亲和色谱知识简介

亲和色谱知识简介
亲和色谱知识简介

亲和色谱原理及其应用

陕西科技大学职业技术学院生物化工工艺092班郝少杰20090305247

摘要:亲和色谱也称为亲和层析,是液相色谱的一个分支,主要用于生物分子的分离、纯化和分析。是利用生物分子,特别是生物大分子与亲和色谱固定相表面配位体之间,存在的生物学和生物化学过程的特效性亲和吸附作用,来进行选择性分离生物分子的分离方法。

至今,亲和色谱已在生物化学、分子生物学、基因组学、蛋白质组学、生物工程、临床医学、新型高效药物研究中,成为常规的分离、分析和制备的有效工具,并且在生物大分子的结构、功能研究中,成为一种普遍采用的方法。

关键词:亲和色谱,分离方法,纯化,普遍采用的方法。

一、亲和色谱的原理

生物大分子(肽、蛋白质、核酸等)的一个共同特性,是它们具有以特有的高效方式去识别或键合到其他分子上的能力,这就使得所有的生物大分子,可借助亲和作用过程来进行分离和纯化。

将一对能可逆结合和解离生物分子的一方作为配基(也称为配体),与具有大孔径、亲水性的固相载体相偶联、制成专一的亲和吸附剂,再用此亲和吸附剂填充色谱柱,当含有被分离物质的混合物随着流动相流经色谱柱时,亲和吸附剂上的配基就有选择地吸附能与其结合的物质,而其他的蛋白质及杂质不被吸附,从色谱柱中流出,使用适当的缓冲液使被分离物质与配基解吸附,即可获得纯化的目的产物。

二、一般流程

亲和色谱分离的通常是混合在溶液中的物质,比如细胞内容物、培养基或血浆等。待分离的分子在通过色谱柱时被固定相或介质上的基团捕获,而溶液中其他的物质可以顺利通过色谱柱。然后把固态的基质取出后洗脱,目标分子即刻被洗脱下来。如果分离的目的是去除溶液中某种分子,那么只要分子能与介质结合即可,可以不必进行洗脱。

三、影响亲和色谱的因素

1、上样体积若目标产物与配基的结合作用较强,上样体积对亲和色谱效果影响较小。若二者间结合力较弱,样品浓度要高一些,上样量不要超过色谱柱

载量的5%~10%。

2、柱长亲和柱的长度需要根据亲和介质的性质确定。如果亲和介质的载量高,与目标产物的作用力强,可以选择较短的珠子;相反,则应该增加柱子的长度,保证目标产物与亲和介质有充分的作用时间。

3、流速亲和吸附时目标产物与配基之间达到结合反应平衡需要一个缓慢的过程。因此,样品上柱的流速应尽量的慢,保证目标产物与配基之间有充分的时间结合,尤其是二者间结合力弱和样品浓度过高时。

4、温度温度效应在亲和色谱中比较重要,亲和介质的吸附能力受温度影响,可以利用不同的温度进行吸附和洗脱。一般情况下亲和介质的吸附能力随温度的升高而下降,因此在上样时可选择较低的温度,使待分离物质与配基有较大的亲和力,充分地结合;而在洗脱时刻采用较高的温度,使待分离物质与配基的亲和力下降,便于待分离物质从配基上脱落。例如,一般选择在4℃进行吸附,25℃下进行洗脱。

四、特殊应用

开展亲和色谱在中药中应用,前景十分广阔。开展中药小分子特别是多组分分子与蛋白质相互作用研究,可望为中药现代化进程中的中药药理、中药活性成分筛选、药物分子结构改造、科学理解传统中药复方以及药物配伍等环节提供理论依据和指导。本论文利用亲和色谱,采用前沿色谱和竞争置换实验方式,研究了阿魏酸、丹皮酚、葛根素、绿原酸、香草酸等五种中药活性成分与固定化人血清白蛋白(HSA)的相互作用,具体工作如下: 1.采用前沿色谱法测定这五种中药活性成分在固定化HSA柱上的吸附量,应用Langmuir和Bi-Langmuir两种结合等温线模型判断五种中药活性成分与固定化HSA的结合位点种类数。结果表明,阿魏酸、丹皮酚、绿原酸、香草酸与HSA均只存在一类结合位点,而葛根素与HSA存在两类结合位点。 2.采用竞争置换法中的自我竞争方式测定了这五种中药活性成分与HSA的结合常数,发现它们与HSA之间的结合属于弱结合作用。 3.采用竞争置换法中的相互竞争方式研究了阿魏酸、丹皮酚、葛根素三种中药活性成分之间的相互竞争行为。结果表明,阿魏酸与丹皮酚竞争HSA上的同一类结合位点,且阿魏酸和丹皮酚共同竞争葛根素与HSA的一类结合位点。对中医理论上常用含有阿魏酸、丹皮酚、葛根素的中药配伍使用增强彼此疗效的现象进行了解释。

