3第三章 基因与基因组的结构和功能

第3章 基因与基因组的结构

第3章基因与基因组的结构 1.主要内容 1)断裂基因构成性质 2)重叠基因种类 3)C值矛盾 4)原核生物与真核生物基因组的区别 5)真核生物染色体的结构 6)真核生物DNA序列的4种类型 7)基因家族、基因簇、卫星DNA、分散重复DNA 序列 8)人类基因组计划 2.教学要求 1)掌握基因,断裂基因,顺反子,C值矛盾,重叠基因,基因家族,重复序列,卫 星DNA等基本概念; 2)熟悉原核生物和真核生物基因组结构特点与功能; 3)了解人类基因组的重复顺序、人类基因组计划。 第1节基因的概念 第2节基因命名简介 第3节真核生物的断裂基因 第4节基因及基因组的大小与C值矛盾 第5节重叠基因 第6节基因组 第7节真核生物DNA序列组织 第8节基因家族 第9节人类基因组研究进展 第1节基因的概念 ●基因:带有特定遗传信息的核酸分子片段。包括 结构基因:编码蛋白质tRNA rRNA 调控基因: ●基因研究的发展染色体分子反向生物学 ●基因位于染色体和细胞器的DNA分子上 ?基因和顺反子 ?1955,Benzer用以表述T4 具溶菌功能的区的2个亚区: rⅡA rⅡB ?现代分子生物学文献中,顺反子和基因这两个术语互相通用。 第2节基因命名简介

?表示基因3个小写斜体字母,lac ?表示基因座3个小写斜体字母+ 1个大写斜体字母。lacZ ?表示质粒 自然质粒 3 个正体字母,首字母大写 重组质粒在2个大写字母前面加小写p ?基因为斜体,蛋白质为正体 ?人类基因为大写斜体 第3节真核生物的断裂基因 ?一、割裂基因的发现 ?1977,通过成熟mRNA(或cDNA)与编码基因的DNA杂交试验而发现 ?真核生物的基因是不连续的,大大改变了原来对基因结构的看法,现在知道大多数真核生物的基因都是不连续基因或割裂基因(split gene)。 ?割裂基因的概念——是编码序列在DNA分子上不连续排列而被不编码的序列所隔开的基因。 ?割裂基因的构成 ?构成割裂基因的DNA序列被分为两类: ?基因中编码的序列称为外显子(exon),外显子是基因中对应于信使RNA序列的区域; ?不编码的间隔序列称为内含子(intron),内含子是从信使RNA中消失的区域。?割裂基因由一系列交替存在的外显子和内含子构成,基因两端起始和结束于外显子,对应于其转录产物RNA的5’和3’端。如果一个基因有n个内含子,则相应地含有n+1个外显子。 ●割裂基因的性质 ?Splitting Gene 的普遍性 ?外显子和内含子各有特点 ?Splitting gene 概念的相对性 ●Splitting Gene 的普遍性 a) 真核生物(Eukaryots)中 ?绝大部分结构基因 ?tDNA, rDNA ?mtDNA, cpDNA b) 原核生物(Prokaryots)中 ?SV40 大T 抗原gene ?小t 抗原gene ?Splitting gene 并非真核生物所特有

细菌的基因预测以及注释

Whole-genome Annotation of an A.baumannii strain A.baumannii ACICU

摘要 随着新一代测序技术的发展,微生物全基因组测序的成本大大减少,DNA序列的生成速度已远远超过其基因的注释速度。功能基因组学的研究已经成为当今研究的主流。然而如此多的数据对现有的基因注释工具提出了巨大的挑战。本研究通过对A.baumanii ACICU染色体序列使用GeneMarks进行基因预测,预测到了3718个基因,然后使用RAST进行基因注释,共注释到了3683个功能基因,将得到的结果与原文献中所注释到的基因进行对比。最后得到结论,基因的预测与注释都需要综合不同软件的结果进行分析,才能得到较为准确的结果。本研究为原核生物全基因组的注释提方法供了参考。 关键字:基因注释全基因组鲍曼不动杆菌GeneMarksRAST

目录 1.引言(Introduction) (2) 1.1.背景介绍 (2) 1.2.全基因组注释软件 (3) 1.3. A.baumannii ACICU相关 (4) 2.材料与方法(Methods and Materials) (5) 2.1.使用GeneMarks进行ORF预测 (5) 2.2.使用RAST进行功能基因注释 (6) 3.结果与讨论(Results and Discussion) (8) 3.1.使用GeneMarks预测ORF的结果以及分析 (8) 3.2.使用RAST进行功能基因注释结果以及分析 (9) 3.3.综合分析 (10) 参考文献 (10) 1.引言(Introduction) 1.1.背景介绍

第四章 基因与基因组学(答案)

