(整理)钙钛矿型复合氧化物LaBO3

(整理)钙钛矿型复合氧化物LaBO3
(整理)钙钛矿型复合氧化物LaBO3

钙钛矿型复合氧化物LaBO3

钙钛矿型复合氧化物ABO

3

是一种具有独特物理性质和化学性质的新型无机非金属材料。其具有独特的晶体结构,尤其经掺杂后形成的晶体缺陷结构和性能,被应用或可被应用在固体燃料电池、固体电解质、传感器、高温加热材料、固体电阻器及替代贵金属的氧化还原催化剂等诸多领域,成为化学、物理和材料等领域的研究热点。作为一种重要的纳米功能材料,LaBO3(B=V,Cr,Mn,Fe,Co,Ni,Cu)复合氧化系列复合氧化物由于其种类繁多、结构特殊等物理化学特性,已成为当今纳米材料研究的热点之一;它作为一种新兴的热电材料,由于其独特的结构和热电性能,近年来受到了越来越多的研究工作者的关注;它作为一种重要的环境催化材料,具有钙钛矿结构的LaBO3由于其良好的热稳定性、储氧性能以及低廉的成本,一直被看作可以替代贵金属催化剂的首选的高效催化剂,其成为了研究金属氧化物的固体化学与其催化性能关系的合适的模型材料,并在机动车辆尾气催化净化、天然气催化燃烧等领域已显出十分诱人的前景,有望取代价格昂贵、资源匮乏的贵金属催化剂。

理想的ABO3钙钛矿结构是立方晶系,半径较大的稀土金属离子A被12个O 原子以立方对称性包围;B位离子是半径较小的过渡金属离子,处于6个O离子组成的八面体中央。A—O之间距离20.5a,(a为晶格常数)B—O之间距离0.5a,三种离子半径满足:

这个结构的稳定条件是:r

A >0.90,r

B

>0.51。此外,在形成稳定的ABO3

型氧化物时,各种离子必须满足Gold- Schmidt 条件:即哥德布密特允许因子 t:

0.75

A + r

B

) /21 / 2(r

B

+ r

O

) <1.0。

钙钛矿型催化剂在中高温活性高,热稳定性好,成本低。研究发现,表面吸附氧和晶格氧同时影响钙钛矿催化活性。较低温度时,表面吸附氧起主要的氧化作用,这类吸附氧能力由B位置金属决定;温度较高时,晶格氧起作用,不仅改变A、B位置的金属元素可以调节晶格氧数量和活性,用+2或+4价的原子部分替

代晶格中+3价的A、B原子也能产生晶格缺陷或晶格氧,进而提高催化活性。目前该领域的研究焦点集中于采用各种方法和各种材料来调变和取代 A、B 离子以得到更优异的催化性能。采用其他类型的催化剂与之进行混合掺杂也是一种改性的思路,可能会起到意想不到的作用,例如,将贵金属和钙钛矿型化合物结合起来就可以起到互补互利的增效作用。钙钛矿型化合物对贵金属能起到很好的稳定作用,防止贵金属被高温烧结、蒸发或与载体反应,而贵金属可以提高钙钛矿型催化剂的活性。因此 ,寻找更有利于NxO催化分解的新颖的催化剂制备方法、提高其比表面积、采用新型的材料取代A、B离子或添加助剂改性以提高催化性能以及寻找合适的催化剂载体 ,仍是今后该领域的研究热点。目前认为,A=La、Sr,B=Fe、Co、Mn组成的钙钛矿对CCM催化效果最好。

氮氧化物(NOx)是严重危害人类健康的大气污染物,也是导致酸雨和诱发光化学烟雾的主要原因之一;同时它也是一种严重的致癌物质。随着工业生产的发展和机动车数量的增加,人类向大气中排放的氮氧化物越来越多,而且还在持续增长,造成了生态和生活环境的严重恶化,消除NOx的污染已成为当前大气污染治理中最重要的课题之一。目前,市场上使用的大部分是贵金属催化剂,如铂、钯、铑催化剂或含有三者的三效催化剂。尽管对汽车尾气的催化效果很好,但由于贵金属稀有和昂贵,明显提高汽车成本。国内现在研究较多的是稀土催化剂,并取得较大进展,某些有望在近几年投产使用。

钙钛矿型复合氧化物是一种极有发展前途的多相催化剂, 自从Libby 1971 年提出钙钛矿型复合氧化物具有良好的废气催化性能以来,许多研究者对此进行了多方面的研究,旨在以钙钛矿型复合氧化物替代价格昂贵的贵金属催化剂。但是,由于此类化合物催化剂制备工艺复杂,催化机理还不十分清楚,开发这类催化剂还缺乏有价值的指导方法。因此,开展此类化合物的表面特性和催化性能的研究具有重要的意义。(1)N2O在钙钛矿型化合物LaBO3 上的分解反应属于表面上催化过程( Supr afacialCataly sis) ,活性位由B-O-B 骨架提供。(2)B 位离子3d电子较活泼的催化剂中阳离子的化学势较高,反应能力较强,TPR反应活化能较小。催化剂表面吸附氧对N2O分解有抑止作用。CH4的加入能与表面吸附氧反应,提供氧空位,促进反应的进行。(3)在钙钛矿型化合物LaBO3上有两类氧种,即低能位的吸附氧和高能位的晶格氧。吸附氧有包括气相中的吸附氧和源

于N2O 的分解而吸附的氧,它们对反应的阻抑作用大小不同,而影响的实质在于它们脱附产生氧空位的能力。

ABO3形式钙钛矿材料用作固体燃料电池(SOCF)的阴极材料,是一系列具有广泛前途的化合物。由于高温、O与O2的交换以及电子关联效应,在SOFC条件下用从头算方法对这些化合物的物理性质的研究特别具有挑战性。钙钛矿氧化物燃料电池(SOFC)有以下优点:(1)全固态结构,不存在液态电解质所带来的腐蚀和电解液流失等问题;(2)无须使用贵金属电极,电池成本大大降低;(3)燃料适用范围广;(4)燃料可以在电池内部重整。

