实验三-数字PID控制算法仿真实验

实验三-数字PID控制算法仿真实验
实验三-数字PID控制算法仿真实验

实验三、数字PID控制算法仿真实验

1.1 实验目的

在常规控制算法教学基础上,通过对PID三个参数Kp、Ki、Kd的选取,利用Matlab软件进行仿真实验,了解三个参数对连续系统性能产生的影响规律,加深对PID控制算法的掌握和理解。1.2 实验原理

(1)实验组成:

计算机、Matlab数字仿真软件、仿真控制模型。

(2)调节K p了解比例控制对系统性能的作用

对当前时刻的偏差信号e(t)进行放大或衰减后作为控制信号输出。

比例系数Kp越大,控制作用越强,系统的动态特性也越好,动态性能主要表现为起动快,对阶跃设定跟随得快。

但对于有惯性的系统,Kp过大时会出现较大的超调,甚至引起系统振荡,影响系统稳定性。

比例控制虽然能减小偏差,却不能消除静态偏差。

(3)调节K i了解积分控制对系统性能的作用

积分控制的作用是累积系统从零时刻(系统启动时刻)起到当前的偏差信号e(t)的历史过程。

积分控制的输出与偏差e(t)存在全部时段有关,只要有足够的时间,积分控制将能够消除静态偏差。

积分控制不能及时地克服扰动的影响。

(4)调节K d了解微分控制对系统性能的作用

微分控制的作用是由偏差信号e(t)的当前变化率de/dt预见随后的偏差将是增大还是减小、增减的幅度如何。

微分控制作用正比于偏差信号e(t)的当前变化率,微分控制作用的特点是只能对偏差e(t)变化的速度起反应,对于一个固定不变的偏差e(t),不论其数值多大,根本不会有微分作用输出。

由于只能在偏差刚刚出现时产生很大的控制作用,微分控制可以加快系统响应速度,减少调整时间,从而改善系统快速性,并且有助于减小超调,克服振荡,从而提高系统稳定性,但不能消除静态偏差。

1.3 实验步骤及内容

(1)在Matlab中搭建数字PID仿真框图。

(2)利用Matlab仿真软件对PID三个参数进行整定。

(3)针对不同的参数绘制控制输出和对象输出的响应曲线,并比较仿真结果。要求在一个图形上表示。

如调节K P的仿真曲线效果图。

K p=10

K p=20

K p=60

1.4 思考内容

如系统在运行平稳后,突然给系统一个干扰信号,如加个阶跃信号,此时又需要重新调节PID 的三个参数来使系统重新达到稳定,是否能编译程序使系统能自动调节PID的三个参数?如可以的话,如何编译相应程序。

实验二 数字PID控制器的设计

实验二 数字PID 控制器的设计 ——直流闭环调速实验 一、实验目的: 1. 理解晶闸管直流单闭环调速系统的数学模型和工作原理; 2. 掌握PID 控制器参数对控制系统性能的影响; 3. 能够运用MA TLAB/Simulink 软件对控制系统进行正确建模并对模块进行正确的参数设置; 4. 掌握计算机控制仿真结果的分析方法。 二、实验工具: MATLAB 软件(6.1以上版本)。 三、实验内容: 已知晶闸管直流单闭环调速系统的转速控制器为PID 控制器,如图1所示。试运用MA TLAB 软件对调速系统的P 、I 、D 控制作用进行分析。 图1 单闭环调速系统 四、实验步骤: (一)模拟PID 控制作用分析: 运用MATLAB 软件对调速系统的P 、I 、D 控制作用进行分析。 (1)比例控制作用分析 为分析纯比例控制的作用,考察当015d i p T T K ==∞=~, , 时对系统阶跃响应的影响。MATLAB 程序如下: G1=tf(1,[0.017 1]); G2=tf(1,[0.075 0]); G12=feedback(G1*G2,1); G3=tf(44,[0.00167 1]); G4=tf(1,0.1925); G=G12*G3*G4; Kp=[1:1:5]; for i=1:length(Kp) Gc=feedback(Kp(i)*G ,0.01178); step(Gc),hold on end

axis([0 0.2 0 130]); gtext(['1Kp=1']), gtext(['2Kp=2']), gtext(['3Kp=3']), gtext(['4Kp=4']), gtext(['5Kp=5']), (2)积分控制作用分析 保持1p K =不变,考察0.030.07i T =~时对系统阶跃响应的影响。MATLAB 程序如下: G1=tf(1,[0.017 1]); G2=tf(1,[0.075 0]); G12=feedback(G1*G2,1); G3=tf(44,[0.00167 1]); G4=tf(1,0.1925); G=G12*G3*G4; Kp=1; Ti=[0.03:0.01:0.07]; for i=1:length(Ti) Gc=tf(Kp*[Ti(i) 1],[Ti(i) 0]); % PI 传函 1(1)P C i G K T s =+ Gcc=feedback(G*Gc,0.01178) step(Gcc),hold on end gtext(['1Ti=0.03']), gtext(['2Ti=0.04']), gtext(['3Ti=0.05']), gtext(['4Ti=0.06']), gtext(['5Ti=0.07']), (3)微分控制作用分析 为分析微分控制的作用,保持0.010.01p i K T ==, 不变,考察当1284d T =~时对系统阶跃响应的影响。MATLAB 程序如下: G1=tf(1,[0.017 1]); G2=tf(1,[0.075 0]); G12=feedback(G1*G2,1); G3=tf(44,[0.00167 1]); G4=tf(1,0.1925); G=G12*G3*G4; Kp=0.01; Ti=0.01; Td=[12:36:84]; for i=1:length(Td)

