立体几何三类题型汇总

立体几何三类题型汇总
立体几何三类题型汇总

立体几何高考题型

、定理应用类(纯证明)

1、如图,几何体E-ABCD是四棱锥,△ ABD为正三角形,CB=CD, EC丄BD.

(1) 求证:BE=DE;

(2) 若/ BCD=120 , M 为线段AE的中点,求证:DM //平面BEC.

2、如图,在四棱台ABCD-ABGD i中,D i D丄平面ABCD,底面ABCD是平行四边形,AB=2AD, AD=A i B i, / BAD=60

(1) 证明:AA i丄BD;

(2)证明:CC i/ 平面A i BD.

3、如图,在四棱锥P-ABCD中,AB // CD, AB丄AD, CD=2AB,平面PAD!底面ABCD, PA丄AD. E和F分别是CD和PC的中点.求证:

(i) PA 丄底面ABCD;

⑵BE //平面PAD;

(3) 平面BEF丄平面PCD.

4、如图,四棱锥P-ABCD中,AB 丄AC, AB 丄PA, AB II CD, AB=2CD, E, F, G, M, N 分别为PB, AB, BC, PD, PC 的中点.

(1) 求证:CE I平面PAD; (2) 求证:平面EFGL平面EMN.

二、体积、距离求解类

1、如图,三棱柱ABC-AB i C i 中,CA=CB, AB=AA 1, / BAA=60

(1) 证明:AB丄AC;

2、如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,/ BAD=60 .已知PB=PD=2, PA=-.

(1) 证明:PC丄BD;

⑵若E为PA的中点,求三棱锥P-BCE的体积.

(1) 证明:E0 //平面ACD;

(2) 证明:平面ACDL平面BCDE;

⑶求三棱锥E-ABD的体积.

如图,三棱柱ABC-ABQ 中,CA=CB, AB=AA i, / BAA=60° .

5、如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,/ BAD=60 .已知PB=PD=2, PA=-.

(1) 证明:PC丄BD;

⑵若E为PA的中点,求三棱锥P-BCE的体积.

DE=BC=2, AC=CD=3.

4、

证明:AB丄

AC;

ABC-AB i C i 的体积.

DE=BC=2, AC=CD=3.

(1) 证明:E0 //平面ACD;

(2) 证明:平面ACDL平面BCDE;

⑶求三棱锥E-ABD的体积.

7、如图,直四棱柱ABCD-ABGD i 中,AB // CD, AD 丄AB, AB=2, AD=讣二,AA 1=3, E 为CD上一点,DE=1, EC=3.

(1) 证明:BE丄平面BB i C i C; (2) 求点B i到平面EAC i的距离.

8、如图,直角梯形ACDE与等腰直角厶ABC所在平面互相垂直,F为BC的中点,/ BACK ACD=90 , AE // CD, DC=AC=2AE=2.

(i) 求证:平面BCD!平面ABC; (2) 求证:AF //平面BDE; (3) 求四面体B-CDE的体积.

三、折叠探索类

1、如图1,在Rt △ ABC中,/ C=90° , D, E 分别为AC, AB的中点,点F为线段CD上的一点.将厶ADE沿DE折起到△ ADE的位置,使AF丄CD,如图2.

(1) 求证:DE //平面A i CB;

(2) 求证:A i F丄BE;

(3) 线段A i B上是否存在点Q,使A i C丄平面DEQ?说明理由.

2、如图,在平行四边形ABCD中, AB=2BC=4, / ABC=120 , E、M分别为AB DE的中点,将厶ADE沿直线DE翻折成△ A' DE,连结A' C, A' B, F 为A' C 的中点,A' C=4.

(1) 求证:平面A' DE丄平面BCD;

⑵求证:FB //平面A' DE.

3、如图,在四面体PABC中, PC丄AB, PA丄BC,点D, E, F, G 分别是棱AP, AC, BC, PB 的中点.

