快吗?你又有什么发现?(学生经过讨论,又发现当两者路程相同时,用的时间越少跑得就越快。)
3.师(课件再隐去第3行“懒羊羊”的数据):喜羊羊和美羊羊的跑步路程和时间都不同,谁跑得快,该怎样比较?(学生再次讨论,提出可以将路程除以时间,计算出每秒跑的路程,再比较判断。)
这里,教师从学生已有的认知经验入手,围绕着“怎样判断哪只羊跑得更快”这一核心问题,精心设置了3个层次问题:(1)仅知道路程,能比较快慢吗?(2)两者的时间(路程)相同,路程(时间)不同,能比较快慢吗?(3)两者的路程、时间都不同,又该怎样比较快慢呢?这样以相关联的结构性数学问题为驱动,由浅入深,层层递进,不断打破学生的认知平衡,在破与立的思维碰撞中,不断激发学生的探究兴趣,让学生多角度、立体式感知了路程、时间与速度之间的内在数量关系,为揭示数学概念提供了坚实的基础。
二、以生本问题导思,主动完善新知
小疑小进,大疑大进。数学问题是否具有思考价值,直接决定了学生的参与水平,影响着数学活动的成效。最有价值的数学问题,不是教师主观臆想的,而是学生自己发现、提出的。问题驱动式的数学课堂教学,强调将问题的提出权利还给学生,适时展示源于学生的典型性困惑问题,并通过学生的品析、交流、辨析、补充,完善对数学问题解决的再反省与再构建。这就要求教师要注意点拨启发,倡导延迟评价,鼓励学生大胆提出自己的独特见解,生成出有价值的数学问题。
例如,在本课教学中,教师出示飞机8分钟飞行96千米;自行车5小时行60千米等两组信息,让学生列式计算。结果学生列式出现:飞机速度96÷8=12(千米),自行车速度60÷5=12(千米)。教师问:“看来自行车的速度和飞机的速度一样快哟,都是‘12千米’,大家同意吗?谁能发现问题?”有学生马上提出:“这样表示速度会相互混淆,怎样才能区分这两个速度呢?”“如果加上具体的时间单位,就不会混淆了!”教师不作暗示,放手让学生把速度单位补充完整,飞机速度为“12(千米/分钟)”、自行车速度为“12(千米/小时)”。这时,教师再次引导学生:“今天学习的速度单位和以前学习的单位有什么不同?为什么要这样表示?”学生在对速度单位的反省中,再次理解到速度与路程和时间两个因素有关,所以速度单位要将两者都体现出来。
这里,教师从动态生成的、不易为学生关注的速度单位入手,让学生参与典型性困惑问题(该如何准确表达速度单位)的发现与提出过程,并放手让学生参与问题的解决,有效地引领学生主动参与了速度概念的完善与准确构建的过程。
三、以现实问题导练,灵活实践运用
纯数学练习易陷入机械、枯燥的巢臼中,而融入生活化元素的数学练习将充盈着灵动与生命。将数学练习寓于具体的现实问题情境中,不但有利于巩固数学知识技能,同时有利于培养学生的数学应用意识。问题驱动式数学课堂教学,要注意以具体的现实素材丰富数学练习的设计,提升数学练习的思辨价值。这就要求教师在练习设计中,不能只是简单地给练习植入生活化情境,而是要基于数学应用与现实情境的特点加以整合,以引发数学推理与生活经验的碰撞与交锋,在交流辨析中发挥现实问题的启思价值,培养学生的数学实践素养。
例如,在本课练习中,执教者设计了如下一道巩固练习:长汀县城到厦门机场走高速公路大约有240千米,林老师预订从厦门坐飞机返程,飞机起飞时间是12:00,林老师准备9:00从长汀出发,以每小时80千米的速度前往,林老师能赶上乘飞机吗?这是一道富有思辨价值的数学练习。学生通过计算发现80×(12-9)=240(千米),恰是长汀到飞机场的路程,从数学角度而言,是能赶上
乘飞机的。但从现实经验而言,还应考虑路途休息时间、取票时间、安检时间等,是难以赶上乘飞机的。因此,林老师应比原预定时间提前出发,确保有足够的中途时间,才能赶上乘飞机。这种融入现实问题的数学练习,不仅让学生学会用数学眼光观察生活,还让学生用生活经验思辨数学,实现了数学与生活的有机融合,发展了学生的数学实践素养。
总之,只有精致的数学问题才能打造优质的数学课堂。教师应紧扣数学活动的本质核心,精心设计有意义的数学问题,以精致的问题撬动高效的数学思考,