第四章基因与基因组学(答案) 一、选择题 (一)单项选择题 1.关于DNA分子复制过程的特点,下列哪项是错误的 A.亲代DNA分子双股链拆开,形成两条模板链 B.新合成的子链和模板链的碱基互补配对 C.复制后新形成的两条子代DNA分子的碱基顺序与亲代的DNA分子完全相同 D. 以ATP、UTP、CTP、GTP和TDP为合成原料 E.半不连续复制 *2.建立DNA双螺旋结构模型的是: and Crick and Schwann *3.下列哪个不属于基因的功能 A.携带遗传信息 B.传递遗传信息 C.决定性状 D.自我复制 E.基因突变 》 分子中核苷酸顺序的变化可构成突变,突变的机制一般不包括: A.颠换 B.内复制 C.转换 D.碱基缺失或插入 E.不等交换 5.下列哪一种结构与割(断)裂基因的组成和功能的关系最小 A.外显子 B.内含子框 D.冈崎片段 E.倒位重复顺序 *6.在一段DNA片段中发生何种变动,可引起移码突变 A.碱基的转换 B.碱基的颠换 C.不等交换 D.一个碱基对的插入或缺失 个或3的倍数的碱基对插入或缺失 7.从转录起始点到转录终止点之间的DNA片段称为一个: A.基因 B.转录单位 C.原初转录本 D.核内异质RNA E.操纵子 8.在DNA复制过程中所需要的引物是; ~ 9.下列哪一项不是DNA自我复制所必需的条件 A.解旋酶多聚酶引物 D. ATP、GTP、CTP和TTP及能量 E.限制性内切酶 10.引起DNA形成胸腺嘧啶二聚体的因素是 A.羟胺 B.亚硝酸溴尿嘧啶 D.吖啶类 E.紫外线 11.引起DNA发生移码突变的因素是 A.焦宁类 B.羟胺 C.甲醛 D.亚硝酸溴尿嘧啶 12.引起DNA分子断裂而导致DNA片段重排的因素 A.紫外线 B.电离辐射 C.焦宁类 D.亚硝酸 E.甲醛 ) 13.可以引起DNA上核苷酸烷化并导致复制时错误配对的因素 A.紫外线 B.电离辐射 C.焦宁类 D.亚硝酸 E.甲醛 14.诱导DNA分子中核苷酸脱氨基的因素 A.紫外线 B.电离辐射 C.焦宁类 D.亚硝酸 E.甲醛 15.由脱氧三核苷酸串联重复扩增而引起疾病的突变为 A.移码突变 B.动态突变 C.片段突变 D.转换 E.颠换 16.在突变点后所有密码子发生移位的突变为 A.移码突变 B.动态突变 C.片段突变 D.转换 E.颠换 *17.异类碱基之间发生替换的突变为 A.移码突变 B.动态突变 C.片段突变 D.转换 E.颠换 ! 18.染色体结构畸变属于 A.移码突变 B.动态突变 C.片段突变 D.转换 E.颠换 *19.由于突变使编码密码子形成终止密码,此突变为 A.错义突变 B.无义突变 C.终止密码突变 D.移码突变 E.同义突变 *20.不改变氨基酸编码的基因突变为 A.同义突变 B.错义突变 C.无义突变 D.终止密码突变 E.移码突变 21.可以通过分子构象改变而导致与不同碱基配对的化学物质为 A.羟胺 B.亚硝酸 C.烷化剂溴尿嘧啶 E.焦宁类 *22.属于转换的碱基替换为 和C 和T 和C 和T 和C ~ *23.属于颠换的碱基替换为 和T 和G 和C 和U 和U

大肠杆菌染色体基因组的结构和功能

大肠杆菌染色体基因组的结构和功能 大肠杆菌染色体基因组是研究最清楚的基因组。估计大肠杆菌基因组含有3500个基因,已被定位的有900个左右。在这900个基因中,有260个基因已查明具有操纵子结构,定位于75个操纵子中。在已知的基因中8%的序列具有调控作用。大肠杆菌染色体基因组中已知的基因多是编码一些酶类的基因,如氨基酸、嘌呤、嘧啶、脂肪酸和维生素合成代谢的一些酶类的基因,以及大多数碳、氮化合物分解代谢的酶类的基因。另外,核糖体大小亚基中50多种蛋白质的基因也已经鉴定了。 除了有些具有相关功能的基因在一个操纵子内由一个启动子转录外,大多数基因的相对位置可以说是随机分布的。如控制小分子合成和分解代谢的基因,大分子合成和组装的基因分布在大肠杆菌基因组的许多部位,而不是集中在一起。再如,有关糖酵解的酶类的基因分布在染色体基因组的各个部位。进一步发现,大肠杆菌和与其分类关系上相近的其他肠道菌如志贺氏杆菌属(Shigella)、沙门氏菌属(Salmonella)等具有相似的基因组结构。伤寒沙门氏杆菌(Salmonellatyphimurium)几乎与大肠杆菌的基因组结构相同,虽然有10%的基因组序列和大肠杆菌相比发生颠倒,但是其基因的功能仍正常。这更进一步说明染色体上的基因似乎没有固定的格局,相对位置的改变不会影响其功能。 在已知转录方向的50个操纵子中,27个操纵子按顺时针方向转录,23个操纵子按反时针方向转录,即DNA两条链作为模板指导mRNA合成的机率差不多相等。在大肠杆菌染色体基因组中,差不多所有的基因都是单拷贝基因,因为多拷贝基因在同一条染色体上很不稳定,极易通过同源重组的方式丢失重复的基因序列。另外,由于大肠杆菌细胞分裂极快,可以在20分钟内完成一次分裂,因此,携带多拷贝基因的大肠杆菌并不比单拷贝基因的大肠杆菌更为有利;相反,由于多拷贝基因的存在,使E.coli的整个基因组增大,复制时间延长,因而更为不利,除非在某种环境下,需要有多拷贝基因用来编码大量的基因产物,例如,在有极少量乳糖或乳糖衍生物的培养基上,乳糖操纵子的多拷贝化可以使大肠杆菌充分利用的乳糖分子。但是,一旦这种选择压力消失,如将大肠杆菌移到有丰富的乳糖培养基上,多拷贝的乳糖操纵子便没有存在的必要,相反,由于需要较长的复制时间,这种重复的多拷贝基因会重新丢失。 大肠杆菌染色体基因组中,大多数rRNA基因集中于基因组的复制起点oriC的位置附近。这种位置有利于rRNA基因在早期复制后马上作为模板进行rRNA的合成以便进行核糖体组装和蛋白质的合成。从这一点上看,大肠杆菌基因组上的各个基因的位置与其功能的重要性可能有一定的联系。