(1) 求证:DE //平面BCP;

⑵求证:四边形DEFG为矩形;

⑶是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由

7

?第5页共5页

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

立体几何典型例题精选(含答案)

F E D C B A 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形, EF ∥平面ABCD , 1EF =,,90FB FC BFC ?=∠=,3AE =. (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值. 变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示. (1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2. (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD (1)证明AB⊥平面VAD; (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=, BC=1,PA=2,E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N,使NE⊥平面PAC,并求出N点到AB和AP的距离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体ABCD ―A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 在棱AB 上移动. (1)证明:D 1E ⊥A 1D ; (2)当E 为AB 的中点时,求点A 到面ECD 1的距离; (3)AE 等于何值时,二面角 D 1―EC ―D 的大小为(易错点:在找平面DEC 的法向量的时候,本来法向量就己经存在了,就不必要再去找,但是我认为去找应该没有错吧,但法向量找出来了 ,和那个己经存在的法向量有很大的差别,而且,计算结果很得杂,到底问题出在哪里 ?) 4.如图,直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,AB ∥CD ,AB =2DC =2,E 为BD 1的中点,F 为AB 的中点,∠DAB =60°. (1)求证:EF ∥平面ADD 1A 1; (2)若2 21BB ,求A 1F 与平面DEF 所成角的正弦值.

N:5题到11题都是运用基底思想解题 5.空间四边形ABCD中,AB=BC=CD,AB⊥BC,BC⊥CD,AB与CD成60度角,求AD与BC所成角的大小。 6.三棱柱ABC-A1B1C1中,底面是边长为2的正三角形,∠A1AB=45°, ∠A1AC=60°,求二面角B-AA1-C的平面角的余弦值。 7.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内, 且都垂直于AB,已知AB=4,AC=6,BD=8,求CD的长 8.如图,已知空间四边形OABC中,OB=0C, ∠AOB=∠AOC=Θ,求证OA⊥BC。 9.如图,空间四边形OABC各边以及AC,BO的长都是1,点D,E分别是边OA,BC的中点,连接DE。 (1)计算DE的长; (2)求点O到平面ABC的距离。 10.如图,线段AB在平面⊥α,线段AC⊥α,线段BD⊥AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角。

立体几何经典题型汇总

1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点.. 向这个平面所引的垂线段和斜线段) ⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面. ⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在 任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图). (直线与直线所成角]90,0[??∈θ) (向量与向量所成角])180,0[ ∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)

立体几何知识点题型整理

立体几何总结(1)空间几何体的知识点: (2)点、直线、面的位置关系: (3)空间直角坐标系: 考点一空间几何体与三视图 1.一个物体的三视图的排列规则是:俯视图放在正视图的下面,长度与正视图的长度一样,侧视图放在正视图的右面,高度与正视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”. 2.画直观图时,与坐标轴平行的线段仍平行,与x轴、z轴平行的线段长度不变,与y轴平行的线段长度减半. 题型一三视图的考察 1、(2009·海南、宁夏) 一个棱锥的三视图如图,则该棱锥的全面积( 单位:cm2) 为( ) A.48+12 2 B.48+24 2 C.36+12 2 D.36+24 2 2、如图所示,某几何体的正视图是平行四边形,侧视图和俯视图都是矩形,则该几何体的体积为 ( ) A.6 3 B.9 3 C.12 3 D.18 3 【方法技巧】 1.求三棱锥体积时,可多角度地选择方法.如体积分割、体积差等积转化法是常用的方法.2.与三视图相结合考查面积或体积的计算时,解决时先还原几何体,计算时要结合平面图形,不要弄错相关数量. 3.求不规则几何体的体积常用分割或补形的思想将不规则几何体转化为规则几何体以易于求解. 4.对于组合体的表面积要注意其衔接部分的处理.