利用探针试剂判断阿魏酸和丹皮酚与HSA作用的具体蛋白结合域为indole位点(siteⅡ)。4.研究了温度对其中四种中药活性成分与固定化HSA相互作用的影响,并根据热力学参数判断它们与HSA的作用力类型。结果表明,阿魏酸和丹皮酚与HSA的作用力类型为氢键和范德华力,绿原酸和香草酸与HSA的作用力类型为静电作用力。

亲和色谱的用途很广泛,可以用来从细胞提取物中分离纯化核酸、蛋白,还可以从血浆中分离抗体。分离重组蛋白就经常使用亲和色谱。通过基因修饰为蛋白加上一些人为的特性,这些特性使蛋白选择性地与配体结合,从而达到分离的目的。亲和色谱的另一大用途是从血浆中分离抗体。

五、结语

亲和色谱是色谱科学中一个古老而又极其富有生命力的分支,其独特的基于生物结合特异性的分离机制使其在生物大分子及细胞的分离中起着十分重要的作用。亲和色谱的发展重点是保留机制的深入研究和具有更强的针对性及稳定性的新型配基的发掘。这两方面的工作相辅相成,使亲和色谱法在生化分离分析及生物大分子结构功能研究中成为一种更具有普遍性的方法。

参考文献

1、《亲和色谱方法及应用》于世林;

2011年12月1日

色谱的基础知识

有关色谱图的概念 图5-11给出了色谱图示意图, 有关术语列于表5-1-1(https://www.360docs.net/doc/e28339074.html,/books/C/773/0.html)。 2.有关保留值的术语 色谱最常用的保留值是保留时间。在填充柱GC中,特别是测定物化参数时,常用保留体 积的概念。表5-1-2列出了各种保留值的定义(参见图5-1-1)。 表5-1-2 有关保留值的术语(https://www.360docs.net/doc/e28339074.html,/books/C/774/0.html) 表5-1-2涉及到一个压力校正因子j。因为色谱柱中各处的压力不同,故载气体积流量 也不同,j就是用来校正色谱柱中压力梯度的,其定义为 式中,pi为柱入口处压力,即柱前压;po为柱出口压力,一般情况下(除使用MS外)为大气压力。 还有一个载气流速的问题。通常用皂膜流量计测得的是检测器或柱出口处的温度和压力条件下的载气体积流量F0,扣除水的蒸气压,并经温度校正后,就得到柱出口处的实际载气流量F∞: Fe为色谱柱中载气的平均流速。由于气体是可压缩的,虽然单位时间通过色谱柱中任一横截面的载气质量是不变的,但由于柱中各处载气压力不同,密度不同,故体积流速也不同。为求得色谱柱中载气的平均流速,还需对F∞进行压力校正: 毛细管气相色谱中更多采用的是载气平均线性流速u。当Fe不变时,载气通过色谱柱的线速度随柱内径不同而不同。为此采用载气线性流速(简称线流速)’ 来描述载气在色谱柱中的前进速度。