用先进的计算机模拟技术模拟的钙钛矿结构氧化物ABO3的缺陷,主要方法包括基于能量最小化方法和原子间相互作用势以及量子化学(QM)方法。研究的主要特性包括氧离子迁移,掺杂-缺陷关联,质子扩散和表面结构。

从头算法可以用来研究SOFCs团簇和表面的相关属性,包括空位形成能和氧结合能。热力学方法和密度泛函理论加U势方法结合,可以获得固体燃料电池条件(T=800 °C, PO2=0.2 atm)下其相关能量。对Ueff值的变化对能量和电子结构变化的影响的详细探讨,结果表明,最优的Ueff值比Ueff= 0(相当于标准广义梯度近似)与实验能量更符合。预测得到的LaBO3氧空位形成能顺序为Fe>Mn>Co>Ni(其中形成能最大的意味着最难以形成一个空缺)。结果表明,(001)BO2终止表面有比空位形成能低1-2eV,因此其浓度远远高于空缺浓度。在低温下,对于B=Mn, Fe, Co预测的其稳定的表面为超氧化物O2-,对于B=Ni预测的其稳定表明为过氧化物O22-。在较高温度下,对所有B阳离子通过熵效应预测的其稳定的表面为单体氧表面态。总的来说,在SOFC操作条件下(001)BO2表面预测出氧空位相当低。这些结果将有助于了解钙钛矿型固体氧化物燃料电池阴极氧还原反应。

研究在SOFC条件下LaBO3 (B=Mn, Fe, Co, and Ni)氧还原反应,用GGA+U 的计算方法对氧能量修正来弥补LaBO3固体中自相互作用的误差,在DFT中,这种误差来自氧气分子进入固体氧化物。进一步结合经验的氧的化学势和振动自由能更正计算的从头算反应能来估量在SOFC条件下非构型对缺陷和表面吸附反应自由能的贡献。在SOFCs中,与阴极氧还原反应如:表面氧空位和表面氧吸附类型等有关的重要特性通过氧空位形成和氧吸附(O-B,O2-B, and O-bridge)的反应能被研究。所有表面的研究主要集中在(001)BO2面,因为它是(001)LaO终止面,由于其高的氧结合能,可能是钝化的,而不是在氧还原反应(ORR)中发挥重大作用。为了解反应能随Ueff值的变化趋势,我们探究了大范围的Ueff 值(Ueff=0-6.4eV)。随着Ueff 值的增加与还原反应相关的反应能逐渐降低而与氧化反应相关反应能逐渐增加,反应能对Ueff 值的依赖程度与还原或氧化反应的程度有关。与这一反应能随Ueff值变化趋势不同的是LaFeO3团簇,研究发现其氧空位形成能随Ueff值的增加而增加。此反常的出现,源于LaFeO3独特的电子结构——半填充的d壳层。令人意外的是,LaFeO3团簇的这种异常不会发生在表面。由于表面效应,团簇表面的Fe3+部分被氧化并且不存在半填充的d壳层。因此表面空位形成的反应能随Ueff值的变化没有表现出与LaFeO3团簇相同的趋势。应用文献中给出的最优的Ueff值研究各种过渡金属的反应能,最优的Ueff 值结果表明,LaBO3氧空位形成能的顺序是Fe>Mn>Co>Ni。计算预测得,在低温下O2-B吸附(对Ni是O-bridge)是比O-B更稳定的氧种,但是操作条件下这类体系中氧的覆盖率可能非常低。氧空位和氧吸附的结果比Ueff=0 eV时测得的数据更符合实验数据(在O2 TPD实验中测得的氧空位和氧吸附形成焓)。结果表

明,与纯LDA / GGA相比,缺陷反应能的差别相当显著,因而可以通过引入Ueff 来减小这种误差。由于反应的过渡态可能至少涉及体系的部分氧化和还原过程,动力学能障也表现出对Ueff值的依赖性,这也是有可能的。我们已经表明,对于LaBO3和所有Ueff值,(001) BO2表面的空位能比团簇要低1-2eV。

一般地LaBO3钙钛矿,其氧空位迁移是通过围绕BO6八面体边缘的非直线或弧形的途径;围绕着迁移氧离子的阳离子的弛豫也很显著。

钙钛矿型复合氧化物的制备方法有:(1)机械混合法(2)共沉淀法(3)溶胶-凝胶法(4)水热合成法(5)燃烧法等

固相法制备简单,但需要在很高的温度下长时间焙烧,而且常常混有杂相; 共沉淀法由于反应物混合较均匀,焙烧温度和时间较固相法有所降低,但是沉淀剂的种类及沉淀条件的控制对样品的性能影响很大。采用共沉淀法和固相法, 按确定出的催化剂制备条件,可合成出属立方晶系的纯钙钛矿结构的LaBO3催化剂。

实验表明,水作溶剂时制备的LaBO3粒径相对较小,催化剂活性成分的粒径越小,越有利于催化反应,但抗SO2中毒能力较差。稀土钙钛矿氧化物的抗SO2性能普遍较差,限制了其应用。

LaBO3化合物的晶格常数:

LaMnO3

P 3.88 3.88 3.88 90 90 90

Space Group P M 3 M Label 221

La1 0 0 0

Mn1 0.5 0.5 0.5

O1 0.5 0.5 0

LaFeO3

P 3.89 3.89 3.89 90 90 90

Space Group P M 3 M Label 221

La1 0 0 0

Fe1 0.5 0.5 0.5

O1 0.5 0.5 0

LaFeO3

P 3.926 3.926 3.926 90 90 90

Space Group P M 3 M Label 221

La1 0 0 0

Fe1 0.5 0.5 0.5

Fe2 0.5 0.5 0.5

Fe3 0.5 0.5 0.5

O1 0.5 0.5 0

LaCoO3

P 3.82 3.82 3.82 90 90 90

Space Group P M 3 M Label 221

La1 0 0 0

Co1 0.5 0.5 0.5

O1 0.5 0.5 0

LaNiO3

Space Group R3-cH

P 5.4535 5.4535 13.1010 90. 90. 120.