题型二 平面图的直观图(斜二测面法) 1、如图所示的直观图,其平面图形的面积为 ( ) A .3 B.32 2 C .6 D .3 2 2、如图所示为一平面图形的直观图,则这个平面图形可能是 ( ) 答案 :C 题型四 其他类型:展开、投影、截面、旋转体等 1 、面积为3的等边三角形绕其一边中线旋转所得圆锥的侧面积是________. 答案 :2π 2、 如图,长方体ABCD -A1B1C1D1 中,交于顶点A 的三条棱长分别为AD =3 ,AA1 =4 ,AB =5 ,则从A 点沿表面到 C1 的最短距离为 ( ) A .5 2 B.74 C .4 5 D .310 考点三 球与空间几何体的“切”“接”问题 1.长方体、正方体的外接球其体对角线长为该球的直径. 2.正方体的内切球其棱长为球的直径. 3.正三棱锥的外接球中要注意正三棱锥的顶点、球心及底面正三角形中心共线. 4.正四面体的外接球与内切球的半径之比为3∶1. 若正四面体的棱长为 a a R a a 12 6 ,46 ,36的半径为 正四面的内切球 径正四面体的外接球的半则正四面体的高为= (熟悉常见的补体,特殊的几何体如正三棱柱、正四棱柱、正六棱柱,注意如何确定球心的位置) 1.已知三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球的半径为( )A.3 B.6 C.36 D.9 2、在三棱锥BCD A -中,5,6======BC AD BD AC CD AB ,则该三棱锥的外接球的表面积为( )A.π102 B. π54 C. π21 D. π43 变式:在三棱锥BCD A -中,5,4,6======BC AD BD AC CD AB ,则该三棱锥的外接球的表面积为————(π2 77 ) 2、棱长为2的正四面体(四个面均为正三角形)外接球的表面积是( ) A π3 B π3 C π33 D π2 3 3、在三棱柱C B A ABC '''-中,已知ABC A A 平面⊥',2='==A A AC AB ,32=BC ,且此三棱柱的各个顶点都在一个球面上,则球的表面积为__________.

立体几何题型归纳

立体几何题型归纳 题型一线面平行的证明 例 1 如图,高为 1 的等腰梯形 ABCD 中,AM =CD =1 AB =1.现将△AMD 沿 MD 折起,使平面 AMD ⊥ 3 平面 MBCD ,连接 AB ,AC . 试判断:在 AB 边上是否存在点 P ,使 AD ∥平面 MPC ?并说明理由 【答案】当 AP =1 AB 时,有 AD ∥平面 MPC . 3 理由如下: 连接 BD 交 MC 于点 N ,连接 NP . 在梯形 MBCD 中,DC ∥MB ,DN =DC =1 , NB MB 2 在△ADB 中,AP =1 ,∴AD ∥PN . PB 2 ∵AD ?平面 MPC ,PN ?平面 MPC , ∴AD ∥平面 MPC . 【解析】线面平行,可以线线平行或者面面平行推出。此类题的难点就是如何构造辅助线。构造完辅助线, 证明过程只须注意规范的符号语言描述即可。本题用到的是线线平行推出面面平行。 【易错点】不能正确地分析 DN 与 BN 的比例关系,导致结果错误。 【思维点拨】此类题有两大类方法: 1. 构造线线平行,然后推出线面平行。 此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。在 此,我们需要借助倒推法进行分析。首先,此类型题目大部分为证明题,结论必定是正确的,我们以此 为前提可以得到线面平行。再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行 于该直线,而交线就是我们要找的线,从而做出辅助线。从这个角度上看我们可以看出线线平行推线面 平行的本质就是过已知直线做一个平面与已知平面相交即可。如本题中即是过 AD 做了一个平面 ADB 与平面 MPC 相交于线 PN 。最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。即先证AD 平行于 PN ,最后得到结论。构造交线的方法我们可总结为如下三个图形。

立体几何题型归类总结

立体几何题型归类总结(总8 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

立体几何专题复习 1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 ① ???????? →???????→?? ??? 底面是正多形 棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为正方形 2. 棱锥 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 3.球 球的性质: ①球心与截面圆心的连线垂直于截面; ★② r =d 、 球的半径为R 、截面的半径为r ) ★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.

注:球的有关问题转化为圆的问题解决. 球面积、体积公式:2 3 44,3 S R V R ππ== 球球(其中R 为球的半径)

俯视图 二、【典型例题】 考点一:三视图 1.一空间几何体的三视图如图1所示,则该几何体的体积为_________________. 第1题 2.若某空间几何体的三视图如图2所示,则该几何体的体积是________________. 第2题 第3题 3.一个几何体的三视图如图3所示,则这个几何体的体积为 . 4.若某几何体的三视图(单位:cm )如图4所示,则此几何体的体积是 . 第4题 第5题 2 2 侧(左)视图 2 2 2 正(主)视 3 俯视图 1 1 2 a