3.有关分离的参数 (1)相对保留值αα又叫选择性或选择性因子。即在一定的分离条件下,保留时间大的组分B与保留时间小的组分A的调整保留值之比: 这是一个很常用的色谱参数。当固定相和流动相一定时,一对物质的α可以认为只是温度的函数,故α常用于色谱峰的定性,在动力学分离理论中,α用来描述一对物质的分离程度优劣。 (2)分配系数K 其定义为在平衡状态时,某一组分在固定液(CL)与流动相(CC)中的浓度之比: (3)容量因子k 也叫分配比或分配容量。它定义为平衡状态时,组分在固定相与流动相中的质量之比: (4)分离度R 表示相邻两个色谱峰分离程度的优劣,其定义为(参见图5-1-1): 当两峰的峰高相差不大,且峰形接近时,可认为WA=WB,这时R=△tR/W。对于高斯峰(正态分布)来说,R=1.5时,两峰的重叠部分为0.3%,被认为是达到了基线分离。 有时两峰远未分离,无法测定峰底宽,就可采用峰高分离度Rh来描述其分离情况(见图5-1-2): 可见,Rh等于1时,相邻两峰就达到了基线分离。 (5)分离数TZ或SN 它是指某一同系物相邻两峰间可容纳的峰数。其定义为

色谱分析仪基础知识培训

在线色谱分析仪基础知识 色谱法,又称色层法或层析法,是一种物理化学分析法,它利用不同溶质(样品)与固定相和流动相之间的作用力(分配、吸附、离子交换等)的差别,当两相做相对移动时,各溶质在两相间进行多次平衡,使各溶质达到相互分离。它的英文名称为:chromatography 这个词来源于希腊字chroma和graphein,直译成英文时为color和writing两个字;直译成中文为色谱法。但也有人意译为色层法或层析法。 1906年由俄国科学家茨维特研究植物色素分离,提出色谱法概念;他在研究植物叶的色素成分时,将植物叶子的萃取物倒入填有碳酸钙的直立玻璃管,然后加入油醚使其自由流下,结果色素中各组分互相分离形成各种不同颜色的谱带。按光谱的命名式,这种法因此得名为色谱法。以后此法逐渐应用于无色物质的分离,“色谱”二字虽已失去原来的含义,但仍被人们沿用至今。 茨维特经典色谱分析实验示意图 9.1基础知识 固定相——色谱法中,静止不动的一相(固体或液体)称为固定相(stationary phase);流动相——运动的一相(一般是气体或液体)称为流动相(mobile phase)。 按固定相的几形式色谱分析法分为: 柱色谱法(column chromatography)

柱色谱法是将固定相装在一金属或玻璃柱中或是将固定相附着在毛细管壁上做成色谱柱,试样从柱头到柱尾沿一个向移动而进行分离的色谱法。目前在线色谱仪采用的是柱色谱法。 纸色谱法(paper chromatography) 纸色谱法是利用滤纸作固定液的载体,把试样点在滤纸上,然后用溶剂展开,各组分在滤纸的不同位置以斑点形式显现,根据滤纸上斑点位置及大小进行定性和定量分析。 薄层色谱法(thin-layer chromatography, TLC) 薄层色谱法是将适当粒度的吸附剂作为固定相涂布在平板上形成薄层,然后用与纸色谱法类似的法操作以达到分离目的。 简单的说,色谱分析仪就是基于色谱法原理用色谱柱先将混合物分离开来,然后再用检测器对各组分进行检测。与前面介绍的几种气体成分分析仪不同,色谱分析仪能对被测样品进行全面的分析,既能鉴定混合物中的各种组分,还能测量出各组分的含量。因此色谱分析仪在科学实验和工业生产中应用的越来越广泛。 色谱分离基本原理: 由以上法可知,在色谱法中存在两相,一相是固定不动的,我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。 色谱法的分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。 使用外力使含有样品的流动相(气体、液体)通过一固定于柱中或平板上、与流动相互不相溶的固定相表面。当流动相中携带的混合物流经固定相时,混合物中的各组分与固定相发生相互作用。 由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中先后流出,色谱柱的出口安装一个检测器,当有组分从色谱柱流入检测器中,检测器将输出对应于该组分浓度人小的电信号,通过记录仪把各个组分对应的输出信号记录下来,就形成了色谱图,如下图所示。根据各组分在色谱图中出现的时问以及峰值大小可以确定混合物的组成以及各组分的浓度。