La1 0 0 0.25

Ni1 0 0 0

O1 0.5468 0 0.25

LaCuO3

Space Group R3-cH

P 5.501 5.501 13.217 90. 90. 120.

La1 0 0 0.25

Cu1 0 0 0

O 1 0.464 0 0.25

LaCrO3

P 3.88 3.88 3.88 90 90 90

Space Group P M 3 M Label 221

La1 0 0 0

Cr1 0.5 0.5 0.5

O1 0.5 0.5 0

LaCrO3

P 3.88 3.88 3.88 90 90 90

Space Group P M 3 M Label 221

La1 0 0 0

Cr1 0.5 0.5 0.5

O1 0.5 0 0

LaV3

Space Group Pnma

P 5.55548 7.84868 5.55349 90. 90. 90. La1 0.0295 0.25 0.9951

V1 0.5 0 0

O1 0.4880 0.25 0.0707

O2 0.2831 0.0387 0.7168

LaTiO3

Space Group Pbnm

P 5.6247 5.6071 7.9175 90. 90. 90.

La1 0.99291 0.04281 0.25

Ti1 0 0.5 0

O1 0.07813 0.49036 0.25

O2 0.71036 0.29144 0.04116

LaFeO3 和LaCoO3的晶格参数d值理论值和实验值:

(1)LaFeO3:

理论值:3.930,2.799,2.270,1.959,1.604,1.389,1.242,1.050

实验值:3.950,2.788,2.275,1.969,1.610,1.393,1.247,1.054

(2)LaCoO3:

理论值:3.820,2.719,2.217,1.912,1.718,1.564,1.360,1.213

实验值:3.834,2.714,2.222,1.918,1.722,1.566,1.361,1.210 催化剂的活性可以用一定温度下的转化率来表示, 也可用保持一定转化率时所需反应温度来表示。研究结果表明催化剂活性顺序为:

其光催化性能主要与B位元素的+3价离子半径及B-O之间的电负性差值有关。LaBO3 的光催化活性与B位过渡金属离子的d电子结构密切相关,且随3d电子数

的增加, 晶体场分裂能ΔCF增加,同时电荷转移能ΔCT相应减小,其总体效应是能隙逐渐减小,光催化活性逐渐提高。由于B离子d电子结构不同,B-O结合能按照Ti-Co的顺序递减,也使得光催化活性依次提高。另外,d电子结构还与电离能、马德仑电势及d轨道的对称性等因素相关。

LaBO3 的光催化机理:Gerischer 等指出,光催化氧化过程中被捕俘的电子(e-T, s)比自由移动的电子(e-s )更易与O2 进行还原反应。

这是因为,若电子在粒子中能够自由移动,且在O2 的溶解度相对低以及在半导体表面O2 吸附不很强的条件下,光生电子逃离与光生空穴的复合的几率很小, 因而很难与吸附的氧气反应更为可能的途径是电子首先被表面的氧空位束缚再与吸附氧反应。

N2O分解被公认为评价氧化物催化剂催化活性的一个简单可行的反应,遵循如下的电子转移历程,它能较好地关联催化剂的活性和电子特征关系:

(1) N2O+ e- → N2O-ad (2) N2O-ad→ N2 + O-ad (3) O-ad + O-ad → O2 +2 e-(4) O-ad + N2O → O2 + N2 + e-

上图表示LaBO3化合物上N2O吸附的分子轨道模型。La3+利用空的f轨道,跟O2-形成f-Pz作用,用B3+跟氧之间形成dz2-Px作用。当B 位离子为高自旋的Mn3+和Co3+时,B位离子与氧之间的dz2-Px作用较弱,B位离子周围的电子浓度较高,此时O-为B3+表面强吸附,因此它们表现出较好的催化活性;当B位离子为Cr3+( t32ge0g )和Fe3+( t32ge2g )时, B位离子与氧离子间的dz2-Px作用较强,O-为表面弱吸附,此时N2O的吸附成为速率控制步骤,因此它们的催化活性较差。

在评价试验中,加入CH4能明显提高NO分解活性,我们认为这是由于CH4的加入,发生了氧化反应,稀释了表面O- ad的浓度,使反应过程( 3)阻抑作用减小。由引,我们认为N2O 在LaBO3上的分解实质上是表面上催化过程(Suprafacial Catalysis),催化剂表面起了一个模板作用,提供适于N2O吸附的具有合适能量和对称性的轨道。活性位由B-O-B骨架提供,活性强弱则由氧与B位离子的结合能所决定。

钙钛矿型化合物催化剂表面有两类氧种,即高结合能位的晶格氧和低结合能位的吸附氧。在反应过程中,催化剂表面发生了电子转移反应,反应性能与表面基

团的表面态能级之间有直接关系,合适的表面位可以吸附由于N2O分解而产生的O-ad。

TPR过程是典型的氧化还原反应过程,其反应活化能是表征该过程难易程度的一个指标,它反映了催化剂上的能态水平。LaMnO3、LaCoO3活化能明显低于其它化合物,表明B位离子3d电子活泼时,与之配位的氧离子的化学势较大。催化剂表面上存在一定缺陷,在边角位上的B位离子氧离子的配位数发生了一些变化,并且B位离子与氧离子的相互作用也发生了一些变化,LaBO3化合物上产生了少量的3d电子和相应的活性氧,从而使催化剂有了一些催化活性。