研究细菌基因组结构的意义

细菌基因组的结构和功能 细菌和病毒一样同属原核生物,因而细菌基因组的结构特点在许多方面与病毒的基因组特点相似,而在另一些方面又有其独特的结构和功能。本节首先介绍细菌染色体基因组的一般结构特点,然后再具体介绍大肠杆菌染色体基因组 的结构和功能。 1细菌染色体基因组结构的一般特点 (1)细菌的染色体基因组通常仅由一条环状双链 DNA分子组成细菌的染色体相对聚集在一起,形成一 个较为致密的区域,称为类核(nucleoid)。类核无 核膜与胞浆分开,类核的中央部分由RNA和支架蛋白 组成,外围是双链闭环的DNA超螺旋。染色体DNA通 常与细胞膜相连,连接点的数量随细菌生长状况和不同的生活周期而异。在DNA链上与DNA 复制、转录有关的信号区域与细胞膜优先结合,如大肠杆菌染色体DNA的复制起点(OriC)、复制终点(TerC)等。细胞膜在这里的作用可能是对染色体起固定作用,另外,在细胞分裂时将复制后的染色体均匀地分配到两个子代细菌中去。有关类核结构的详细情况目前尚不清楚。 (2)具有操纵子结构(有关操纵子结构详见基因表达的调控一章)其中的结构基因为多顺反子,即数个功能相关的结构基因串联在一起,受同一个调节区的调节。数个操纵子还可以由一个共同的调节基因(regulatorygene)即调节子(regulon)所调控。 (3)在大多数情况下,结构基因在细菌染色体基因组中都是单拷贝但是编码rRNA的基因rrn往往是多拷贝的,这样可能有利于核糖体的快速组装,便于在急需蛋白质合成时细胞可以在短时间内有大量核糖体生成。 (4)和病毒的基因组相似,不编码的DNA部份所占 比例比真核细胞基因组少得多。 (5)具有编码同工酶的同基因(isogene)例如,在 大肠杆菌基因组中有两个编码分支酸(chorismicacid) 变位酶的基因,两个编码乙酰乳酸(acetolactate)合成 酶的基因。 (6)和病毒基因组不同的是,在细菌基因组中编码 顺序一般不会重叠,即不会出现基因重叠现象。 (7)在DNA分子中具有各种功能的识别区域如复制 起始区OriC,复制终止区TerC,转录启动区和终止区等。 这些区域往往具有特殊的顺序,并且含有反向重复顺序。

细菌基因组的结构和功能

细菌和病毒一样同属原核生物,因而细菌基因组的结构特点在许多方面与病毒的基因组特点相似,而在另一些方面又有其独特的结构和功能。本节首先介绍细菌染色体基因组的一般结构特点,然后再具体介绍大肠杆菌染色体基因组的结构和功能。 ?细菌染色体基因组结构的一般特点 ?大肠杆菌染色体基因组的结构和功能 细菌染色体基因组结构的一般特点 (1)细菌的染色体基因组通常仅由一条环状双链DNA分子组成细菌的染 色体相对聚集在一起,形成一个较为致密的区域,称为类核(nucleoid)。 类核无核膜与胞浆分开,类核的中央部分由RNA和支架蛋白组成,外围是双 链闭环的DNA超螺旋。染色体DNA通常与细胞膜相连,连接点的数量随细菌生长状况和不同的生活周期而异。 在DNA链上与DNA复制、转录有关的信号区域与细胞膜优先结合,如大肠杆菌染色体DNA的复制起点(OriC)、复制终点(TerC)等。细胞膜在这里的作用可能是对染色体起固定作用,另外,在细胞分裂时将复制后的染色体均匀地分配到两个子代细菌中去。有关类核结构的详细情况目前尚不清楚。 (2)具有操纵子结构(有关操纵子结构详见基因表达的调控一章)其中的结构基因为多顺反子,即数个功能相关的结构基因串联在一起,受同一个调节区的调节。数个操纵子还可以由一个共同的调节基因 (regulatorygene)即调节子(regulon)所调控。 (3)在大多数情况下,结构基因在细菌染色体基因组中都是单拷贝但是编码rRNA的基因rrn往往是多拷贝的,这样可能有利于核糖体的快速组装,便于在急需蛋白质合成时细胞可以在短时间内有大量核糖体生成。 (4)和病毒的基因组相似,不编码的DNA部份所占比例比真核细胞基因组少得多。 (5)具有编码同工酶的同基因(isogene)例如,在大肠杆菌基因组中有两个编码分支酸(chorismicacid)变位酶的基因,两个编码乙酰乳酸(acetolactate)合成酶的基因。 (6)和病毒基因组不同的是,在细菌基因组中编码顺序一般不会重叠,即不会 出现基因重叠现象。 (7)在DNA分子中具有各种功能的识别区域如复制起始区OriC,复制终止区 TerC,转录启动区和终止区等。这些区域往往具有特殊的顺序,并且含有反向重复顺 序。 (8)在基因或操纵子的终末往往具有特殊的终止顺序,它可使转录终止和RNA 聚合酶从DNA链上脱落。例如大肠杆菌色氨酸操纵子后尾含有40bp的GC丰富区,其后紧跟AT丰富区,这就是转录终止子的结构。终止子有强、弱之分,强终止子含有反向重复顺序,可形成茎环结构,其后面为polyT 结构,这样的终止子无需终止蛋白参与即可以使转录终止。而弱终止子尽管也有反向重复序列,但无polyT 结构,需要有终止蛋白参与才能使转录终止。 大肠杆菌染色体基因组的结构和功能 大肠杆菌染色体基因组是研究最清楚的基因组。估计大肠杆菌基因组含有3500个基因,已被定位的有900个左右。在这900个基因中,有260个基因已查明具有操纵子结构,定位于75个操纵子中。在已知的基因中