高考立体几何题型与方法全归纳文科

2019高考立体几何题型与方法全归纳文科 配套练习 1、四棱锥中,⊥底面,,, . (Ⅰ)求证:⊥平面; (Ⅱ)若侧棱上的点满足,求三棱锥的体积。 【答案】 (Ⅰ)证明:因为BC=CD ,即BCD ?为等腰三角形,又ACD ACB ∠=∠,故AC BD ⊥. 因为⊥PA 底面ABCD ,所以BD PA ⊥,从而BD 与平面PAC 内两条相交直线AC PA ,都垂直, 故⊥平面。 (Ⅱ)解:33 2sin 2221sin 21=??=∠??=?πBCD CD BC S BCD . 由⊥PA 底面ABCD 知23233 131=??=??=?-PA S V BCD BDC P . 由,7FC PF =得三棱锥BDC F -的高为PA 8 1, 故:4 132813318131=???=??=?-PA S V BCD BDC F 4 7412=-=-=---BCD F BCD P BDF P V V V 2、如图,四棱锥P ABCD -中,四边形ABCD 为矩形,PAD ?为等腰三角形,90APD ?∠=,平面PAD ⊥ 平面ABCD ,且1,2AB AD ==,,E F 分别为PC 和BD 的中点. (Ⅰ)证明:EF P 平面PAD ; (Ⅱ)证明:平面PDC ⊥平面PAD ;

(Ⅲ)求四棱锥P ABCD -的体积. 【答案】 (Ⅰ)证明:如图,连结AC . ∵四边形ABCD 为矩形且F 是BD 的中点.∴F 也是AC 的中点. 又E 是PC 的中点,EF AP P ∵EF ?平面PAD ,PA ?平面PAD ,所以EF P 平面PAD ; (Ⅱ)证明:∵平面PAD ⊥ 平面ABCD ,CD AD ⊥,平面PAD I 平面ABCD AD =, 所以平面CD ⊥ 平面PAD ,又PA ?平面PAD ,所以PA CD ⊥ 又PA PD ⊥,,PD CD 是相交直线,所以PA ⊥面PCD 又PA ?平面PAD ,平面PDC ⊥平面PAD ; (Ⅲ)取AD 中点为O .连结PO ,PAD ?为等腰直角三角形,所以PO AD ⊥, 因为面PAD ⊥面ABCD 且面PAD I 面ABCD AD =, 所以,PO ⊥面ABCD , 即PO 为四棱锥P ABCD -的高. 由2AD =得1PO =.又1AB =. ∴四棱锥P ABCD -的体积1233 V PO AB AD =??= 考点:空间中线面的位置关系、空间几何体的体积. 3、如图,在四棱锥P ABCD -中,PD ABCD ⊥平面,CD PA ⊥, DB ADC ∠平分,E PC 为的中点,45DAC ∠=o ,AC = O

立体几何常见重要题型归纳-高考立体几何题型归纳

立体几何常见重要题型归纳 阳江一中 利进健 题型一 点到面的距离 常见技巧:等体积法 例1:如图,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB =4,BC =CD =2,AA 1=2,E ,E 1分别是棱AD ,AA 1的中点. (1)设F 是棱AB 的中点,证明:直线EE 1∥平面FCC 1; (2)证明:平面D 1AC ⊥平面BB 1C 1C ; (3)求点D 到平面D 1AC 的距离. 解析:(1)11//,,,//,22 CD AB CD AB AF AB CD AF CD AF ==∴= ∴ 四边形AFCD 为平行四边形 ∴//CF AD 又AD ?面11ADD A ,CF ?面11ADD A ∴//CF 面11ADD A 2分 在直四棱柱中,11//CC DD , 又AD ?面11ADD A ,CF ?面11ADD A ∴1//CC 面11ADD A 3分 又11,,CC CF C CC CF ?=?面1CC F ∴面1CC F //面11ADD A 又1EE ?面11ADD A ,1//EE ∴面1CC F 5分 (2)122 BC CD AB === ∴ 平行四边形AFCD 是菱形 DF AC ∴⊥ ,易知//BC DF AC BC ∴⊥ 7分 在直四棱柱中,1CC ⊥面ABCD ,AC ?面ABCD 1AC CC ∴⊥ 又1BC CC C ?= AC ∴⊥面11BCC B 9分 又AC ?面1D AC ∴面1D AC ⊥面11BCC B 10分 (3)易知11D D AC D ADC V V --= 11分 ∴ 设D 到面1D AC 的距离为d ,则