由于稀土钙钛矿型化合物LaBO3是一类完全氧化型催化材料,加之其化学结构的高温稳定性,其组成的金属元素可以是许多不同价态过渡金属 ,这些不同价态的过渡金属生成的钙钛矿型复合氧化物可以形成多种缺陷,进而表现出催化消除NOx的性能。使它们在煤、天然气和燃料催化燃烧方面的应用日益受到重视。另外,稀土钙钛矿型氧化物具有良好的氧离子传导性,在气敏材料和固体燃料电池方面也将发挥重要的作用。

天然气催化燃烧是一种高效、绿色的能源利用和废气处理技术。整体型催化剂具有适用空速高、催化效率高、机械强度和热稳定性好的特点。两者的结合对于能源工业和环境保护有极为重大的意义,有广阔的发展前景。催化剂的低温催化活性和高温热稳定性还不能满足实际要求。该问题的解决可望从以下几个方面着手:(1)改进催化剂配方。有可能成功的方向是贵金属与非贵金属催化剂的复合,通过引入合适的助剂和采用特殊的处理方法,促进两者间的相互作用,产生协同效应。(2)采用新的粉末制备方法。如微乳剂法、火焰喷射法、冷冻干燥等,制备出粒径细小、成分均匀的活性粉体,增强其抗烧结、中毒性能。(3)改进第二载体,提高活性粉体分布的均匀性和热稳定性。(4)引入新型基体结构,如采用金属丝网载体,增强传质、传热性能,从而提高催化活性及稳定性。

由于稀土钙钛矿型化合物LaBO3是一类完全氧化型催化材料,加之其化学结构的高温稳定性,其组成的金属元素可以是许多不同价态过渡金属,这些不同价态的过渡金属生成的钙钛矿型复合氧化物可以形成多种缺陷,进而表现出催化消除NOx的性能。使它们在煤、天然气和燃料催化燃烧方面的应用日益受到重视。

钙钛矿型复合氧化物材料

钙钛矿型复合氧化物材料 钙钛矿复合氧化物具有独特的晶体结构,尤其经掺杂后形成的晶体缺陷结构和性能,被应用或可被应用在固体燃料电池、固体电解质、传感器、高温加热材料、固体电阻器及替代贵金属的氧化还原催化剂等诸多领域,成为化学、物理和材料等领域的研究热点[1~4]。 1钙钛矿结构 钙钛矿型复合氧化物因具有天然钙钛矿(CaTiO3)结构而命名,与之相似的结构有正交、菱方、四方、单斜和三斜构型。标准钙钛矿结构中,A2+和O2_离子共同构成近似立方密堆积,A离子有12个氧配位,氧离子同时有属于8个BO6八面体共享角,每个氧离子有6个阳离子(4A~2B)连接,B2+离子有6个氧配位,占据着由氧离子形成的全部氧八面体空隙。钙钛矿结构的对称性较同种原子构成的最紧密堆积的对称性低,A、B离子大小匹配。各离子半径间满足下列关系: 其中RA、RB、RO分别为A离子、B离子和O2-离子的半径,但也存在不遵循该式的结构,可由Goldschmidt容忍因子t来度量: 理想结构只在t接近1或高温情况下出现,多数结构是它的不同畸变形式,这些畸变结构在高温时转变为立方结构,当t在0.77~1.1,以钙钛矿存在;t<0.77,以铁钛矿存在;t>1.1时以方解石或文石型存在。 2钙钛矿型氧化物材料的研究进展 标准钙钛矿中A或B位被其它金属离子取代或部分取代后可合成各种复合氧化物,形成阴离子缺陷或不同价态的B位离子,是一类性能优异、用途广泛的新型功能材料。 2.1固体氧化物燃料电池(SOFC)材料 钙钛矿氧化物燃料电池SOFC有以下优点:(1)全固态结构,不存在液态电解质所带来的腐蚀和电解液流失等问题;(2)无须使用贵金属电极,电池成本大大降低;(3)燃料适用范围广;(4)燃料可以在电池内部重整。通过电极材料中的掺杂来提高活性,优化碱锰电池的充放电性能(参见表1)。用含锰的钙钛矿氧化物作为碱性