高中生物《DNA分子的结构》教案

高中生物《DNA分子的结构》教案 一、教学目标 【知识与技能】 概述DNA分子结构的主要特点。 【过程与方法】 在建构DNA双螺旋结构模型的过程中,提高分析能力和动手能力。 【情感态度与价值观】 认同人类对遗传物质的认识是不断深化、不断完善的过程。 二、教学重难点 【重点】 DNA分子结构的主要特点。 【难点】 DNA双螺旋结构模型的建构过程。 三、教学过程 (一)导入新课 首先回忆上一节课的内容(DNA是主要的遗传物质),之后设疑:DNA是遗传物质,那DNA分子必然携带着大量的遗传信息。现在大家来当科学家,在了解了DNA分子的功能以后,大家想要进一步了解什么(DNA分子时如何携带遗传信息的DNA分子的遗传功能是如何实现的)要解决这些问题首先要了解什么从而导入新课。 (二)新课讲授 1.师:DNA分子的组成单位是什么请用课前准备好的材料展现出来。

学生分组展示脱氧核苷酸的结构: 2.师:我们知道了DNA是脱氧核苷酸长链,请同学们试着把自己制作的四个脱氧核苷酸连成长链,请几个同学说明脱氧核苷酸之间是如何连接的、四个核苷酸是怎样排序的 学生分组用实物进行展示,并用语言描述。 教师点评,并强调相邻的脱氧核苷酸之间的磷酸和脱氧核糖形成新的化学键,形成磷酸和脱氧核糖交替连接的长链。 3.师:不同组的同学展示的脱氧核苷酸链的碱基排列顺序不同,请问碱基排列顺序不通过的DNA分子时同一个DNA分子吗组成DNA的碱基(脱氧核苷酸)排列顺序的千变万化有什么意义 (碱基排列顺序不同,DNA分子也不同,每个DNA分子具有其独特的碱基排列顺序。) 4.师:脱氧核苷酸单链是无法稳定存在的,那么由这样的长链组成的DNA 分子要具有怎样的结构才能稳定存在并且遗传给后代呢请结合教材,尝试构建DNA双链结构。(备注:预设有两种情况,见下图,设置纠错环节) (情况一中的两条链无法连接在一起,科学家已否定;情况二可行,两条链之间的碱基通过化学键结合,但是碱基如何结合能稳定存在吗) [page] 5.师:1952年春天,奥地利的生物化学家査戈夫访问了剑桥大学,沃森和克里克从他那里得到了一个重要的信息:A的量等于T的量,G的量等于C 的量,这给了沃森和克里克很大的启示,同学们,你们获得了什么启发吗请组内讨论,然后修正本组的模型。 (得出下图,碱基间有固定的配对方式:一条链中的A与另一条链上的T 配对,G与C配对)

基因组学的研究内容

基因组学的研究内容 结构基因组学: 基因定位;基因组作图;测定核苷酸序列 功能基因组学:又称后基因组学(postgenomics基因的识别、鉴定、克隆;基因结构、功能及其相互关系;基因表达调控的研究 蛋白质组学: 鉴定蛋白质的产生过程、结构、功能和相互作用方式 遗传图谱 (genetic map)采用遗传分析的方法将基因或其它dNA序列标定在染色体上构建连锁图。 遗传标记: 有可以识别的标记,才能确定目标的方位及彼此之间的相对位置。 构建遗传图谱 就是寻找基因组不同位置上的特征标记。包括: 形态标记; 细胞学标记; 生化标记;DNA 分子标记 所有的标记都必须具有多态性!所有多态性都是基因突变的结果! 形态标记: 形态性状:株高、颜色、白化症等,又称表型标记。 数量少,很多突变是致死的,受环境、生育期等因素的影响 控制性状的其实是基因,所以形态标记实质上就是基因标记。

细胞学标记 明确显示遗传多态性的染色体结构特征和数量特征 :染色体的核型、染色体的带型、染色 体的结构变异、染色体的数目变异。优点:不受环境影响。缺点:数量少、费力、费时、对生物体的生长发育不利 生化标记 又称蛋白质标记 就是利用蛋白质的多态性作为遗传标记。 如:同工酶、贮藏蛋白 优点: 数量较多,受环境影响小 ?

缺点: 受发育时间的影响、有组织特异性、只反映基因编码区的信息 DNA 分子标记: 简称分子标记以 DNA 序列的多态性作为遗传标记 优点: ? 不受时间和环境的限制 ? 遍布整个基因组,数量无限 ?