高一立体几何经典例题复习课程

立体几何周练 命题人---王利军 一、选择题(每小题5分,共60分) 1、线段AB 在平面α内,则直线AB 与平面α的位置关系是 A 、A B α? B 、AB α? C 、由线段AB 的长短而定 D 、以上都不对 2、下列说法正确的是 A 、三点确定一个平面 B 、四边形一定是平面图形 C 、梯形一定是平面图形 D 、平面α和平面β有不同在一条直线上的三个交点 3、垂直于同一条直线的两条直线一定 A 、平行 B 、相交 C 、异面 D 、以上都有可能 4、在正方体1111ABCD A B C D -中,下列几种说法正确的是 A 、11AC AD ⊥ B 、11D C AB ⊥ C 、1AC 与DC 成45o 角 D 、11AC 与1B C 成 60o 角 5、若直线l ∥平面α,直线a α?,则l 与a 的位置关系是 A 、l ∥a B 、l 与a 异面 C 、l 与a 相交 D 、l 与a 没有公共点 6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行; (3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有 A 、1 B 、2 C 、3 D 、4 7、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、能相交于点P ,那么 A 、点必P 在直线AC 上 B 、点P 必在直线BD 上 C 、点P 必在平面ABC 内 D 、点P 必在平面ABC 外 8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ?M , a ∥ b ,则a ∥M ;③若a ⊥ c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有 A 、0个 B 、1个 C 、2个 D 、3个 9、一个棱柱是正四棱柱的条件是 A 、底面是正方形,有两个侧面是矩形 B 、底面是正方形,有两个侧面垂直于底面 C 、底面是菱形,且有一个顶点处的三条棱两两垂直 D 、每个侧面都是全等矩形的四棱柱 10、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个

立体几何常见题型归纳

立体几何常见题型归纳 考点1 概念辨析 例1、设m ,n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个说法: ①,//m n m n αα⊥?⊥;②//,//,m m αββγαγ⊥?⊥;③//,////m n m n αα? ④,//αγβγαβ⊥⊥?,说法正确的序号是:_________________ 例2、对于平面α和共面的直线m 、,n 下列命题中真命题是 ( ) (A )若,,m m n α⊥⊥则n α∥ (B )若m αα∥,n ∥,则m ∥n (C )若,m n αα?∥,则m ∥n (D )若m 、n 与α所成的角相等,则m ∥n 辨析: (1)两条异面直线在同一平面内射影一定是相交的两条直线.( ) (2)在平面内射影是直线的图形一定是直线. ( ) (3)直线a 与平面α内一条直线平行,则a ∥α.( ) (4)两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. ( ) (5)平行于同一直线的两个平面平行. ( ) (6)平行于同一个平面的两直线平行. ( ) (7)直线a 与平面α内一条直线相交,则a 与平面α相交. ( ) (8)直线l 与平面α、β所成角相等,则α∥β.( ) (9)垂直于同一平面的两个平面平行. ( ) (10)垂直于同一直线的两个平面平行. ( ) (11)垂直于同一平面的两条直线平行. ( ) (12)若直线a 与平面α平行,则α内必存在无数条直线与a 平行. ( ) (13)有两个侧面是矩形的棱柱是直棱柱. ( )(14)各侧面都是正方形的棱柱一定是正棱柱. ( ) 考点2 三视图 例1、下图是一个多面体的三视图,则其全面积为__________ 例2、如图,一个空间几何体的正(主)视图、侧(左)视图都是面积为32 ,且一个内角为60°的菱形,俯视图为正方形,那么这个几何体的表面积为__________ 例3、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),那么可得这个几何体的体积是_________ 22 2 2 1 1 正视 左视 俯视(例3图)