色谱分析理论基础

练习题 一、判断题 1、色谱峰的形状可用塔板理论说明,色谱峰的展宽可用速率理论解释。() 2、色谱柱理论塔板数n与保留时间t R的平方成正比,组分的保留时间越长,色谱柱理 论塔板数n值越大,分离效果越高。() 3、色谱分离过程中,单位柱长内,组分在两相间的分配次数越多分离效果越好。 () 4、氢气具有较大的热导系数,作为气相色谱的载气,具有较高的检测灵敏度,但其分 子量较小也使速率理论中的分子扩散项增大,使柱效降低。() 5、色谱内标法对进样量和进样重复性没有要求,但要求选择合适的内标物和准确配制 试样。() 二、选择题 1,对某一组分来说,在一定的柱长下,色谱峰的宽或窄主要决定于组分在色谱峰中的()A,保留值B,分配系数C,运动情况D,理论塔板数 2,下列有关分离度的描述中,正确的是()A,由分离度计算式来看,分离度与载气流速无关 B,分离度取决于相对保留值,与峰宽无关 C,色谱峰宽与保留值差决定了分离度大小 D,高柱效一定具有高分离度 3,只要柱温,固定相性质不变,即使柱径,柱长,填充情况及流动相速度有所变化,衡量色谱柱对被分离组分保留能力的参数可保持不变的是()A,保留值B,校正保留值C,相对校正保留值 D,分配比(或分配容量)E,分配系数 4,在色谱流出曲线上,两峰间距离决定于相应两组分在两相间的()A, 分配比B,分配系数C,扩散速度 D,理论塔板数E,理论塔高度 5,在范氏方程中,载气的粒度主要影响()A,载气流速B,涡流扩散C,分子扩散 D,气相传质阻力E,液相传质阻力 6,如果样品比较复杂,相邻两峰间距离太近或操作条件不易控制稳定,要准确测量保留值有一定的困难时,可以()A,利用相对保留值进行定性 B,用加入已知物以增加峰高的办法进行定性 C,利用文献保留值数据进行定性 D,与化学方法配合进行定性 E,利用选择性检测器进行定性 三、简答题

最全的液相色谱知识 整理

最全的液相色谱知识(包括原理,维护,基础操作,处理方法) HPLC日常维护- 进样阀问题可能原因解决方法 手动进样阀,转动不灵转子密封损坏更换或调整转子密封转子太紧调整转子的松紧度 手动进样阀,载样困难进样阀安装不当重新安装定量环阻塞清洗或更换定量环进样器污染清洗或更换进样器管路阻塞清洗或更换管路 自动进样阀,不能转动无压力(或电源)提供恰当的压力(电源)转子太紧调整转子的松紧度 进样阀安装不当重新安装 自动进样阀,其它问题 阻塞清洗或更换阻塞部件机械故障见随机维修手册控制器故障维修或更换控制器 出现问题可能原因解决方法 保留时间变 化柱温变化柱恒温,必要时需配置恒温箱 等度与梯度间未能充分平衡至少用10倍柱体积的流动相平衡柱缓冲液容量不够用>25mmol/L的缓冲液 柱污染每天冲洗柱 柱内条件变化稳定进样条件,调节流动相 柱快达到寿命采用保护柱 保留时间缩 短流速增加检查泵,重新设定流速 样品超载降低样品量 键合相流失流动相PH值保持在3~7.5检查柱的方向流动相组成变化防止流动相蒸发或沉淀 温度增加柱恒温 保留时间延 长流速下降管路泄漏,换泵密封圈,排除泵内气泡 硅胶柱上活性点变化用流动相改性剂,如加三乙胺,或采用碱至钝化柱键合相流失流动相PH值保持在3~7.5检查柱的方向 流动相组成变化防止流动相蒸发或沉淀 温度降低柱恒温 出现肩峰或 分叉样品体积过大用流动相配样,总的样品体积小于第一峰的15% 样品溶剂过强采用较弱的样品溶剂 柱塌陷或形成短路通道更换色谱柱,采用较弱腐蚀性条件 柱内烧结不锈钢失效更换烧结不锈钢,加在线过滤器,过滤样品 进样器损坏更换进样器转子 鬼峰进样阀残余峰每次用后用强溶剂清洗阀,改进阀和样品的清洗 样品中未知物处理样品 柱未平衡 重新平衡柱,用流动相作样品溶剂(尤其是离子对 色谱)