钙钛矿型复合氧化物光催化研究进展

第18卷第7期2006年7月化学研究与应用 Chem ica lR esea rch and A pp licati on V o.l 18,N o .7 J u.l ,2006 收稿日期:2004-11-22;修回日期:2005-05-17基金项目:河南省自然科学基金(0424270073)项目资助 联系人简介:牛新书(1954-),男,教授,主要从事无机纳米材料研究。Te:l 0373-******* 文章编号:1004-1656(2006)07-0770-06 钙钛矿型复合氧化物光催化研究进展 牛新书,曹志民 (河南师范大学化学与环境科学学院,河南省环境污染控制重点实验室,河南 新乡 453007) 摘要:扼要叙述了钙钛矿型复合氧化物(ABO 3)作为光催化剂的研究进展。包括结构,机理,制备,改性和研究现状。强调了结构与性能之间的关系并对其研究方向提出了自己的见解。关键词:钙钛矿型复合氧化物;光催化;半导体中图分类号:O 643 3 文献标识码:A Fu ji s hi m a 和H onda [1] 在1972年的发现标志着多相光催化新时代的开始。此后T i O 2因其稳定的结构和性能,低廉的价格且无毒无害等优点吸引了人们的注意,围绕T i O 2光催化性能的大量研究取得了一定的进展,但T i O 2较宽的能隙(3 2ev)决定了其只能吸收紫外光波。长期以来,受T i O 2自身结构和合成条件限制,大量研究集中于阳离子掺杂[2] ,目前较为前沿的是阴离子掺杂[3,4,5],但此方面的研究仅见有少量的文献报导,所得到的可见光催化活性还比较低[6] 。总体来说,在提高T i O 2对太阳能的利用率方面没有取得巨大突破,因此人们仍在寻找新的高效光催化剂。钙钛矿是地球上最多的矿物,由于其全范围的电气性能,人们很早就开始了钙钛矿结构的人造晶体的合成以及对其在铁电、压电、超导等性能方面的研究与应用,另外,在气敏材料、汽车尾气净化、 催化有机合成[7,8,9,10] 等方面钙钛矿型复合氧化物也表现出了良好的性能。近年来,白树林、傅希贤[12,17] 等系统研究了钙钛矿型复合氧化物(ABO 3)在光催化方面的性能,结果显示了钙钛矿型复合氧化物在光催化方面具有潜在的应用价值。本文将对AB O 3型复合氧化物的光催化研究进展作一综述及评价。 1 A BO 3型复合氧化物的结构特征 图1 A BO 3结构示意图F i g .1 Sche m e o f ABO 3structure 理想的钙钛矿晶体为立方结构,满足空间群 Pm 3m Oh ,其中A 为较大的阳离子,与12个O 配位,位于立方体的中心。B 为较小的阳离子,与6个O 配位,位于6个O 组成的8面体中心(图1)。理想的钙钛矿结构中,R A >0 090nm,R B >0 051n m [13] ,A O 之间的距离应为20 5 a /2(a 为晶胞参数),B O 之间的距离应为0 5a ,3种离子半径应满足下列关系式: r A +r O =2 0 5 (r B +r O )实际情况下,许多ABO 3型复合氧化物不满足上述关系式时仍能保持立方结构,针对这种情况,Go l d schm idt [14]引入了允许因子,t 规定:

含镧钙钛矿型复合氧化物的制备方法评介_娄向东

!气体传感器研究! 文章编号"#$$%#%&’()$$$*$%$$’%$+收稿日期")$$$$&#$ 作者简介"娄向东(#,-.*/ 男/河南省新乡市人/河南师范大学副教授/主要从事气体传感器研究0第#.卷第%期郑州轻工业学院学报(自然科学版* 1230#.420%)$$$年#)月 567849:6;<=>4?<=67@4A B @B 7B >6;:@?=B @4C 7A B 8D (4E F G H E 3A I J K L I K *C K I M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M 0)$$$含镧钙钛矿型复合氧化物的制备方法评介 娄向东/田圣军/姜聚慧 ( 河南师范大学化学与环境科学学院/河南新乡%.+$$)* 摘要"介绍了溶胶N 凝胶法O 共沉淀法O 水热合成法O 络合法O 热解柠檬酸盐法O 喷雾热解法等几种制备含镧钙钛矿型复合氧化物的方法/讨论了不同制备方法的操作步骤及适宜的工艺条件/比较了各种方法的特点0结果说明"在实际应用时/根据不同的需要/选用合适的制备方法/才能获得满意的效果0 关键词"钙钛矿P 复合物P 氧化物P 气敏器件中图分类号"B Q )#)0)文献标识码"9 R 引言 钙钛矿型稀土复合氧化物具有特殊的光O 电O 磁性质S #T / 其中含镧钙钛矿型复合氧化物因其特殊的结构O 性能及广阔的应用前景引起了人们的普遍关注0如:E #UV 9V WL 6+(9X Y E /A H /Z E /Q [*/由于其具有特殊的电磁学性质/已在固体燃料电池O 固体电解质O 传感器和催化剂等方面得到广泛应用P 而:E V Z E #UV Y 26+系导电陶瓷可用于固体燃料电池的电极材料O 化学敏感材料O 高温加热材料O 固定电阻器以及替代贵金属等的氧化 还原催化剂S +T 等诸多方面0因此对含镧钙钛矿型复合氧化物的合成与开发/人们做了大量深入细致的研究工 作/取得了很大的进展0在早期传统陶瓷制备方法如高温固相法S %/.T O 粉末烧结法等的基础上/经过大量实验/又总结出一些更有效的合成方法/如溶胶N 凝胶法O 水热合成法等/这些新的合成方法克服了传统方法中的一些弊端/展现了更好的实用前景0 \制备方法 \0\溶胶N 凝胶法溶胶N 凝胶法在材料粉体的制备中具有产物粒径小O 均匀性好O 纯度高及反应易控制等优点0目前采用溶胶N 凝胶法制备材料的具体技术路线很多/用溶胶N 凝胶法合成镧的钙钛矿型复合氧化物非常普遍0溶胶N 凝 胶法制备粉末的过程是将所需的前驱体配制成混合溶液/经凝胶化处理/从而获得性能指标较好的粉末S -T 0 如用溶胶N 凝胶法合成镧的钙钛矿型铝酸盐:E 936+超微粉S &T 的方法是"将,,0,,]的:E ) 6+溶于=46+(98*中/然后按^:E +_‘^93+_‘^柠檬酸(98*X#‘%‘%的比例加入93(46+*+ !&=)6(98*和柠檬酸搅拌至完全溶解/得无色透明溶液/将该溶液于.$ab&$a 缓慢蒸发&c 后/ 得到具有一定黏度和流动性的淡黄色透明溶胶P 再继续蒸)c 得黄色黏滞透明的凝胶/该凝胶经#)$a 干燥)c /&.$a 灼烧#c / 即得粉色纯相的:E 936+超微细粉0又如用溶胶N 凝胶法制备含镧的复合氧化物:E Y H #UV ;K V 6+(V X$b#0$*超细粉末S ’T /其方法为/按实验所需的物质的量之比分别取定量:E (46+*+(98*/Y H (46+*(98*/;K (46*+ (98*溶液置于烧杯中混合/加入适量的水调至规定浓度/将此溶液以一定速度滴加到不断搅拌的乙醇N 氨水溶液(d =e#$*中生成溶胶/进而加热制得凝胶并将其干燥/把干凝胶置于马弗炉中加热至&$$a 保温)c 即得:E Y H #UV ;K V 6+超细粉末0