不影响性状表达 ? 自然存在的变异丰富,多态性好 ? 共显性,能鉴别纯合体和杂合体 限制性片段长度多态性(restriction fragment length polymorphism , RFLP ) DNA 序列能或不能被某一酶酶切,

基因组学(结构基因组学和功能基因组学).

问:基因组学、转录组学、蛋白质组学、结构基因组学、功能基因组学、比较基因组学研究有哪些特点? 答:人类基因组计划完成后生物科学进入了人类后基因组时代,即大规模开展基因组生物学功能研究和应用研究的时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。以功能基因组学为代表的后基因组时代主要为利用基因组学提供的信息。 基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(struc tural genomics和以基因功能鉴定为目标的功能基因组学(functional genomics。结构基因组学代表基因组分析的早期阶段,以建立生物体高分辨率遗传、物理和转录图谱为主。功能基因组学代表基因分析的新阶段,是利用结构基因组学提供的信息系统地研究基因功能,它以高通量、大规模实验方法以及统计与计算机分析为特征。 功能基因组学(functional genomics又往往被称为后基因组学(postgenomics,它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究。这是在基因组静态的碱基序列弄清楚之后转入基因组动态的生物学功能学研究。研究内容包括基因功能发现、基因表达分析及突变检测。 基因的功能包括:生物学功能,如作为蛋白质激酶对特异蛋白质进行磷酸化修饰;细胞学功能,如参与细胞间和细胞内信号传递途径;发育上功能,如参与形态建成等采用的手段包括经典的减法杂交,差示筛选,cDNA代表差异分析以及mRNA差异显示等,但这些技术不能对基因进行全面系统的分析。新的技术应运而生,包括基因表达的系统分析,cDNA微阵列,DNA芯片等。鉴定基因功能最有效的方法是观察基因表达被阻断或增加后在细胞和整体水平所产生的表型变异,因此需要建立模式生物体。 功能基因组学

基因组的结构与功能习题

第二章基因组的结构与功能 (一)选择题 A 型题 1.原核生物染色体基因组是 A.线性双链DNA分子 B.环状双链DNA分子 C.线性单链DNA分子 D.线性单链RNA分子 E.环状单链DNA分子 2.真核生物染色体基因组是 A.线性双链DNA分子 B.环状双链DNA分子 C.线性单链DNA分子 D.线性单链RNA分子 E.环状单链DNA分子 3.有关原核生物结构基因的转录,叙述正确的是 A.产物多为多顺反子RNA B.产物多为单顺反子RNA C.不连续转录 d.对称转录 E.逆转录4.原核生物的基因组主要存在于 A.质粒 B.线粒体 C.类核 D.核糖体 E.高尔基体 5.下列有关原核生物的说法正确的是 A.原核生物基因组DNA虽然与蛋白结合,但不形成真正的染色体结构 B.结构基因中存在大量的内含子 C.结构基因在基因组中所占比例较小 D.原核生物有真正的细胞核 E.基因组中有大量的重复序列 6.下列有关原核生物的说法不正确的是 A.原核生物的结构基因与调控序列以操纵子的形式存在B.在操纵子中,功能上关联的结构基因串联在一起C.在一个操纵子内,几个结构基因共用一个启动子 D.操纵元件也是结构基因E.基因组中只存在一个复制起点 7.真核生物染色质中的非组蛋白是 A.碱性蛋白质B.序列特异性DNA结合蛋白C.识别特异DNA序列的信息存在于蛋白上 D.不能控制基因转录及表达E.不参与DNA分子的折叠和组装 8.真核生物染色质的基本结构单位是 A.α-螺旋B.核小体 C.质粒 D.?-片层 E.结构域 9.关于真核生物结构基因的转录,正确的说法是 A.产物多为多顺反子RNAB.产物多为单顺反子RNAC.不连续转录D.对称转录E.新生链延伸方向为3'→5' 10.外显子的特点通常是 A.不编码蛋白质B.编码蛋白质C.只被转录但不翻译D.不被转录也不被翻译E.调节基因表达11.下列有关卫星DNA说法错误的是 A.是一种高度重复序列 B.重复单位一般为2~10 bp C.重复频率可达106 D.能作为遗传标记 E.在人细胞基因组中占5%~6%以上 12.下列有关真核生物结构基因的说法不正确的是 A.结构基因大都为断裂基因 B.结构基因的转录是不连续的 C.含有大量的重复序列 D.结构基因在基因组中所占比例较小 E.产物多为单顺反子RNA 13.染色体中遗传物质的主要化学成分是 A.组蛋白 B.非组蛋白 C.DNA D.RNA E.mRNA 14.真核生物染色质中的组蛋白是 A.酸性蛋白质 B.碱性蛋白质 C.一种转录因子 D.带负电荷 E.不带电荷 15.指导合成真核生物蛋白质的序列主要是 A.高度重复序列 B.中度重复序列 C.单拷贝序列 D.卫星DNA E.反向重复序列