空间立体几何高考知识点总结与经典题目

空间立体几何 知识点归纳: 1. 空间几何体的类型 (1)多面体:由若干个平面多边形围成的几何体,如棱柱、棱锥、棱台。 (2)旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。 如圆柱、圆锥、圆台。 2. 一些特殊的空间几何体 直棱柱:侧棱垂直底面的棱柱。正棱柱:底面多边形是正多边形的直棱柱。 正棱锥:底面是正多边形且所有侧棱相等的棱锥。 正四面体:所有棱都相等的四棱锥。 3. 空间几何体的表面积公式 棱柱、棱锥的表面积:各个面面积之和 _ 2 圆柱的表面积:S =2 rl 2 r2圆锥的表面积:S =理「I ?二r 2 2 圆台的表面积:S =理rl 7 r?二RI ?二R 球的表面积:s= 4 R2 4 ?空间几何体的体积公式 1 柱体的体积:V = S底 h 锥体的体积:v = - S底h 3底 1 ---------- 、, 4 3 台体的体积:V = —( S上?S上S T S下)h 球体的体积:V R 3 '3 5.空间几何体的三视图 正视图:光线从几何体的前面向后面正投影,得到的投影图。 侧视图:光线从几何体的左边向右边正投影,得到的投影图。 俯视图:光线从几何体的上面向右边正投影,得到的投影图。 画三视图的原则: 长对正、宽相等、高平齐。即正视图和俯视图一样长,侧视图和俯视图一样宽,侧视图和正视图一样高。 6 .空间中点、直线、平面之间的位置关系 (1) 直线与直线的位置关系:相交;平行;异面。

(2)直线与平面的位置关系:直线与平面平行;直线与平面相交;直线在平面内。 (3)平面与平面的位置关系:平行;相交。 7. 空间中点、直线、平面的位置关系的判断 (1)线线平行的判断: ①平行公理:平行于同一直线的两直线平行。 ②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相 交,那么这条直线和交线平行。 ③面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 ④线面垂直的性质定理:垂直于同一平面的两直线平行。 (2)线线垂直的判断: ①线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。 ②线线垂直的定义:若两直线所成角为,则两直线垂直 ③一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 (3)线面平行的判断: ①线面平行的判定定理:如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平 面平行。 ②面面平行的性质定理:两个平面平行,其中一个平面内的直线必平行于另一个平面。 (4)线面垂直的判断: ①线面垂直的判定定理:如果一直线和平面内的两相交直线垂直,这条直线就垂直于这 个平面。 ②如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。 ③一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ④如果两个平面垂直,那么在一个平面内垂直于交线的直线必垂直于另一个 (5)面面平行的判断:

立体几何题型总结

立体几何类型题 如图所示,在四棱锥P ABCD -中,PD ⊥平面ABCD , 又 //AD BC ,AD DC ⊥, 且33PD BC AD ===. (Ⅰ)画出四棱准P ABCD -的正视图; (Ⅱ)求证:平面PAD ⊥平面PCD ; 并求 PE EB (Ⅲ)求证:棱PB 上存在一点E ,使得//AE 平面PCD ,的值. (Ⅰ)解:四棱准P ABCD -的正视图如图所示. ………………3分 (Ⅱ)证明:因为 PD ⊥平面ABCD ,AD ?平面ABCD , 所以 PD AD ⊥. ………………5分 因为 AD DC ⊥,PD CD D =I ,PD ?平面PCD ,CD ?平面PCD , 所以AD ⊥平面PCD . ………………7分 因为 AD ?平面PAD , 所以 平面PAD ⊥平面PCD . ………………8分 (Ⅲ)分别延长,CD BA 交于点O ,连接PO ,在棱PB 上取一点E ,使得1 2 PE EB =.下证//AE 平面 PCD . ………………10分 因为 //AD BC ,3BC AD =, 所以 13OA AD OB BC ==,即12OA AB =. 所以 OA PE AB EB = . 所以 //AE OP . ………………12分 因为OP ?平面PCD ,AE ?平面PCD , 所以 //AE 平面PCD . ………………14分 2如图所示,四棱锥P ABCD -的底面ABCD 是直角梯形,AD BC //,AB AD ⊥, AD BC AB 2 1 ==,PA ⊥底面ABCD ,过BC 的平面交PD 于M ,交PA 于 N (M 与D 不重合) . (Ⅰ)求证:BC MN //; (Ⅱ)求证:CD PC ⊥ ; (Ⅲ)如果BM AC ⊥,求此时PM PD 的值. 证明:(Ⅰ)因为梯形ABCD ,且AD BC //, 又因为?BC 平面PAD ,?AD 平面PAD , 所以//BC 平面PAD . 因为平面I BCNM 平面PAD =MN , 所以BC MN //. ……………………4分 (Ⅱ)取AD 的中点Q ,连结CQ . 因为AD BC //,AD BC 2 1 = , 所以AQ BC //,且AQ BC =. 因为AB BC =,且AB AD ⊥, 所以ABCQ 是正方形. 所以BQ AC ⊥. 又因为BCDQ 为平行四边形,所以且//CD BQ 所以⊥CD AC . 又因为PA ⊥底面ABCD , 所以PA ⊥CD . 因为A AC PA =I , 所以⊥CD 平面PAC , 因为PC ?平面PAC , 所以⊥CD PC . (Ⅲ)过M 作//MK PA 交AD 于K ,连结BK . 因为PA ⊥底面ABCD , O E D C B A P C N M P D B A K A B D P M C Q A B D P M C