控制工程基础实验指导书(答案)

控制工程基础实验指导书 自控原理实验室编印

(内部教材)

实验项目名称: (所属课 程: 院系: 专业班级: 姓名: 学号: 实验日期: 实验地点: 合作者: 指导教师: 本实验项目成绩: 教师签字: 日期: (以下为实验报告正文) 、实验目的 简述本实验要达到的目的。目的要明确,要注明属哪一类实验(验证型、设计型、综合型、创新型)。 二、实验仪器设备 列出本实验要用到的主要仪器、仪表、实验材料等。 三、实验内容 简述要本实验主要内容,包括实验的方案、依据的原理、采用的方法等。 四、实验步骤 简述实验操作的步骤以及操作中特别注意事项。 五、实验结果

给出实验过程中得到的原始实验数据或结果,并根据需要对原始实验数据或结果进行必要的分析、整理或计算,从而得出本实验最后的结论。 六、讨论 分析实验中出现误差、偏差、异常现象甚至实验失败的原因,实验中自己发现了什么问题,产生了哪些疑问或想法,有什么心得或建议等等。 七、参考文献 列举自己在本次准备实验、进行实验和撰写实验报告过程中用到的参考文献资 料。 格式如下 作者,书名(篇名),出版社(期刊名),出版日期(刊期),页码

实验一控制系统典型环节的模拟、实验目的 、掌握比例、积分、实际微分及惯性环节的模拟方法; 、通过实验熟悉各种典型环节的传递函数和动态特性; 、了解典型环节中参数的变化对输出动态特性的影响。 二、实验仪器 、控制理论电子模拟实验箱一台; 、超低频慢扫描数字存储示波器一台; 、数字万用表一只;

、各种长度联接导线。 三、实验原理 运放反馈连接 基于图中点为电位虚地,略去流入运放的电流,则由图 由上式可以求得下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。 、比例环节 实验模拟电路见图所示 U i R i U o 接示波器 以运算放大器为核心元件,由其不同的输入网络和反馈网络组成的各种典型环节,如图所示。图中和为复数阻抗,它们都是构成。 Z2 Z1 Ui ,— U o 接示波器 得:

实验4 达林算法仿真

实验四达林算法仿真 一、实验目的 1.设计达林算法的Simulink仿真模型; 2.用S函数实现达林算法; 3.观察达林算法中的滞后时间常数和采样周期的选取对系统输出的影响。 二、实验内容 被控对象:G( S )= 2 4S+1 1.达林算法仿真模型 达林算法的SIMULINK仿真模型如图4.1所示。达林算法适用于一、二阶惯性加纯滞后环节对象,仿真模型仅对工业控制中常见的一阶惯性加纯滞后环节对象作仿真。 图 4.1达林算法仿真模型 3.达林算法的S函数实现达林算法控制器的S函数 程序darlincon.m清单如下: function[sys,x0,str,ts]=darlincon(t,x,u,flag,Ttao,T1,K,Tao,T) global umax k1 k2 k3 uk ek_1 N switch flag case 0, sizes=simsizes; sizes.NumContStates=0;sizes.NumDiscStates=0; sizes.NumOutputs=1;sizes.NumInputs=1; sizes.DirFeedthrough=1;sizes.NumSampleTimes=1; sys=simsizes(sizes);str=[]; ts=[T 0]; umax=50;N=floor(Tao/T); uk=zeros(N+2,1);ek_1=0;k1=exp(-T/Ttao); k2=exp(-T/T1);k3=(1-k1)/K/(1-k2); case 3, ek=u; uk(1)=k3*(ek-k2*ek_1)+k1*uk(2)+(1- k1)*uk(N+2); if uk(1)>umax uk(1)=umax; end

PID控制

控制技术及其算法 ————PID控制技术及其数字算法摘要:目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器(亦称PID调节器)是应用最为广泛的一种自动控制器,PID控制作为最早实用化的控制方案已有70多年历史,它具有原理简单,易于实现,适用面广,控制参数相互独立,参数的选定比较简单等优点;而且在理论上可以证明,对于过程控制的典型对象──“一阶滞后+纯滞后”与“二阶滞后+纯滞后”的控制对象,PID控制器是一种最优控制。PID调节规律是连续系统动态品质校正的一种有效方法,它的参数整定方式简便,结构改变灵活。本文主要介绍PID控制的基本原理,比例(P)、积分(I)和微分(D)的特点以及PID在数字控制中的具体应用。 关键词:PID 控制技术 PID数字控制策略 1.前言 按偏差的比例(P)、积分(I)、积分(D)控制,简称PID控制。PID控制是过程控制中广泛应用的一种控制。尽管各种高级控制在不断完善,目前化工生产中应用最多的仍是常规PID控制,究其原因:一是各种高级控制应用上还不完善,二是多数场合使用常规PID控制即可以满足需要,三是PID的原理简单,应用方便。 2.PID控制的原理 一.PID控制系统 图 1 PID控制系统原理框图