病毒、真核和原核生物的基因组结构特点

病毒、真核和原核生物的基因组结构特点 病毒基因组结构特点: 1.病毒基因组所含核酸类型不同 2.不同病毒基因组大小相差较大 3.病毒基因组可以是连续的也可以是不连续的 4.病毒基因组的编码序列大 5.基因可以是连续的也可以是间断的 6.病毒基因组都是单倍体和单拷贝 7.基因重叠 8.病毒基因组功能单位或转录单位 9.病毒基因组含有不规则结构基因 (1)几个结构基因的编码区无间隔 (2)结构基因本身没有翻译起始序列 (3) mRNA没有 5’端的帽结构 原核生物基因组结构特点: 1.细菌等原核生物的基因组是一条双链闭环的DNA分子 2.具有操纵子结构 3.原核基因组中只有1个复制起点 4.结构基因无重叠现象 5.基因序列是连续的,无内含子,因此转录后不需要剪切 6.编码区在基因组中所占的比例远远大于真核基因组,但又远远小于病毒基 因组。非编码区主要是一些调控序列

7.基因组中重复序列很少 8.具有编码同工酶的基因 9.细菌基因组中存在着可移动的DNA序列,包括插入序列和转座子 10.在DNA分子中具有多种功能的识别区域,如复制起始区、复制终止区、转 录启动区和终止区等。这些区域往往具有特殊的序列,并且含有反向重复序列 真核生物基因组结构特点: 1)真核基因组远远大于原核生物的基因组。 2)真核基因具有许多复制起点,每个复制子大小不一。每一种真核生物都有一定的染色体数目,除了配子为单倍体外,体细胞一般为双倍体, 即含两份同源的基因组。 3)真核基因都出一个结构基因与相关的调控区组成,转录产物的单顺反子,即一分子mRNA只能翻译成一种蛋白质。 4)真核生物基因组中含有大量重复顺序。 5)真核生物基因组内非编码的顺序(NCS)占90%以上。编码序列占5%。 6)真核基因产断列基因,即编码序列被非编码序列分隔开来,基因与基因内非编码序列为间隔DNA,基因内非编码序列为内含子,被内含子隔 开的编码序列则为外显子。 7)真核生物基因组功能相关的基因构成各种基因家族,它们可串联在一起,亦可相距很远,但即使串联在一起成族的基因也是分别转录的。 8)真核生物基因组中也存在一些可移动的遗传因素,这些DNA顺序并无明显生物学功能,似科为自己的目的而级织,故有自私DNA之称,其移 动多被RNA介导,也有被DNA介导的。

病毒、细菌基因组结构与功能

泛基因阶段 孟德尔的遗传因子阶段 摩尔根的基因阶段 顺反子阶段 操纵子阶段 现代基因阶段 DNA分子中含有特定遗传信息的核苷酸序列,是遗传物质的最小功能单位。合成有功能的蛋白质多肽链或RNA所必需的全部核酸序列(通常是DNA序列)。 一个基因应包含不仅是编码蛋白质肽链或RNA的核酸序列,还包括为保证转录所必需的调控序列、5′非翻译序列、内含子以及3′非翻译序列等所有的核酸序列(蛋白质基因和RNA基因)。 根据其是否具有转录和翻译功能可以把基因分为三类 第一类是编码蛋白质的基因,它具有转录和翻译功能,包括编码酶和结构蛋白的结构基因以及编码阻遏蛋白的调节基因 第二类是只有转录功能而没有翻译功能的基因,包括tRNA基因和rRNA基因第三类是不转录的基因,它对基因表达起调节控制作用,包括启动基因和操纵基因 是指生物体全套遗传信息,包括所有基因和基因间的区域。原核生物基因组:染色体基因组(chromosomal genome)染色体外基因组(extrachromosomal genome ) 真核生物基因组:染色体基因组(chromosomal genome)染色体外基因组

(extrachromosomal genome ) 生物体的进化程度与基因组大小之间不完全成比例的现象称为 C value paradox,又称C值悖论) 病毒基因组很小,且大小相差较大 病毒基因组可以由DNA组成,或由RNA组成 多数RNA病毒的基因组是由连续的RNA链组成 基因重叠 基因组的大部分可编码蛋白质,只有非常小的一部份不编码蛋白质 形成多顺反子结构 病毒基因组都是单倍体(逆转录病毒除外) 噬菌体(细菌病毒)的基因是连续的,而真核细胞病毒的基因是不连续的 1981年,美国首先发现获得性免疫缺陷征(acquired immunodeficiency syndrome,AIDS),其病原体是一种能破坏人免疫系统的逆转录病毒1986年,命名为:人类免疫缺陷病毒(human immunodeficiency virus,HIV) HIV特异性地侵犯并损耗T细胞而造成机体免疫缺陷 HIV如何感染免疫细胞并复制 捆绑――当HIV病毒的gp120蛋白捆绑到T-helper细胞的CD4蛋白时,HIV 病毒附着到机体的免疫细胞上。滤过性病毒核进入到T-helper细胞内 部,并且病毒体的隔膜融合进细胞壁; 逆转录――滤过性病毒酶,即逆转录酶,将病毒的RNA转化为DNA; 集成――新产生的DNA被病毒整合酶运送到细胞核中,并嵌入到细胞的DNA。HIV病毒被称之为前病毒;

第四章 基因与基因组学(答案)知识讲解

第四章基因与基因组 学(答案)

