煤层气开发复习 (2)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

煤层气:是赋存于煤层及其围岩中,与煤炭共伴生的可燃烃类气体,以吸附在煤基质颗粒表面为主,并部分游离于煤孔隙中或溶解于煤层气水中,是地史时期煤中有机质热演

化成烃产物。

煤阶:用数量表示煤化过程程度或成熟度。

镜质体反射率:在显微镜下,于油浸及546nm波长条件下镜质组的反射光强度与垂直入射光强度的百分比。

煤比孔容:单位质量煤中孔的容积。

煤比表面积:单位质量煤中孔隙的表面积。

煤的孔隙度:孔隙总体积与煤总体积之比。

面割理:整个煤层中连续分布的割理。

端割理:终止于面割理或与面割理较差的不连续割理,其延伸受面割理的制约。。

外生裂隙:煤受构造应力作用产生的裂隙。

继承性裂隙:如果内生裂隙形成前后的构造应力场方向不变,早先的内生裂隙就会进一步强化,表现为部分内生裂隙由其发育的煤分层向相邻分层延伸扩展,但方向保持

不变。

内生裂隙:煤化作用过程中,煤中凝胶化物质受温度和压力的影响,体积均匀收缩产生内张力,从而形成的裂隙。

裂缝密度:一定距离内割理数量的多少。

煤层:由上下两个层面限制的煤及其间所夹的矸石层。

煤层气储集层的渗透性:在一定压差下,允许流体通过其连通孔隙的性质。

绝对渗透率:当孔隙中只存在单相流体,且流体与介质不发生任何物理化学作用时,多孔介质允许流体通过的能力。

单相渗透率:单相流体通过煤岩孔体、裂隙时的渗透率。

有效渗透率:当孔隙中只存在多相流体时,则多孔介质允许每一项流体通过的能力。

相对渗透率:有效渗透率与绝对渗透率的比值。

煤层气储层压力:作用于煤孔隙和煤裂隙空间上的流体压力(包括水压和气压)。

储层压力系数:实测地层压力与同深度静水柱压力之比值。

煤层气压力:在煤田勘探钻孔或煤矿矿井中测得的煤层孔隙中的气体压力。

煤层气藏:受相似地质因素控制、以吸附态为主、有一定煤层气资源规模、具有独立流体系统的煤岩体。

经济边界:适用于工业性煤层气藏,以该煤层气藏具备商业开发价值的最低含气量表达。物性边界:煤体在构造应力作用下成为糜棱煤,物性变差,排驱压力增大,对煤层气的扩散吸附平衡:当吸附和解吸的速度相当时,颗粒表面的气体分子数目就维持在某一定量。

煤层气吸附饱和度:煤层在一定的温度、压力和湿度等条件下对甲烷的吸附饱和程度,实际含气量与理论吸附量之比。

临界解吸压力:在煤层气开采过程中,随着排水降压,煤层气中流体的压力将逐步降低,煤层气开始解吸时刻对应的压力。

临储压力:临界解吸压力与储层压力之比。

临界产气压力:在煤层气开采过程中,煤层气开始大量产出时刻的井底流压。

先期裸眼完井:钻到煤层上方地层下套管固井,再钻开生产层段的煤层的完井方法。

后期裸眼完井:在钻完全部设计井深后,将生产套管下至煤层顶部并固井的方法。

筛管完井:在钻穿煤层后,把带筛管的套管柱下入煤层部位,然后注水泥封隔煤层顶部以上的环形空间完井。

套管射孔完井:钻完全部井深,下套管、固井并将煤层用水泥封住后,用射孔器射穿套管、

水泥环和部分煤层,构成煤层与井筒的连通通道。

尾管射孔完井:将技术套管下至煤层顶部并固井,然后再钻完全部井深,下入尾管并悬挂在技术套管上,用射孔器射穿尾管、水泥环和部分煤层,构成煤层与井筒的连通通道。混合完井:是裸眼完井和套管完井在同一口井中使用。

裸眼洞穴完井:在较高的生产压差作用下,利用井眼的不稳定性,在井壁煤岩发生破坏后允许煤块塌落到井筒中,进而形成物理洞穴。

多煤层完井技术:在单煤层完井技术的基础上,根据全井各煤层的特点和上下围岩的性质,有针对性的选择套管射孔完井、套管射孔+裸眼完井、套管射孔+裸眼洞穴完井等几种完井技术。

DST测试:又称中途测试,钻杆将测试工具下入井内,在井下进行开关井操作,依靠地层流体的流动,直接快速获取井下压力-时间关系曲线,分析曲线获得地层参数,是

认识测试层段的流体性质、产能大小、压力变化和井底附近有效渗透率以及目的层

段被污染状况的常用手段。

段塞流测试:通过瞬时向井筒中加入液体或从井筒抽出一定体积的流体,使之形成一个段塞,然后测量恢复过程中压力随时间的变化,直至达到地层初始压力,由此求取渗透率、井筒储集系数和表皮系数。

注入/压降测试法:是一种单井压力瞬变测试,以合理的排量和压力向地层注水一段时间,在井筒周围产生一个高于原始储层的分布压力区,然后停泵、关井,使得压力与原

始储层逐渐趋于平衡。

压力恢复试井:生产井在稳定生产的条件下,把测试管柱下入井内,压力计记录关井后井底压力随时间变化曲线。

多井干扰试井:由一口激动井与一口或多口观测井组成。干扰试井中,通过向激动井注入或从井中抽汲液体对测试地层施加压力瞬变,在激动井和所有观测井中连续监测对外

加应力的压力响应。

表皮效应:经常有这样一个围绕井筒的带,由于有钻井泥浆的泥皮或完井时水泥的影响,造成这一带的渗透率比储层的其它部分的渗透率降低,就好像是一层表皮围绕着井

筒,导致过高的压降。

井筒储集效应:在压力恢复测试中,其流量是从一恒定值变为零,但多数情况下,流量的控制是在井口或管线上,虽然井口测出的流量是恒定的,但在井筒内部,从储层进入

井筒的流量并不恒定。这就是井筒储集效应。

无限作用径向流:井筒储集效应一结束,井筒的压力变化即可反映储层中的压力情况。随着时间的推移,压力响应反映了距井筒更远处的储层状况,最后压力响应受到储层边界作用的影响。在此以前,从压力影响中是看不出储层边界的,就好像储层无限大一样。储层边界响应:储层是有边界的,因此无限作用径向流阶段不能一直使用。

多孔效应:在试井过程中必须对一种多相性储层引起注意,此类储层的压力响应具有明显的原生孔隙和次生孔隙。

多分支水平井:由一个主井眼和两个或两个以上的分支井眼所组成的。

经济极限井网密度:总产出等于总投入,总利润为零时的井网密度。

最优井网密度:当总利润最大时的井网密度。

合理井网密度:实际井网部署应在最优井网密度与经济极限井网密度之间选择一个合理值。水力压裂技术:采用地面高压压裂泵车,以高于储层吸入的速度,从井的套管或油管向井下注入压裂液,当井筒的压力增高,达到克服地层的地应力和岩石抗张强度时,

岩石开始出现裂缝,形成一条或数条裂缝。

高能气体压裂技术:利用固态、液态火药或推进剂在目的层快速燃烧产生的大量高温高压气

相关文档
最新文档