传递函数为:])()(1)([)(0 dt t de T dt t e T t e K t u D t I p ++ =? 式中 e(t)=r(t)-c(t) 指误差。 PID 控制是比例(P )、积分(I )、积分(D )控制的缩写 P 比例调节:按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。 )(*)(t e K t u p = PS :比例调节与众不同的是比例调节是有差调节,必定会存在误差额e (t )。 I 积分调节:是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至 无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数,越小I T ,I T 积分作用就越强。反之I T 大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律 结合,组成PI 调节器或PID 调节器。 ? = t I dt t e T t u 0 )(1)( D 微分调节:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。因此,可以改善系统的动态性能。在微分时间选择合适情况下,可以减少超调,减少调节时间。微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD 或PID 控制器。 DT T de T t u D )()(= 如上所述比例,微分,积分调节控制各有各的特点,但是也各有各的局限性,所以一般情况下我们可以采取多种调节方法共同作用的方式,通过牺牲一部分数据指标,来取得整体系统的稳定和较快的响应速度。 3.PID 的整定 调节器参数的整定,就是按照已确定的调节方案,求取使调节质量最好的调节器参数值的过程,确定最佳的调节参数:比例度,积分时间和微分时间。 这里只介绍临界比例度法,衰减曲线法 临界比例度法: 1.置调节器为纯比例调节作用, 比例度放到适当数值(一般为100%)

数字PID调节器算法的研究实验报告

实验四数字PID 调节器算法的研究 一、实验目的 1.学习并熟悉常规的数字PID 控制算法的原理; 2.学习并熟悉积分分离PID 控制算法的原理; 3.掌握具有数字PID 调节器控制系统的实验和调节器参数的整定方法。 二、实验设备 1.THTJ-1 型计算机控制技术实验箱 2.THVLW-1 型USB 数据采集卡一块(含37 芯通信线、USB 电缆线各1 根) 3.PC 机1 台(含上位机软件“THTJ-1”) 三、实验内容 1.利用本实验平台,设计并构成一个用于混合仿真实验的计算机闭环实时控制系统; 2.采用常规的PI 和PID 调节器,构成计算机闭环系统,并对调节器的参数进行整定,使之具有满意的动态性能; 3.对系统采用积分分离PID 控制,并整定调节器的参数。 四、实验原理 在工业过程控制中,应用最广泛的控制器是PID 控制器,它是按偏差的比例(P)、积分(I)、微分(D)组合而成的控制规律。而数字PID 控制器则是由模拟PID 控制规律直接变换所得。 在PID 控制规律中,引入积分的目的是为了消除静差,提高控制精度,但系统中引入了积分,往往使之产生过大的超调量,这对某些生产过程是不允许的。因此在工业生产中常用改进的PID 算法,如积分分离PID 算法,其思想是当被控量与设定值偏差较大时取消积分控制;当控制量接近给定值时才将积分作用投入,以消除静差,提高控制精度。这样,既保持了积分的作用,又减小了超调量。 五、实验步骤 1、实验接线 1.1 按图4-1 和图4-2 连接一个二阶被控对象闭环控制系统的电路; 1.2 该电路的输出与数据采集卡的输入端AD1 相连,电路的输入与数据采集卡的输出端DA1 相连; 1.3 待检查电路接线无误后,打开实验平台的电源总开关,并将锁零单元的锁零按钮处于“不锁零”状态。 2、脚本程序运行 2.1 启动计算机,在桌面双击图标THTJ-1,运行实验软件; 2.2 顺序点击虚拟示波器界面上的“开始采集”按钮和工具栏上的脚本编程器按钮; 2.3 在脚本编辑器窗口的文件菜单下点击“打开”按钮,并在“计算机控制算法VBS\ 计算机控制技术基础算法\数字PID 调器算法”文件夹下选中“位置式PID”脚本程序并打开,阅读、理解该程序,然后点击脚本编辑器窗口的调试菜单下“步长设置”,将脚本算法的运行步长设为100ms; 2.4 点击脚本编辑器窗口的调试菜单下“启动”;用虚拟示波器观察图4-2 输出端的响应曲线; 2.5 点击脚本编辑器的调试菜单下“停止”,利用扩充响应曲线法(参考本实验附录4)整定PID控制器的P、I、D及系统采样时间Ts等参数,然后再运行。在整定过程中注意观察参数的变化对系统动态性能的影响; 2.6 参考步骤2.4、2.4和2.5,用同样的方法分别运行增量式PID和积分分离PID脚本程序,