第四章基因与基因组学(答案) 一、选择题 (一)单项选择题 1.关于DNA分子复制过程的特点,下列哪项是错误的? A.亲代DNA分子双股链拆开,形成两条模板链 B.新合成的子链和模板链的碱基互补配对 C.复制后新形成 的两条子代DNA分子的碱基顺序与亲代的DNA分子完全相同 D. 以ATP、UTP、CTP、GTP和TDP为合成原料 E.半不连续复制 *2.建立DNA双螺旋结构模型的是: A.Mendel B.Morgan C.Hooke D.Watson and Crick E.Sthleiden and Schwann *3.下列哪个不属于基因的功能? A.携带遗传信息 B.传递遗传信息 C.决定性状 D.自我复制 E.基因突变 4.DNA分子中核苷酸顺序的变化可构成突变,突变的机制一般不包括: A.颠换 B.内复制 C.转换 D.碱基缺失或插入 E.不等交换 5.下列哪一种结构与割(断)裂基因的组成和功能的关系最小? A.外显子 B.内含子 C.TATA框 D.冈崎片段 E.倒位重复顺序 *6.在一段DNA片段中发生何种变动,可引起移码突变? A.碱基的转换 B.碱基的颠换 C.不等交换 D.一个碱基对的插入或缺失 E.3个或3的倍数的碱基对插入或缺失 7.从转录起始点到转录终止点之间的DNA片段称为一个: A.基因 B.转录单位 C.原初转录本 D.核内异质RNA E.操纵子 8.在DNA复制过程中所需要的引物是; A.DNA B.RNA C.tRNA D.mRNA E.rRNA 9.下列哪一项不是DNA自我复制所必需的条件? A.解旋酶 B.DNA多聚酶 C.RNA引物 D. ATP、GTP、CTP和TTP及能量 E.限制性内切酶 10.引起DNA形成胸腺嘧啶二聚体的因素是 A.羟胺 B.亚硝酸 C.5-溴尿嘧啶 D.吖啶类 E.紫外线 11.引起DNA发生移码突变的因素是 A.焦宁类 B.羟胺 C.甲醛 D.亚硝酸 E.5-溴尿嘧啶 12.引起DNA分子断裂而导致DNA片段重排的因素 A.紫外线 B.电离辐射 C.焦宁类 D.亚硝酸 E.甲醛 13.可以引起DNA上核苷酸烷化并导致复制时错误配对的因素 A.紫外线 B.电离辐射 C.焦宁类 D.亚硝酸 E.甲醛 14.诱导DNA分子中核苷酸脱氨基的因素 A.紫外线 B.电离辐射 C.焦宁类 D.亚硝酸 E.甲醛 15.由脱氧三核苷酸串联重复扩增而引起疾病的突变为 A.移码突变 B.动态突变 C.片段突变 D.转换 E.颠换 16.在突变点后所有密码子发生移位的突变为 A.移码突变 B.动态突变 C.片段突变 D.转换 E.颠换 *17.异类碱基之间发生替换的突变为 A.移码突变 B.动态突变 C.片段突变 D.转换 E.颠换 18.染色体结构畸变属于 A.移码突变 B.动态突变 C.片段突变 D.转换 E.颠换 *19.由于突变使编码密码子形成终止密码,此突变为 A.错义突变 B.无义突变 C.终止密码突变 D.移码突变 E.同义突变 *20.不改变氨基酸编码的基因突变为 A.同义突变 B.错义突变 C.无义突变 D.终止密码突变 E.移码突变 21.可以通过分子构象改变而导致与不同碱基配对的化学物质为 A.羟胺 B.亚硝酸 C.烷化剂 D.5-溴尿嘧啶 E.焦宁类 *22.属于转换的碱基替换为 A.A和C B.A和T C.T和C D.G和T E.G和C *23.属于颠换的碱基替换为

高中生物DNA的结构和复制知识点归纳

高中生物DNA的结构和复制知识点归纳 名词: 1、DNA的碱基互补配对原则:A与T配对,G与C配对。 2、DNA复制:是指以亲代DNA分子为模板来合成子代DNA的过程。DNA的复制实质上是遗传信息的复制。 3、解旋:在ATP供能、解旋酶的作用下,DNA分子两条多脱氧核苷酸链配对的碱基从氢键处断裂,于是部分双螺旋链解旋为二条平行双链,解开的两条单链叫母链(模板链)。 4、DNA的半保留复制:在子代双链中,有一条是亲代原有的链,另一条则是新合成的。 5、人类基因组是指人体DNA分子所携带的全部遗传信息。人类基因组计划就是分析测定人类基因组的核苷酸序列。 语句: 1、DNA的化学结构: ① DNA是高分子化合物:组成它的基本元素是C、H、O、N、P等。 ②组成DNA的基本单位——脱氧核苷酸。每个脱氧核苷酸由三部分组成:一个脱氧核糖、一个含氮碱基和一个磷酸 ③构成DNA的脱氧核苷酸有四种。DNA在水解酶的作用下,可以得到四种不同的核苷酸,即腺嘌呤(A)脱氧核苷酸;鸟嘌呤(G)脱氧核苷酸;胞嘧啶(C)脱氧核苷酸;胸腺嘧啶(T)脱氧核苷酸;组成四种脱氧核苷酸的脱氧核糖和磷酸都是一样的,所不相同的是四种含氮碱基:ATGC。 ④DNA是由四种不同的脱氧核苷酸为单位,聚合而成的脱氧核苷酸链。 2、DNA的双螺旋结构:DNA的双螺旋结构,脱氧核糖与磷酸相间排列在外侧,形成两条主链(反向平行),构成DNA的基本骨架。两条主链之间的横档是碱基对,排列在内侧。相对应的两个碱基通过氢键连结形成碱基对,DNA一条链上的碱基排列顺序确定了,根据碱基互补配对原则,另一条链的碱基排列顺序也就确定了。 3、DNA的特性: ①稳定性:DNA分子两条长链上的脱氧核糖与磷酸交替排列的顺序和两条链之间碱基互补配对的方式是稳定不变的,从而导致DNA分子的稳定性。 ②多样性:DNA中的碱基对的排列顺序是千变万化的。碱基对的排列方式:4n(n为碱基对的数目) ③特异性:每个特定的DNA分子都具有特定的碱基排列顺序,这种特定的碱基排列顺序就构成了DNA分子自身严格的特异性。 4、碱基互补配对原则在碱基含量计算中的应用: ①在双链DNA分子中,不互补的两碱基含量之和是相等的,占整个分子碱基总量的50%。 ②在双链DNA分子中,一条链中的嘌呤之和与嘧啶之和的比值与其互补链中相应的比值互