1 引言 钙钛矿型氧化物

1 引言钙钛矿型氧化物(ABO3)由于独特的电、光、磁、特性是目前国内外材料研究领域中的热点。其在超导材料、固体电介质、传感器、高温加热材料固体电阻器及替代贵金属的氧化还原催化剂[1]等方面有广阔的潜在应用前景。铁酸镧(LaFeO3,LFO)是钙钛矿型氧化物中的一员[2],是具有铁磁有序的绝缘介电材料。这类材料由于其电学特征敏感地依赖于其磁学有序,故在传感器和换能器等应用被寄予厚望。近年来,有关研究报道呈现快速增长趋势,主要集中在磁电耦合的机理性操作和具有优异性能材料与器件的制备与表征。薄膜的制备方法有很多,目前,主要采用四种方法:溶胶-凝胶法((Sol-Gel)、脉冲激光沉积法、溅射法、分子束外延法。其中,溶胶-凝胶法具有独特优点而备受人们的关注,已发展成为不可缺少的制备方法。本文简要介绍了用溶胶凝胶法(Sol-gel)制备LFO薄膜的基本原理、工艺过程及其特点。 2 溶胶-凝胶法原理溶胶凝胶法(Sol-gel)是属于化学溶液法范畴,它是将有机或无机盐溶于共同的有机溶剂中以形成均匀澄清的前驱体溶液,并将其旋转沉积于衬底上,然后经过适当的热处理,得到薄膜的过程。其制备薄膜的基本过程是原材料、溶胶、凝胶、热处理、薄膜,其中溶胶的配置和热处理是影响薄膜质量的关键。根据原材料的不同,所涉及的化学途径也不一致[3-5]。根据原材料不同,Sol-gel法主要分为两类:水溶液和醇盐法,其中,醇盐法是较为常见的制备方法。以金属醇盐为前驱体,在溶胶配置过程涉及了复杂的化学反应,主要包括有水解和聚合反应[6] 。实际的水解反应和聚合反应进行的程度和速率,取决于金属原料、溶剂、浓度、催化剂、稳定剂、温度等因素,这是一个相当复杂的反应过程。要得到稳定的前驱溶液,必须控制好醇盐的水解活性。采用So-Gel法最大优点是容易配制稳定前驱体溶液,易于控制组元成分。故选择合适的原料来配置前驱溶液十分重要。

钙钛矿型复合氧化物材料(1)

钙钛矿复合氧化物具有独特的晶体结构,尤其经掺杂后形成的晶体缺陷结构和性能,被应用或可被应用在固体燃料电池、固体电解质、传感器、高温加热材料、固体电阻器及替代贵金属的氧化还原催化剂等诸多领域,成为化学、物理和材料等领域的研究热点[1~4]。1 钙钛矿结构钙钛矿型复合氧化物因具有天然钙钛矿(catio3)结构而命名,与之相似的结构有正交、菱方、四方、单斜和三斜构型。标准钙钛矿结构中,a2+和o2_离子共同构成近似立方密堆积,a离子有12个氧配位,氧离子同时有属于8个bo6八面体共享角,每个氧离子有6个阳离子(4a~2b)连接,b2+离子有6个氧配位,占据着由氧离子形成的全部氧八面体空隙。钙钛矿结构的对称性较同种原子构成的最紧密堆积的对称性低,a、b离子大小匹配。各离子半径间满足下列关系: 其中ra、rb、ro分别为a离子、b离子和o2-离子的半径,但也存在不遵循该式的结构,可由goldschmidt容忍因子t来度量: 理想结构只在t接近1或高温情况下出现,多数结构是它的不同畸变形式,这些畸变结构在高温时转变为立方结构,当t在0.77~1.1,以钙钛矿存在;t<0.77,以铁钛矿存在;t&1.1时以方解石或文石型存在。2 钙钛矿型氧化物材料的研究进展标准钙钛矿中a或b位被其它金属离子取代或部分取代后可合成各种复合氧化物,形成阴离子缺陷或不同价态的b位离子,是一类性能优异、用途广泛的新型功能材料。2.1 固体氧化物燃料电池(sofc)材料钙钛矿氧化物燃料电池sofc有以下优点:(1)全固态结构,不存在液态电解质所带来的腐蚀和电解液流失等问题;(2)无须使用贵金属电极,电池成本大大降低;(3)燃料适用范围广;(4)燃料可以在电池内部重整。通过电极材料中的掺杂来提高活性,优化碱锰电池的充放电性能(参见表1)。用含锰的钙钛矿氧化物作为碱性溶液中的阴极材料,获得了好的结果。因为元素锰的d电子结构在锰的三价和四价两种氧化物之间快速传递,表现出很高的电子导电性及良好的电极可充性[5]。通过掺杂pb、co、ba、ca、sr等元素的复合钙钛矿结构,获得掺杂后的改性电极材料,pb的掺入会对mn—o的成键状态和mno2晶格内的结晶水产生影响,使mn2p3.2能级产生化学位移,结合能增大,mn—o离子性增加,共价性减小。经过对改性电极的充放电机理实验,纳米掺杂后电池的放电容量提高40%以上[6]。la1-xsrxfe1-ycoyo3作为一种混合导体材料,具有优良的电子导电性能和离子导电性能,与la0.9sr0.1ca0.8mg0.2o3、ce0.9gd0.1o1.95等新一代中温固体氧化物电解质有很好的相容性。因此,la1-xsrxfe1-ycoyo3体系材料是一种很有发展前景的中温sofc阴极材料[7]。mather等[8]用硝酸盐与尿素熔融燃烧法制备了金属阳极陶瓷材料nisrce0.9yb0.1o3-δ,实验结果表明co的加入可降低烧结温度,可获得高的阳极孔隙率有利于阳极和电解质的吸附,经分析阳极上的亚微孔结构微粒由镍和钙钛矿粒子组成。然而,现有钙钛矿型复合氧化物的离子电导率低,高温下呈现电子或氧离子导电性。在燃料电池应用研究中,高温下器件可稳定运行,但器件的效率或功率较低。以钙钛矿型复合氧化物为电解质时,须在大于700℃的高温下使用。因此,离子导电性高、温度使用范围宽的固体电解质及电极材料研究是今后的主要目标。现有的基质材料mnceo3因稳定性和机械强度的问题,实现实用化仍存在一定难度;基质材料mnzro3虽具有较高的稳定性和机械强度,但材料离子电导率低,其燃料电池的功率很难满足要求。2.2 钙钛矿锰氧化物磁制冷材料磁制冷是利用固体磁性材料的磁热效应来达到制冷的目的。磁卡效应(magnetocaloriceffect,mce)是指当分别对磁性材料等温磁化和绝热退磁时该材料相应地放热和吸热的一种现象。对于钙钛矿氧化物磁制冷材料,利用振动样品磁强计或超导量子干涉仪测量其等温磁化m_h曲线或等磁场下的m_t曲线,计算样品在tc温度下的磁熵变(即最大磁熵变),以此判断该材料作为磁制冷工质的可行性[13]。如果a位被离子半径更小的离子或b位被离子半径更大的离子取代,那么取代的结果使容差因子减小,晶格收缩,铁磁耦合变小,从而使磁熵变减小。szewczyk等[14]、陈伟等[15]以lamno3为基质材料用ca、k、sr、ti为掺杂离子详尽研究了不同磁场下掺杂后lamno3的最大磁熵