(完整版)数字PID及其算法

数字PID 及其算法 主要内容:1、PID 算法的原理及数字实现 2、数字PID 调节中的几个实际问题 3、几种发展的PID 算法 4、PID 参数的整定方法 一、概述 几个概念: 1、程序控制:使被控量按照预先规定的时间函数变化所作 的控制,被控量是时间的函数。 2、顺序控制:是指控制系统根据预先规定的控制要求,按 照各个输入信号的条件,使过程的各个执行机构自动地按预 先规定的顺序动作。 3、PID 控制:调节器的输出是输入的比例、积分、微分的 函数。 4、直接数字控制:根据采样定理,先把被控对象的数学模 型离散化,然后由计算机根据数学模型进行控制。 5、最优控制:是一种使控制过程处在某种最优状态的控制。 6、模糊控制:由于被控对象的不确定性,可采用模糊控制。 二、PID 算法的原理及数字实现 PID 调节的实质:根据系统输入的偏差,按照PID 的函数 关系进行运算,其结果用以控制输出。 PID 调节的特点:PID 的函数中各项的物理意义清晰,调节灵活,便于程序化实现。 三、 PID 算法的原理及数字实现 PID 调节器是一种线性调节器,他将设定值w 与实际值y 的偏差: 按其比例、积分、微分通过线性组合构成控制量 1、比例调节器:比例调节器的微分方程为:)(*y t e Kp = y 为调节器输出,Kp 为比例系数,e(t)为调节器输入偏差。由上式可以看出比例调节的特点:调节器的输出与输入偏差成正比。只要偏差出现,就能及时地产生与之成比例的调节作用,使被控量朝着减小偏差的方向变化,具有调节及时 的特点。但是,Kp 过大会导致动态品质变坏,甚至使系统不稳定。比例调节器的阶跃响应特性曲线如下图 y w e -=s d *K s Ki p K 对象 w e + - + + + u y

南理工控制工程基础实验报告

南理工控制工程基础实验报告 成绩:《控制工程基础》课程实验报告班级:学号:姓名:南京理工大学2015年12月《控制工程基础》课程仿真实验一、已知某单位负反馈系统的开环传递函数如下G(s)?10 s2?5s?25借助MATLAB和Simulink完成以下要求:(1) 把G(s)转换成零极点形式的传递函数,判断开环系统稳定性。>> num1=[10]; >> den1=[1 5 25]; >> sys1=tf(num1,den1) 零极点形式的传递函数:于极点都在左半平面,所以开环系统稳定。(2) 计算闭环特征根并判别系统的稳定性,并求出闭环系统在0~10秒内的脉冲响应和单位阶跃响应,分别绘出响应曲线。>> num=[10];den=[1,5,35]; >>

sys=tf(num,den); >> t=[0::10]; >> [y,t]=step(sys,t); >> plot(t,y),grid >> xlabel(‘time(s)’) >> ylabel(‘output’) >> hold on; >> [y1,x1,t]=impulse(num,den,t); >> plot(t,y1,’:’),grid (3) 当系统输入r(t)?sin5t时,运用Simulink搭建系统并仿真,用示波器观察系统的输出,绘出响应曲线。曲线:二、某单位负反馈系统的开环传递函数为:6s3?26s2?6s?20G(s)?4频率范围??[,100] s?3s3?4s2?2s?2 绘制频率响应曲线,包括Bode图和幅相曲线。>> num=[6 26 6 20]; >> den=[1 3 4 2 2]; >> sys=tf(num,den); >> bode(sys,{,100}) >> grid on >> clear; >> num=[6 26 6 20]; >> den=[1 3 4 2 2]; >> sys=tf(num,den); >> [z , p , k] = tf2zp(num, den); >> nyquist(sys) 根据Nyquist判据判定系统的稳定性。

大林算法实验报告(20200623034811)

大林算法实验报告 一、实验目的 1、 掌握大林控制算法的基本概念和实现方法; 2、 进一步熟悉MATLAB 的使用方法; 3、 掌握在MATLAB 下大林算法控制器的调试方法; 4、 观察振铃现象,并且尝试消除振铃现象 二、实验原理 1■大林算法的原理及推导 大林算法是IBM 公司的大林(Dahlin)在1968年提出了一种针对工业生产过程中含有纯 滞后对象的控制算法。其目标就是使整个闭环系统的传递函数 相当于一个带有纯滞后的一 阶惯性环节。该算法具有良好的控制效果。 大林控制算法的设计目标是使整个闭环系统所期望的传递函数 0 (s) 相当于一个延迟环节和一个惯性环节相串联,即 : 整个闭环系统的纯滞后时间和被控对象 G0(s)的纯滞后时间T 相同。 闭环系统的时间常数为 T T ,纯滞后时间T 与采样周期T 有整数倍关系, T =NT 。 其控制器形式的推导的思路是用近似方法得到系统的闭环脉冲传递函数,然后再由被 控系统的脉冲传递函数,反推系统控制器的脉冲传递函数。 由大林控制算法的设计目标,可知整个闭环系统的脉冲传递函数应 当是零阶保持器与理想的 0 (s)串联之后的Z 变换,即0 (z)如下: R(z) _ s Ts 1 1- e T z 对于被控对象为带有纯滞后的一阶惯性环节即: s NTs Ke G o (s)- 1 Tp Ke 1 「s 其与零阶保持器相串联的的脉冲传递函数为: (s)二 1 Ts 1 G (z)=z3 心 .s 1 + T 1S 」 K Z — NT T/T 1 1 _ e ; 1 ■ e z