(干货)液相色谱基础知识大全

一、基本原理 高效液相色谱(HPLC)法是以高压下的液体为流动相,并采用颗粒极细的高效固定相的柱色谱分离技术。高效液相色谱对样品的适用性广,不受分析对象挥发性和热稳定性的限制,因而弥补了气相色谱法的不足。在目前已知的有机化合物中,可用气相色谱分析的约占20%,而80%则需用高效液相色谱来分析。 高效液相色谱和气相色谱在基本理论方面没有显著不同,它们之间的重大差别在于作为流动相的液体与气体之间的性质的差别。 二、高效液相色谱分析原理 (1)、高效液相色谱分析的流程:由泵将储液瓶中的溶剂吸入色谱系统,然后输出,经流量与压力测量之后,导入进样器。被测物由进样器注入,并随流动相通过色谱柱,在柱上进行分离后进入检测器,检测信号由数据处理设备采集与处理,并记录色谱图。废液流入废液瓶。遇到复杂的混合物分离(极性范围比较宽)还可用梯度控制器作梯度洗脱。这和气相色谱的程序升温类似,不同的是气相色谱改变温度,而HPLC改变的是流动相极性,使样品各组分在最佳条件下得以分离。 (2)、高效液相色谱的分离过程:同其他色谱过程一样,HPLC也是溶质在固定相和流动相之间进行的一种连续多次交换过程。它借溶质在两相间分配系数、亲和力、吸附力或分子大小不同而引起的排阻作用的差别使不同溶质得以分 离。 开始样品加在柱头上,假设样品中含有3个组分,A、B和C,随流动相一起进入色谱柱,开始在固定相和流动相之间进行分配。分配系数小的组分A不易被固定相阻留,较早地流出色谱柱。分配系数大的组分C在固定相上滞留时间长,较晚流出色谱柱。组分B的分配系数介于A,C之间,第二个流出色谱柱。若一个含有多个组分的混合物进入系统,则混合物中各组分按其在两相间分配系数的不同先后流出色谱柱,达到分离之目的。 不同组分在色谱过程中的分离情况,首先取决于各组分在两相间的分配系数、吸附能力、亲和力等是否有差异,这是热力学平衡问题,也是分离的首要条件。其次,当不同组分在色谱柱中运动时,谱带随柱长展宽,分离情况与两相之间的扩散系数、固定相粒度的大小、柱的填充情况以及流动相的流速等有关。所以分离最终效果则是热力学与动力学两方面的综合效益。 三、工作原理 储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相) 内, 由于样品溶液中的各组分在两相中具有不同的分配系数, 在两相中作相对运动时, 经过反复多次的吸附- 解吸的分配过程,各组分在移动速度上产生较大的差别, 被分离成单个组分依次从柱内流出, 通过检测器时, 样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来。 四、HPLC的特点和优点 HPLC有以下特点: 高压——压力可达150~300 Kg/cm2。色谱柱每米降压为75 Kg/cm2以上。 高速——流速为0.1~10.0 ml/min。 高效——可达5000塔板每米。在一根柱中同时分离成份可达100种。 高灵敏度——紫外检测器灵敏度可达0.01ng。同时消耗样品少。 HPLC与经典液相色谱相比有以下优点:

气相色谱理论基础

气相色谱理论基础 原理分类 【情节1】食品添加剂的检测,一个学生进入自选超市,拿起一袋零食,包装袋上有各种成分的含量,这些含量是怎么检测出来的呢?通常由两种方法:一种是先将各组分分离开,然后对已分离的组分进行测定;另一种是不需将组分分离开,直接对感兴趣的组分进行测定。其中第一种分离、分析方法也就是常用的色谱法。近代首先认识到这种分离现象和分离方法大有可为的是俄国的植物学家茨维特。 【知识点1】茨维特的经典实验 1906年,俄国植物学家茨维特(M.S.Tswett)在研究植物色素的过程中,做了一个经典的实验;在一根玻璃管的狭小一端塞上一小团棉花,在管中填充沉淀碳酸钙,这就形成了一个吸附柱,然后将其与吸滤瓶连接,使绿色植物叶子的石油醚抽取液自柱通过。结果植物叶子中的几种色素便在玻璃柱上展开:留在最上面的是两种叶绿素;绿色层下面接着叶黄质;随着溶剂跑到吸附层最下层的是黄色的胡萝卜