(完整版)钙钛矿结构示意图

一、钙钛矿结构示意图 钙钛矿型复合氧化物是结构与钙钛矿CaTiO3相同的一大类化合物,钙钛矿结构可以用ABO3表示(见上图),A位为稀土元素,阳离子呈12配位结构,位于由八面体构成的空穴内;B位为过渡金属元素,阳离子与六个氧离子形成八面体配位。钙钛矿型催化剂在中高温活性高,热稳定性好,成本低。研究发现,表面吸附氧和晶格氧同时影响钙钛矿催化活性。较低温度时,表面吸附氧起主要的氧化作用,这类吸附氧能力由B位置金属决定;温度较高时,晶格氧起作用,不仅改变A、B 位置的金属元素可以调节晶格氧数量和活性,用+2或+4价的原子部分替代晶格中+3价的A、B原子也能产生晶格缺陷或晶格氧,进而提高催化活性。 二、双钙钛矿结构示意图 近年来,双钙钛矿型氧化物得到了越来越广泛的关注,双钙钛矿的通式可表示为A2B’B’’O6,标准的A2B’B’’O6型氧化物可以看作是由不同的BO6八面体规则的相间排列而成。一般情况下B′和B″是不同的过渡金属离子,其晶体结构如图2所示。A2B’B’’O6结构双层钙钛矿型复合氧化物呈NaCl型结构相见排列。多数情况下双层钙钛矿氧化物结构也将发生畸变,它的结构一般由离子

大小、电子组态和离子间相互作用等决定,而且双钙钛矿结构中B’O6和B’’O6八面体的稳定性对整个结构的稳定性起着很重要的作用,B′位、B″位离子相应的氧化物越稳定,则钙钛矿结构越稳定。双钙钛矿型复合氧化物的制备近年已成为材料科学的重要发展方向。从理论角度上看,双钙钛矿氧化物材料可以提供更加丰富的变换组合,给研究者提供了广阔的研究空间。 Sr2FeMoO6属于典型的A2B’B’’O6结构氧化物,其理想形式为Fe3+和Mo5+分别有序地占据B′和B″位置,FeO6八面体和MoO6八面体在三维空间以共角顶的方式相间排列组成三维框架,Sr2+则填充在由8个八面体所围成的空隙的中心位置,如上图所示。实际上,由于占据A位、B′位及B″位的Sr2+、Fe3+、Mo5+并不是像标准立方双钙钛矿结构那样完全匹配,因此,在常温下其结构并非为立方对称,而是沿c轴方向有一个拉伸,畸变为四方对称结构。大量的研究表明,Sr2FeMoO6中存在Fe/Mo离子的反位缺陷(反位缺陷是指Fe离子占据Mo位而Mo离子占据Fe位),而且反位缺陷对Sr2FeMoO6的电输运性质和磁学性质有很大的影响。

钙钛矿型复合氧化物材料(1).

钙钛矿型复合氧化物材料(1) 钙钛矿复合氧化物具有独特的晶体 结构,尤其经掺杂后形成的晶体缺陷结构和性能,被应用或可被应用在固体燃料电池、固体电解质、传感器、高温加热材料、固体电阻器及替代贵金属的氧化还原催化剂等诸多领域,成为化学、物理和材料等领域的研究热点[1~4]。 1 钙钛矿结构 钙钛矿型复合氧化物因具有天然钙钛矿(catio3)结构而命名,与之相似的结构有正交、菱方、四方、单斜和三斜构型。标准钙钛矿结构中,a2 和o2_离子共同构成近似立方密堆积,a离子有12个氧配位,氧离子同时有属于8个bo6八面体共享角,每个氧离子有6个阳离子(4a~2b)连接,b2 离子有6个氧配位,占据着由氧离子形成的全部氧八面体空隙。钙钛矿结构的对称性较同种原子构成的最紧密堆积的对称性低,a、b离子大小匹配。各离子半径间满足下列关系: 其中ra、rb、ro分别为a离子、b离子和o2-离子的半径,但也存在不遵循该式的结构,可由goldschmidt容忍因子t来度量: 理想结构只在t接近1或高温情况下出现,多数结构是它的不同畸变形式,这些畸变结构在高温时转变为立方结构,当t在0.77~1.1,以钙钛矿存在;t<0.77,以铁钛矿存在;t>1.1时以方解石或文石型存在。 2 钙钛矿型氧化物材料的研究进展 标准钙钛矿中a或b位被其它金属离子取代或部分取代后可合成各种复合氧化物,形成阴离子缺陷或不同价态的b位离子,是一类性能优异、用途广泛的新型功能材料。 2.1 固体氧化物燃料电池(sofc)材料 钙钛矿氧化物燃料电池sofc有以下优点:(1)全固态结构,不存在液态电解质所带来的腐蚀和电解液流失等问题;(2)无须使用贵金属电极,电池成本