于是相应的控制器形式为: (仁「厲)(仁/仁一1 ) K (I e TTl )1 - ―1 -(1 e TT )^N_1 2■振铃现象及其消除 按大林算法设计的控制器可能会出现一种振铃现象,即数字控制器 的输出以二分之一的采样频率大幅度衰减振荡,会造成执行机构的磨损。 在有交互作用的多参数控制系统中,振铃现象还有可能影响到系统的稳 定性。 衡量振铃现象的强烈程度的量是振铃幅度 RA (Ringing Amplitude)。 它的定义是:控制器在单位阶跃输入作用下,第零次输出幅度与第一次 输出幅度之差值。 当被控对象为纯滞后的一阶惯性环节时,数字控制器 D(z)为: D 注 ⑴e TT )(i -宀\ D(Z) T T 1 T T -1 T T N -1 K(1- e J 1- e "z - (1- e f)z ] 由此可以得到振铃幅度为: T/T T/T 1 T/T 1 -T/T RA= ( e ) -( e 1 p e - e 于是,如果选择 T T >T1,则RA W 0,无振铃现象;如果选择 T T < T1, 则有振铃现象。由此可见,当系统的时间常数 T T 大于或者等于被控对象的 时间常数T1时,即可消除振铃现象。 三、实验内容 已知某过程对象的传递函数为: 期望的闭环系统时间常数 T 0 = 0.25s ,采样周期 T =0.5s 。 要求: (1) 适用大林算法设计数字控制器; (2) 判断有无振铃现象,若有则修改控制器消除之,仿真并分析系统在单位阶跃响应下 的输出结果; (3) 利用PID 控制器控制该对象,使得系统在单位阶跃信号下的响应满足超调量不超过 20%,衰减比为4:1,调节时间不超过 4s ; ⑷分析以上两种方法的优缺点。 四、实验过程 G (s )二 3e -0.5s 0.6s 1

数字PID控制器设计制作答案

数字PID控制器设计 设计任务: 设单位反馈系统的开环传递函数为: 设计数字PID控制器,使系统的稳态误差不大于0.1,超调量不大于20%,调节时间不大于0.5s。采用增量算法实现该PID控制器。 具体要求: 1.采用Matlab完成控制系统的建立、分析和模拟仿真,给出仿真结果。 2.设计报告内容包含数字PID控制器的设计步骤、Matlab仿真的性能曲线、采样周期T的选择、数字控制器脉冲传递函数和差分方程形式。 3.设计工作小结和心得体会。 4.列出所查阅的参考资料。

数字PID控制器设计报告 一、设计目的 1 了解数字PID控制算法的实现; 2 掌握PID控制器参数对控制系统性能的影响; 3 能够运用MATLAB/Simulink 软件对控制系统进行正确建模并对模块进行正确的参数设置; 4 加深对理论知识的理解和掌握; 5 掌握计算机控制系统分析与设计方法。 二、设计要求 1采用增量算法实现该PID控制器。 2熟练掌握PID设计方法及MATLAB设计仿真。 三、设计任务 设单位反馈系统的开环传递函数为: 设计数字PID控制器,使系统的稳态误差不大于0.1,超调量不大于20%,调节时间不大于0.5s。采用增量算法实现该PID控制器。 四、设计原理 1.数字PID原理结构框图

2. 增量式PID 控制算法 ()()()()()01P I D i u k K e k K e i K e k e k ∞ ==++--????∑ =u(k-1)+Kp[e(k)-e(k-1)]+Kie(k)+Kd[e(k)-2e(k-1)+e(k-2)] =u(k-1)+(Kp+Ki+Kd)e(k)-(Kp+2Kd)e(k-1)+Kde(k-2) 所以Δu(k)=u(k)-u(k-1) =Kp[e(k)-e(k-1)]+Kie(k)+Kd[e(k)-2e(k-1)+e(k-2)] =(Kp+Ki+Kd)e(k)-(Kp+2Kd)e(k-1)+Kde(k-2) 整理: Δu(k)= Ae(k)-Be(k-1)+Ce(k-2) A= Kp+Ki+Kd B=-(Kp+2Kd ) C=Kd 五、Matlab 仿真选择数字PID 参数 (扩充临界比例度法/扩充响应曲线法 具体整定步骤) 利用扩充临界比例带法选择数字PID 参数,扩充临界比例带法是 以模拟PID 调节器中使用的临界比例带法为基础的一种数字 PID 参数的整定方法。其整定步骤如下:;

计算机控制实验三数字PID调节器算法的研究

学院:********** 班级:********** 姓名:****** 学号:**********实验三数字PID调节器算法的研究 实验项目名称:数字PID调节器算法的研究 实验项目性质:普通 所属课程名称:计算机控制技术 实验计划学时:2学时 一、实验目的 1.学习并熟悉常规的数字PID控制算法的原理; 2.学习并熟悉积分分离PID控制算法的原理; 3.掌握具有数字PID调节器控制系统的实验和调节器参数的整定方法。 二、实验内容和要求 1.利用本实验平台,设计并构成一个用于混合仿真实验的计算机闭环实时控制系统; 2.采用常规的PI和PID调节器,构成计算机闭环系统,并对调节器的参数进行整定,使之具有满意的动态性能; 3.对系统采用积分分离PID控制,并整定调节器的参数。 二、实验主要仪器和材料 1.THTJ-1型计算机控制技术实验箱 2.THVLW-1型USB数据采集卡一块(含37芯通信线、USB电缆线各1根) 3.PC机1台(含上位机软件“THTJ-1”) 四、实验方法、步骤及结果测试 1、实验原理 在工业过程控制中,应用最广泛的控制器是PID控制器,它是按偏差的比例(P)、积分(I)、微分(D)组合而成的控制规律。而数字PID控制器则是由模拟PID控制规律直接变换所得。 在PID控制规律中,引入积分的目的是为了消除静差,提高控制精度,但系统中引入了积分,往往使之产生过大的超调量,这对某些生产过程是不允许的。因此在工业生产中常用改进的PID算法,如积分分离PID算法,其思想是当被控量与设定值偏差较大时取消积分控制;当控制量接近给定值时才将积分作用投入,以消除静差,提高控制精度。这样,既保持了积分的作用,又减小了超调量。 2、实验步骤 1、实验接线 1.1按图1和图2连接一个二阶被控对象闭环控制系统的电路; 1.2该电路的输出与数据采集卡的输入端AD1相连,电路的输入与数据采集卡的输出端DA1相连;