基因组学(结构基因组学和功能基因组学)

问:基因组学、转录组学、蛋白质组学、结构基因组学、功能基因组学、比较基因组学研究有哪些特点? 答:人类基因组计划完成后生物科学进入了人类后基因组时代,即大规模开展基因组生物学功能研究和应用研究的时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。以功能基因组学为代表的后基因组时代主要为利用基因组学提供的信息。 基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(struc tural genomics)和以基因功能鉴定为目标的功能基因组学(functional genomics)。结构基因组学代表基因组分析的早期阶段,以建立生物体高分辨率遗传、物理和转录图谱为主。功能基因组学代表基因分析的新阶段,是利用结构基因组学提供的信息系统地研究基因功能,它以高通量、大规模实验方法以及统计与计算机分析为特征。 功能基因组学(functional genomics)又往往被称为后基因组学(postgenomics),它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究。这是在基因组静态的碱基序列弄清楚之后转入基因组动态的生物学功能学研究。研究内容包括基因功能发现、基因表达分析及突变检测。 基因的功能包括:生物学功能,如作为蛋白质激酶对特异蛋白质进行磷酸化修饰;细胞学功能,如参与细胞间和细胞内信号传递途径;发育上功能,如参与形态建成等采用的手段包括经典的减法杂交,差示筛选,cDNA代表差异分析以及mRNA差异显示等,但这些技术不能对基因进行全面系统的分析。新的技术应运而生,包括基因表达的系统分析,cDNA微阵列,DNA芯片等。鉴定基因功能最有效的方法是观察基因表达被阻断或增加后在细胞和整体水平所产生的表型变异,因此需要建立模式生物体。 功能基因组学

高中生物DNA的结构和复制知识点整理

高中生物DNA的结构和复制知识点整理 高中生物DNA的结构和复制知识点整理 名词: 1、DNA的碱基互补配对原则:A与T配对,G与C配对。 2、DNA复制:是指以亲代DNA分子为模板来合成子代DNA 的过程。DNA的复制实质上是遗传信息的复制。 3、解旋:在ATP供能、解旋酶的作用下高二,DNA分子两条多脱氧核苷酸链配对的碱基从氢键处断裂,于是部分双螺旋链解旋为二条平行双链,解开的两条单链叫母链(模板链)。 4、DNA的半保留复制:在子代双链中,有一条是亲代原有的链,另一条则是新合成的。 5、人类基因组是指人体DNA分子所携带的全部遗传信息。人类基因组计划就是分析测定人类基因组的核苷酸序列。 语句: 1、DNA的化学结构: ①DNA是高分子化合物:组成它的基本元素是C、H、O、N、P等。 ②组成DNA的基本单位——脱氧核苷酸。每个脱氧核苷酸由三部分组成:一个脱氧核糖、一个含氮碱基和一个磷酸 ③构成DNA的脱氧核苷酸有四种。DNA在水解酶的作用下,可以得到四种不同的核苷酸,即腺嘌呤(A)脱氧核苷酸;鸟嘌呤(G)

脱氧核苷酸;胞嘧啶(C)脱氧核苷酸;胸腺嘧啶(T)脱氧核苷酸;组成四种脱氧核苷酸的脱氧核糖和磷酸都是一样的,所不相同的是四种含氮碱基:ATGC。 ④DNA是由四种不同的脱氧核苷酸为单位,聚合而成的脱氧核苷酸链。 2、DNA的双螺旋结构:DNA的双螺旋结构,脱氧核糖与磷酸相间排列在外侧,形成两条主链(反向平行),构成DNA的基本骨架。两条主链之间的横档是碱基对,排列在内侧。相对应的两个碱基通过氢键连结形成碱基对,DNA一条链上的碱基排列顺序确定了,根据碱基互补配对原则,另一条链的碱基排列顺序也就确定了。 3、DNA的特性: ①稳定性:DNA分子两条长链上的脱氧核糖与磷酸交替排列的顺序和两条链之间碱基互补配对的方式是稳定不变的,从而导致DNA分子的稳定性。 ②多样性:DNA中的碱基对的排列顺序是千变万化的。碱基对的排列方式:4n(n为碱基对的数目) ③特异性:每个特定的DNA分子都具有特定的碱基排列顺序,这种特定的碱基排列顺序就构成了DNA分子自身严格的特异性。 4、碱基互补配对原则在碱基含量计算中的应用: ①在双链DNA分子中,不互补的两碱基含量之和是相等的,占整个分子碱基总量的50%。②在双链DNA分子中,一条链中的嘌呤之和与嘧啶之和的比值与其互补链中相应的比值互为倒数。

相关文档
最新文档