素。 如此则吸附柱成了一个有规则的、与光谱相似的色层。接着他用纯溶剂淋洗。使柱中各层进一步展开,达到清晰的分析。然后把该潮湿的吸附柱从玻璃管中推出,依色层的位置用小刀切开,于是各种色素就得以分离。再用醇为溶剂将它们分别溶下,即得到了各成分的纯溶液。 【思考题1】俄国植物学家茨维特用于分离植物色素的色谱法属()色谱法。 【情节2】气相色谱法可比喻为一群运动员在一条泥泞的道路顺风赛跑,他们同时起跑后,因本身体力差异及道路、风力的影响,相互间的距离逐渐增大,最后于不同的时间到达终点。若把欲分离的组分视为运动员,固定相与流动相各为道路上的泥泞与顺风,色谱柱为道路,那么可以将色谱法分离、分析的原理写成:利用组分在体系中固定相与流动相的分配有差异,当组分在两相中反复多次进行分配并随流动相向前移动,各组分沿色谱柱运动的速度就不同,分配系数小的组分较快地从色谱柱流出。 【知识点2】分类和基本原理一 气相色谱法是以惰性气体(又称载气)作为流动相,以固定液或固体吸附剂作为固定相的色谱法。 气相色谱法按不同的分类方式可分为不同的类别: (1)气相色谱法按使用固定相的类型分为气液色谱法和气固色谱法。

色谱分析仪基础知识培训.doc

在线色谱分析仪基础知识 色谱法,又称色层法或层析法,是一种物理化学分析方法,它利用不同溶质(样品)与固定相和流动相Z间的作用力(分配、吸附、离子交换等)的差别,当两相做相对移动时, 各溶质在两相间进行多次平衡,使各溶质达到相互分离。它的英文名称为:chromatography 这个词来源于希腊字chroma和graphein,直译成英文时为color和writing两个字;直译成中文为色谱法。但也有人意译为色层法或层析法。 1906年由俄国科学家茨维特研究植物色素分离,提出色谱法概念;他在研究植物叶的色素成分时,将植物叶子的萃取物倒入填有碳酸钙的直立玻璃管内,然后加入石油瞇使其自由流下,结果色素中各组分互相分离形成各种不同颜色的谱带。按光谱的命名方式,这种方法因此得名为色谱法。以后此法逐渐应用于无色物质的分离,“色谱”二字虽已失去原来的含义,但仍被人们沿用至今。 「石油SJ ; 2■诸芾;3■碳酸钙 茨维特经典色谱分析实验示意图 9. 1基础知识 固定相--- 色谱法中,静止不动的一相(固体或液体)称为固定相(stationary phase); 流动相一一运动的一相(一般是气体或液体)称为流动相(mobile phase)0 按固定相的几何形式色谱分析法分为: 柱色谱法(column chromatography) 柱色谱法是将固定相装在一金属或玻璃柱中或是将固定相附着在毛细管内壁上做成色谱柱,试样从柱头到柱尾沿一个方向移动而进行分离的色谱法。目前在线色谱仪采用的是柱色谱法。 纸色谱法(paper chromatography)