数字PID控制器设计

数字PID控制器设计 实验报告 学院电子信息学院 专业电气工程及其自动化学号 姓名 指导教师杨奕飞

数字PID控制器设计报告 一.设计目的 采用增量算法实现该PID控制器。 二.设计要求 掌握PID设计方法及MATLAB设计仿真。 三.设计任务 设单位反馈系统的开环传递函数为: 设计数字PID控制器,使系统的稳态误差不大于,超调量不大于20%,调节时间不大于。采用增量算法实现该PID控制器。 四.设计原理 数字PID原理结构图 PID控制器的数学描述为:

式中,Kp为比例系数;T1为积分时间常数;T D为微分时间常数。 设u(k)为第K次采样时刻控制器的输出值,可得离散的PID表达式为:? 使用模拟控制器离散化的方法,将理想模拟PID控制器D(s)转化为响应的理想数字PID控制器D(z).采用后向差分法,得到数字控制器的脉冲传递函数。

2.增量式PID控制算法 u(k)=u(k-1)+Δu(k) 增量式PID控制系统框图 五.Matlab仿真选择数字PID参数 利用扩充临界比例带法选择数字PID参数,扩充临界比例带法是以模拟PID调节器中使用的临界比例带法为基础的一种数字PID参数

的整定方法。其整定步骤如下 1)选择合适的采样周期T:,因为Tmin<1/10 T,选择采样周期为; 2)在纯比例的作用下,给定输入阶跃变化时,逐渐加大比例作用 Kp(即减小比例带δ),直至系统出现等幅震荡,记录比例增益 Kr,及振荡周期Tr 。Kr成为临界振荡比例增益(对应的临界比 例带δ),Tr成为临界振荡周期。 在Matlab中输入如下程序? G=tf(1,[1/150,36/150,185/150,1]); p=[35:2:45]; for i=1:length(p) Gc=feedback(p(i)*G,1); step(Gc),hold on end; axis([0,3,0,]) 得到如下所示图形: 改变其中的参数P=[35:2:45]为p=[40:1:45]得到下图曲线,得Kr约为43,Tr

计算机控制技术课程设计 数字PID控制系统设计

课程设计报告 题目:数字PID控制系统设计(II)课程:计算机控制技术课程设计 专业:电气工程及其自动化 班级: 姓名: 学号:

第一部分 任 务 书

《计算机控制技术》课程设计任务书 一、课题名称 数字PID 控制系统设计(II ) 二、课程设计目的 课程设计是课程教学中的一项重要内容,是达到教学目标的重要环节,是综合性较强的实践教学环节,它对帮助学生全面牢固地掌握课堂教学内容、培养学生的实践和实际动手能力、提高学生全面素质具有很重要的意义。 《计算机控制技术》是一门实用性和实践性都很强的课程,课程设计环节应占有更加重要的地位。计算机控制技术的课程设计是一个综合运用知识的过程,它需要控制理论、程序设计、硬件电路设计等方面的知识融合。通过课程设计,加深对学生控制算法设计的认识,学会控制算法的实际应用,使学生从整体上了解计算机控制系统的实际组成,掌握计算机控制系统的整体设计方法和设计步骤,编程调试,为从事计算机控制系统的理论设计和系统的整定工作打下基础。 三、课程设计内容 设计以89C51单片机、ADC 、DAC 等电路和运放电路组成的被控对象构成的单闭环反馈控制系统。 1. 硬件电路设计:89C51最小系统加上模入电路ADC0809和模出电路TLC7528;由运放构成的被控对象。 2. 控制算法:增量梯形积分型的PID 控制算法。 3. 软件设计:主程序、定时中断程序、A/D 转换程序、滤波程序、D/A 输出程序、PID 控制程序等。 四、课程设计要求 1. 模入电路能接受双极性电压输入(-5V~+5V ),模出电路能输出双极性电压(-5V~+5V )。 2. 被控对象每个同学选择不同: 4 4(), ()(0.21) (0.81) G s G s s s s s = = ++ 5 5 (), ()(0.81)(0.31) (0.81)(0.21) G s G s s s s s = = ++++5 10 (), ()(1)(0.81) (1)(0.41) G s G s s s s s == ++++8 8 (), ()(0.81)(0.41) (0.41)(0.51)G s G s s s s s s s == ++++ 3. PID 参数整定,根据情况可用扩充临界比例度法,扩充响应曲线法。 4. 定时中断可在10-50ms 中选取,采样周期取采样中断的整数倍,可取30-150ms ,由实验结果确定。