高中数学立体几何经典常考题型

高中数学立体几何经典常考题型 题型一:空间点、线、面的位置关系及空间角的计算 空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解. 【例1】如图,在△ABC 中,∠ABC = π4 ,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平 面ABC ,2DA =2AO =PO ,且DA ∥PO. (1)求证:平面PBD ⊥平面COD ; (2)求直线PD 与平面BDC 所成角的正弦值. (1)证明 ∵OB =OC ,又∵∠ABC =π 4, ∴∠OCB =π4,∴∠BOC =π 2. ∴CO ⊥AB. 又PO ⊥平面ABC , OC ?平面ABC ,∴PO ⊥OC. 又∵PO ,AB ?平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ?平面COD , ∴平面PDB ⊥平面COD. (2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示. 设OA =1,则PO =OB =OC =2,DA =1. 则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).

设平面BDC 的一个法向量为n =(x ,y ,z ), ∴?????n ·BC →=0,n · BD →=0,∴???2x -2y =0,-3y +z =0, 令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=????? ? ??PD →·n |PD →||n | =??????1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=222 11. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标. 第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和答题规范. 【变式训练】 如图所示,在多面体A 1B 1D 1-DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C . (2)求二面角E -A 1D -B 1的余弦值. (1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ?面A 1DE ,B 1C ?面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ?面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.

立体几何题型总结

立体几何题型总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

立体几何——点线面的位置关系 公理1:如果一条直线的两点在一个平面内,那么这条直线在此平面内。 公理2:过不在一条直线上的三点,有且只有一个平面 公理3:如果两个不重合的平面有一个公共点,那么他们有且只有一条过该点的公共直线。 1、公理的理解与应用 例1 已知,αβ为不同的平面,A 、B 、M 、N 为不同的点,a 为直线, 下列推理错误的是 ( ) A. ,,,,A a A B a B a βββ∈∈∈∈?? B. ,,,,M M N N MN αβαβαβ∈∈∈∈?= C. ,,A A A αβα β∈∈?= D. ,,A B M A B M αβ∈∈、、、、且A 、B 、M 不共线αβ?、重合 例2 下列条件中,能得到平面α∥平面β的是( ) A. 存在一条直线a a ααβ,∥,∥ B. 存在一条直线a a a αβ?,,∥ C. 存在两条平行直线a b a b a b αββα??,,,,∥,∥ D. 存在两条异面直线a b a a b αβα?,,,∥,∥ 例3 对于直线,m n 和平面α,下列命题中的真命题是() A. 如果,,,m n m n αα??是异面直线,那么//n α B. 如果,,,m n m n αα??是异面直线,那么n 和α相交 C. 如果,//,,m n m n αα?共面,那么//m n D. 如果//,//,,m n m n αα共面,那么//m n 例4 已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的 中点,则AE SD ,所成的角的余弦值为( ) A .13 B .3 C D .23

立体几何复习(知识点经典习题)