钙钛矿复合氧化物材料

钙钛矿复合氧化物 钙钛矿复合氧化物具有独特的晶体结构,尤其经掺杂后形成的晶体缺陷结构和性能,被应用或可被应用在固体燃料电池、固体电解质、传感器、高温加热材料、固体电阻器及替代贵金属的氧化还原催化剂等诸多领域,成为化学、物理和材料等领域的研究热点[1~4]。 1钙钛矿结构 钙钛矿型复合氧化物因具有天然钙钛矿(CaTiO3)结构而命名,与之相似的结构有正交、菱方、四方、单斜和三斜构型。标准钙钛矿结构中,A2+和O2_离子共同构成近似立方密堆积,A离子有12个氧配位,氧离子同时有属于8个BO6八面体共享角,每个氧离子有6个阳离子(4A~2B)连接,B2+离子有6个氧配位,占据着由氧离子形成的全部氧八面体空隙。钙钛矿结构的对称性较同种原子构成的最紧密堆积的对称性低,A、B离子大小匹配。各离子半径间满足下列关系: 其中RA、RB、RO分别为A离子、B离子和O2-离子的半径,但也存在不遵循该式的结构,可由Goldschmidt容忍因子t来度量: 理想结构只在t接近1或高温情况下出现,多数结构是它的不同畸变形式,这些畸变结构在高温时转变为立方结构,当t在0.77~1.1,以钙钛矿存在;t1.1时以方解石或文石型存在。 2钙钛矿型氧化物材料的研究进展 标准钙钛矿中A或B位被其它金属离子取代或部分取代后可合成各种复合氧化物,形成阴离子缺陷或不同价态的B位离子,是一类性能优异、用途广泛的新型功能材料。 2.1固体氧化物燃料电池(SOFC)材料 钙钛矿氧化物燃料电池SOFC有以下优点:(1)全固态结构,不存在液态电解质所带来的腐蚀和电解液流失等问题;(2)无须使用贵金属电极,电池成本大大降低;(3)燃料适用范围广;(4)燃料可以在电池内部重整。通过电极材料中的掺杂来提高活性,优化碱锰电池的充放电性能(参见表1)。用含锰的钙钛矿氧化物作为碱性溶液中的阴极材料,获得了好的结果。因为元素锰的d电子结构在锰的三价和四价两种氧化物之间快速传递,表现出很高的电子导电性及良好的电极可充性[5]。通过掺杂Pb、Co、Ba、Ca、Sr等元素的复合钙钛矿结构,获得掺杂后的改性电极材料,Pb的掺入会对Mn—O的成键状态和MnO2晶格内的结晶水产生影响,使Mn2p3.2能级产生化学位移,结合能增大,Mn—O离子性增加,共价性减小。经过对改性电极的充放电机理实验,纳米掺杂后电池的放电容量提高40%以上[6]。La1-xSrxFe1-yCoyO3作为一种混合导体材料,具有优良的电子导电性能和离子导电性能,与La0.9Sr0.1Ca0.8Mg0.2O3、Ce0.9Gd0.1O1.95等新一代中温固体氧化物电解质

(整理)钙钛矿型复合氧化物LaBO3

钙钛矿型复合氧化物LaBO3 钙钛矿型复合氧化物ABO 3 是一种具有独特物理性质和化学性质的新型无机非金属材料。其具有独特的晶体结构,尤其经掺杂后形成的晶体缺陷结构和性能,被应用或可被应用在固体燃料电池、固体电解质、传感器、高温加热材料、固体电阻器及替代贵金属的氧化还原催化剂等诸多领域,成为化学、物理和材料等领域的研究热点。作为一种重要的纳米功能材料,LaBO3(B=V,Cr,Mn,Fe,Co,Ni,Cu)复合氧化系列复合氧化物由于其种类繁多、结构特殊等物理化学特性,已成为当今纳米材料研究的热点之一;它作为一种新兴的热电材料,由于其独特的结构和热电性能,近年来受到了越来越多的研究工作者的关注;它作为一种重要的环境催化材料,具有钙钛矿结构的LaBO3由于其良好的热稳定性、储氧性能以及低廉的成本,一直被看作可以替代贵金属催化剂的首选的高效催化剂,其成为了研究金属氧化物的固体化学与其催化性能关系的合适的模型材料,并在机动车辆尾气催化净化、天然气催化燃烧等领域已显出十分诱人的前景,有望取代价格昂贵、资源匮乏的贵金属催化剂。 理想的ABO3钙钛矿结构是立方晶系,半径较大的稀土金属离子A被12个O 原子以立方对称性包围;B位离子是半径较小的过渡金属离子,处于6个O离子组成的八面体中央。A—O之间距离20.5a,(a为晶格常数)B—O之间距离0.5a,三种离子半径满足: 这个结构的稳定条件是:r A >0.90,r B >0.51。此外,在形成稳定的ABO3 型氧化物时,各种离子必须满足Gold- Schmidt 条件:即哥德布密特允许因子 t: 0.75

相关文档
最新文档