数字PID控制算法

第三章、计算机测控系统设计与实现 一、参考书目: 书名:《计算机控制系统》 章节:第六章 页号:P140-156 二、主要学习内容: 1.数字PID 控制算法 PID 控制规律的基本输入/输出关系可用微分方程表示: ()()()??????++=?dt t de T dt t e T t e K Y D I P 1 在模拟调节系统中,PID 控制算法的模拟表达式为: ()()()()??????++=?dt t de T dt t e T t e K t Y D I P 1 2.对标准PID 算法的改进 1、微分项的改进 不完全微分型PID 算法传递函数 ????? ? ??++???? ??+=1111)(S K T S T S T K S G D D D I P C

2、积分项的改进 抗积分饱和 积分作用虽能消除控制系统的静差,但它也有一个副作用,即会引起积分饱和。在偏差始终存在的情况下,造成积分过量。当偏差方向改变后,需经过一段时间后,输出u(n)才脱离饱和区。这样就造成调节滞后,使系统出现明显的超调,恶化调节品质。这种由积分项引起的过积分作用称为积分饱和现象。 克服积分饱和的方法: 1、积分限幅法 积分限幅法的基本思想是当积分项输出达到输出限幅值时,即停止积分项的计算,这时积分项的输出取上一时刻的积分值。其算法流程如图3-2-4所示。 2、积分分离法 积分分离法的基本思想是在偏差大时不进行积分,仅当偏差的绝对值小于一预定的门限值ε时才进行积分累积。这样既防止了偏差大时有过大的控制量,也避免了过积分现象。其算法流程如图3-2-5。 三、知识点: 1、为什么要用PID调节器 1、经典控制方法,可靠成熟。 2、相比两位式控制,控制精度大大提高。 3、算法成熟,资源丰富。 2、数字PID控制算法的比例、积分、微分的作用特点和不足 PID是英文单词比例(Proportion),积分(Integral),微分(Differential coefficient)的缩写。PID调节实际上是由比例、积分、微分三种调节方式组成,它们各自的作用如下: 比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。 积分调节作用:是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取

控制工程基础实验报告

控制工程基础[英]实验 实验一.典型环节的模拟研究: 已知一个小车、倒单摆系统非线性系统方程为: ( 2.92)0.008x x u =-+ 20.004sin 36cos n n x θωθωθθ=-+- 其中假设 (0)0;(0)0.2x x ==, (0)0;(0); 6.781,n θθπω=== (1)要求绘出系统[0,10]t ∈的状态响应曲线 (2)并将上述系统在0θ≈的条件下线性化,并要求绘出线性化后系统 [0,10]t ∈的状态响应曲线,并与非线性系统状态响应曲线相比较。 (1)下面利用Simulink 对该系统进行仿真如下图所示。 图1.倒单摆系统仿真图 在图中已经对主要信号进行了标注下面给出每个未标注信号后加入放大器的增益: 008.092.2= 阶跃K 008 .01 -=一阶微分x K 98.45=二阶微分θK 通过示波器Scope 和Scope1观察x(t)和θ(t)的波形图如下所示。

图2.x(t)波形图3.θ(t)波形(2)将上述系统在0 θ≈的条件下线性化,则方程组改写成如下形式: ( 2.92)0.008 x x u =-+ 2 0.004sin36 n n x θωθωθ =-+- 在Simulink中对系统仿真如下所示。 图4.线性化后仿真系统 通过示波器模块可以观察输出信号,图形如下图所示。

图5.x(t)输出波形 图6.θ(t )输出波形 实验二.典型系统时域响应动、静态性能和稳定性研究; 已知系统的开环传递函数为 2()11G s s s = ++ (1)利用已知的知识判断该开环系统的稳定性(系统的特征方程根、系统零极点表示法)。 (2)判别系统在单位负反馈下的稳定性,并求出闭环系统在[0,10]t ∈内的脉冲响应和单位阶跃响应,分别绘制出相应响应曲线。 (1)该系统的特征方程的根、零极点表示的求解代码如下:

数字PID控制器的MATLAB仿真

数字PID控制器的MATLAB仿真 江苏科技大学 电子信息学院 实验报告 评定成绩指导教师实验课程:计算机控制技术 宋英磊实验名称:数字PID控制器的MATLAB仿真 学号: 1345733203 姓名: 胡文千班级: 13457332 完成日期: 2015年 11 月16日 一、实验目的 (1)掌握用SIMULINK对系统进行仿真的基本方法。 (2)对PID数字控制器进行仿真。 二、实验内容 1、基本的PID控制 在模拟控制系统中,控制器最常用的控制规律是PID控制。模拟PID控制系统原理 框图如图1-1所示。 比例y(t)r(t)+e(t)u(t)微分被控对象 +-积分 图1-1 模拟PID控制系统原理框图 PID控制规律为: t,,1de(t),,u(t),ke(t),e(t)dt,T pD,,,0TdtI,, ,,()1Us,,()1Gs,,k,,Ts或写成传递函数的形式 pD,,E(s)TsI,,

133仿真1 以二阶线性传递函数为被控对象,进行模拟PID控制。输入信号 2s,25s k,60,k,1,k,3,仿真时取,采用ODE45迭代方法,仿真时间 r(t),sin(2,*0.2t)pid 10s。 仿真方法:在Simulink下进行仿真,PID控制由Simulink Extras节点中的PID Controller 提供。 仿真程序:ex1_1.mdl,如图1-2所示。 图1-2 连续系统PID的Simulink仿真程序 将该连续系统的模拟PID控制正弦响应结果截图后至于下面的空白处: 连续系统的模拟PID控制正弦响应如图1-3所示。