考点一,几何体的概念与性质 【基础训练】 1.判定下面的说法是否正确: (1) 有两个面互相平行,其余各个面都是平行四边形的几何体叫棱柱. (2) 有两个面平行,其余各面为梯形的几何体叫棱台. 2.下列说法不正确的是( ) A .空间中,一组对边平行且相等的四边形一定是平行四边形。 B.同一平面的两条垂线一定共面。 C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内。 D.过一条直线有且只有一个平面与已知平面垂直。 【高考链接】 1.设α和β为不重合的两个平面,给出下列命题: (1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β; (2)若α外一条直线l 与α内的一条直线平行,则l 和α平行; (3)设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; (4)直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直。 上面命题中,真命题...的序号 (写出所有真命题的序号). 2.在空间,下列命题正确的是 (A )平行直线的平行投影重合(B )平行于同一直线的两个平面平行 (C )垂直于同一平面的两个平面平行(D )垂直于同一平面的两条直线平行 考点二 三视图与直观图及面积与体积 【基础训练】 1.如图(3),,E F 为正方体的面11ADD A 与面11BCC B 的中心,则四边形1BFD E 在该正方体的面上的投影可能是 . 2.如果一个水平放置的图形的斜二测直观图是一个底角为0 45,腰和上底均为1的等腰梯形,那么原图形的面积是( ) A. 222+ B 122+ C 22 2 + D 123.在ABC ?中, 0 2 1.5120AB BC ABC ==∠=,, 若使其绕直线BC 旋转一周,则它形成的几何体的体积是( ) A.9 2π B. 72π C. 52π D. 32 π 4. 已知一个长方体共一顶点的三个面的面积分别是 236,,是 . 若长方体共顶点的三个侧面面积分别为3,5,15,则它的体积为 . 5.正方体的内切球和外接球的半径之比为( ) A. 3 3: C.23: D. 33 6.一个正方体的顶点都在球面上 ,它的棱长为2,则球的表面积是( ) A.2 8cm π B. 2 12cm π C. 2 16cm π D. 2 20cm π 7.若三个球的表面积之比是1:2:3,则它们的体积之比是 . 8.长方体的一个顶点上三条棱长分别为3、4、5,且它的8个顶点都在同一球面上,则这个球的表面积是( ) A.25π B. 50π C.125π D. 以上都不对 9..半径为 R 的半圆卷成一个圆锥,则它的体积为 . 【高考链接】 1.一个棱锥的三视图如图,则该棱锥的全面积为( ) (A )2 (B )2 (C )2 (D )2 F E D1 C1 B1 D C B A

2018高考立体几何复习最新题型归纳

2018高考复习立体几何最新题型总结(文数) 题型一:空间几何体的结构、三视图、旋转体、斜二测法 了解柱、锥、台、球体及其简单组合体的结构特征,并能运用这些特征描述现实生活中的简单物体的结构。能画出简单空间几何体的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图。能用平行投影与中心投影两种方法画出简单空间几何体的三视图与直观图。了解空间几何体的不同表示形式。会画某建筑物的视图与直观图。 例1.将正三棱柱截去三个角(如图1所示A B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( ) 例 2.由大小相同的正方体木块堆成的几何体的三视图如图所示,则该几何体中正方体木块的个数是 . 正视图 左视图 例3.已知一个正四面体的俯视图如图所示,其中四边形ABCD 是边长为2的正方形,则该正四面体的内切球的表面积为( )A .6πB .54πC .12πD .48π 例4:如图是一个几何体的三视图,根据图中数据,可得该几何体的 表面积为( ) A .π12 B .π16 C .π32 D .π8 例5:四棱锥P ABCD -的顶点P 在底面ABCD 中的投影恰好是A , E F D I A H G B C E F D A B C 侧视 图1 图2 B E A . B E B . B E C . B E D . 俯视图 俯视图 左视图 主视图 a a a D C B A

其三视图如图,则四棱锥P ABCD -的表面积为( ) A. 23a B.2 2a C.22 23a a + D. 2222a a + 例6:三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别为AA 1、CC 1上的点,且满足AP=C 1Q ,则四棱锥B —APQC 的体积是___________ 例7:如图,斜三棱柱ABC —111C B A 中,底面是边长为a 的正三角形,侧棱长为 b ,侧棱AA ’与底面相邻两边AB 、AC 都成450 角,求此三棱柱的侧面积和体积. 例8:如图是一个几何体的三视图,根据图中的数据(单位:cm ),可知几何体的体积是_________ 真题: 【2017年北京卷第6题】某三棱锥的三视图如图所示,则该三棱锥的体积为 (A )60 (B )30 (C )20 (D )10 【2017年山东卷第13题】由一个长方体和两个 1 4 圆柱构成的几何体的三视图如右图,则该几何体的体积2 2 主视图 2 2 侧视图 2 1 1 俯视图

相关文档
最新文档