图1-3 连续系统的模拟PID控制正弦响应 2、连续系统的数字PID控制仿真 计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。因此 连续PID控制算法不能直接使用,需要采用离散化方法。在计算机PID控制中,使 用的是数字PID控制器。 按模拟PID控制算法,以一系列的采样时刻点kT代表连续时间t,以矩形法数 值积分近似代替积分,以一阶后向差分近似代替微分,可得离散PID位置式表达式: k,,TTD,,ukkekejekek(),(),(),((),(,1)),p,,TT,0jI,, kekek(),(,1)kekkejTk,(),(),,pidT,0j kpk,,k,kT式中,,e为误差信号(即PID控制器的输入),u为控制信号(即控 制idpDTI 器的输出)。 在仿真过程中,可根据实际情况,对控制器的输出进行限幅。连续系统的数字PID控制 可实现D/A及A/D的功能,符合数字实时控制的真实情况,计算机及DSP的实 时PID控制 都属于这种情况。 1Gs, 仿真2 设被控对象为一个电机模型传递函数,式中J=0.0067,B=0.1。输()2Js,Bs入信号为,采用PID控制,其中。采用ODE45方法求解连 k,20,k,0.50.5sin(2,t)pd续被控对象方程。 2dydyYs()1仿真方法: 因为,所以J,B,u,另Gs,,()22dtdtUsJs,Bs() ,y,y,,12,,则,因此连续对象微分方程函数ex3f.m如下 y1,y,y2,y,, y2,,(B/J)y,(1/J)*u,2, function dy = ex3f(t,y,flag,para)

清华控制工程基础-实验1 Matlab仿真实验

实验一 Matlab 仿真实验 基本实验 1、 对于一阶惯性系统 G s s ()= +K T 1 当分别取以下几组参数时,试画出系统单位阶跃响应曲线、频率特性乃氏图和伯德图。 1).K=1,T=10; 2).K=1,T=1; 3).K=1,T=0.1 结果:

2、 对于二阶系统 G s s s ()= ++1 2122T T ζ 分别就T=1和T=0.1,?分别取0, 0.2, 0.5, 0.7, 1, 10时,画出系统单位阶跃响应曲线、频率特性乃氏图和伯德图。 结果:

3、自构造高阶系统,试利用Matlab软件工具分析其时域、频域特性。 构造高阶系统 2 32 0.01315 () 0.00040.120100 s s G s s s s ++ = +++ 利用软件画出系统单位阶跃响应曲线、频率特性乃氏图和伯德图如下: 4、对于下列系统,试画出其伯德图,求出相角裕量和增益裕量,并判其稳定性 (1) )1 0047 .0 )( 1 03 .0( 250 ) ( ) ( + + = s s s s H s G 伯德图:

增益裕量:-0.1366dB 相角裕量:-0.3080degree 故,闭环后系统不稳定。 (2) ) 10047.0)(103.0)(110() 15.0(250)()(++++=s s s s s s H s G 伯德图: 增益裕量:25.2910dB 相角裕量:58.0765degree 故,闭环后系统稳定。 实验目的 1) 熟悉直流伺服电机控制系统各环节的传递函数模型; 2)根据给定的性能指标,设计速度环与位置环的控制器参数。 实验内容及要求 2.1 速度环仿真实验 图1-1 双环调速系统简化方框图

数字PID的补偿算法的设计..

数字PID调节器纯滞后的补偿算法设计 摘要 对于无滞后或滞后比较小的系统,通常采用PID控制。对于纯滞后系统,PID控制效果并不好,需要另加补偿,因此提出了Smith预估补偿控制系统。而 Smith 预估算法则在模型匹配时具有好的性能指标 ,但是由于这种算法严重依赖模型的精确匹配 ,而在实际中这是很难做到的。 本文研究的重点是设计与实现纯滞后系统的控制过程的控制规律和控制算法,并比较传统的数字PID控制算法与加入Smith预估器的控制算法的不同。具体讨论了纯滞后系统的Smith预估器的实现方法,着重对这种控制算法进行了较深入的讨论,而且还通过仿真对设计和改进的结果进行了分析。仿真实验中,若采用PID控制算法,系统会出现较大的超调量,采用史密斯预估器补偿控制超调量大大较少,系统更加稳定。 关键字:Matlab;纯滞后;数字PID;Smith 预估控制器;Simulink

Abstract For the system with no or less delay, usually adopts PID control. For pure delay system, PID control effect is not good, need additional compensation, so the proposed Smith predictor control system. But Smith pre estimation algorithm has good performance index in the model matching, but because an exact match this algorithm heavily depends on the model, but in fact it is very difficult to do. This paper is focused on the control and implementation of rules and the control algorithm to control the process of pure lag system design, and compare the traditional digital PID control algorithm with the addition of Smith predictive control algorithm for different. Discussed the specific time delay system Smith prediction method is, focuses on the control algorithm are discussed in depth, but also analyzed through simulation design and improvement of the results. The simulation experiment, if the PID control algorithm, the system will have a large overshoot, Smith predictor is used to compensate control overshoot is greatly reduced, the system more stable. Keywords: Matlab; delay; digital PID; Smith controller; Simulink

相关文档
最新文档