纸色谱法是利用滤纸作固定液的载体,把试样点在滤纸上,然后用溶剂展开,各组分在 滤纸的不同位置以斑点形式显现,根据滤纸上斑点位置及大小进行定性和定量分析。 薄层色谱法(thin-layer chromatography, TLC) 薄层色谱法是将适当粒度的吸附剂作为固定相涂布在平板上形成薄层,然后用与纸色谱 法类似的方法操作以达到分离目的。 简单的说,色谱分析仪就是基于色谱法原理用色谱柱先将混合物分离开来,然后再用检 测器对各组分进行检测。与前面介绍的几种气体成分分析仪不同,色谱分析仪能对被测样品 进行全面的分析,既能鉴定混合物中的各种组分,还能测量出各组分的含量。因此色谱分析 仪在科学实验和工业生产中应用的越来越广泛。 色谱分离基本原理: 由以上方法可知,在色谱法屮存在两相,一相是固定不动的,我们把它叫做固定相;另 一相则不断流过固定相,我们把它叫做流动相。 色谱法的分离原理就是利用待分离的各种物质在两相屮的分配系数、吸附能力等亲和能 力的不同来进行分离的。 使用外力使含有样品的流动相(气体、液体)通过一固定于柱中或平板上、与流动相互 不相溶的固定相表血。当流动相中携带的混合物流经固定相吋,混合物中的各组分与固定相 发生相互作用。 由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱 不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相 保留的时间不同,从而按一定次序由固定相中先后流出,色谱柱的出口安装一个检测器,当 有组分从色谱柱流入检测器屮,检测器将输出对应于该组分浓度人小的电信号,通过记录仪 把各个组分对应的输出信号记录下来,就形成了色谱图,如下图所示。根据各组分在色谱图 屮出现的时问以及峰值人小可以确定混合物的组成以及 各组分的浓度。 门、甘& A+B (1)載气斗「 A+B B A ⑵栽气—EZW 色谱仪 (A+B) B (3)載气T (4)载气T

色谱的基础知识

有关色谱图得概念 图5-11给出了色谱图示意图, 有关术语列于表5-1-1()。 2、有关保留值得术语 色谱最常用得保留值就是保留时间。在填充柱GC中,特别就是测定物化参数时,常用保留体 积得概念。表5-1-2列出了各种保留值得定义(参见图5-1-1)。 表5-1-2 有关保留值得术语() 表5-1-2涉及到一个压力校正因子j。因为色谱柱中各处得压力不同,故载气体积流量 也不同,j就就是用来校正色谱柱中压力梯度得,其定义为 式中,pi为柱入口处压力,即柱前压;po为柱出口压力,一般情况下(除使用MS外)为大气压力。 还有一个载气流速得问题。通常用皂膜流量计测得得就是检测器或柱出口处得温度与压力条件下得载气体积流量F0,扣除水得蒸气压,并经温度校正后,就得到柱出口处得实际载气流量F∞: Fe为色谱柱中载气得平均流速。由于气体就是可压缩得,虽然单位时间通过色谱柱中任一横截面得载气质量就是不变得,但由于柱中各处载气压力不同,密度不同,故体积流速也不同。为求得色谱柱中载气得平均流速,还需对F∞进行压力校正: 毛细管气相色谱中更多采用得就是载气平均线性流速u。当Fe不变时,载气通过色谱柱得线速度随柱内径不同而不同。为此采用载气线性流速(简称线流速)’ 来描述载气在色谱柱中得前进速度。

3、有关分离得参数 (1)相对保留值αα又叫选择性或选择性因子。即在一定得分离条件下,保留时间大得组分B与保留时间小得组分A 得调整保留值之比: 这就是一个很常用得色谱参数。当固定相与流动相一定时,一对物质得α可以认为只就是温度得函数,故α常用于色谱峰得定性,在动力学分离理论中,α用来描述一对物质得分离程度优劣。 (2)分配系数K 其定义为在平衡状态时,某一组分在固定液(CL)与流动相(CC)中得浓度之比: (3)容量因子k 也叫分配比或分配容量。它定义为平衡状态时,组分在固定相与流动相中得质量之比: (4)分离度R 表示相邻两个色谱峰分离程度得优劣,其定义为(参见图5-1-1): 当两峰得峰高相差不大,且峰形接近时,可认为WA=WB,这时R=△tR/W。对于高斯峰(正态分布)来说,R=1、5时,两峰得重叠部分为0、3%,被认为就是达到了基线分离。 有时两峰远未分离,无法测定峰底宽,就可采用峰高分离度Rh来描述其分离情况(见图5-1-2): 可见,Rh等于1时,相邻两峰就达到了基线分离。 (5)分离数TZ或SN 它就是指某一同系物相邻两峰间可容纳得峰数。其定义为

色谱基础知识

. ;. 气相色谱柱固定相简介 毛细管色谱柱最常用的是聚硅氧烷和聚乙二醇,另外还有一类是小的多孔粒子组成的聚合物或沸石(例如 氧化铝、分子筛等)。 1、聚硅氧烷 聚硅氧烷由于其用途广泛、性能稳定性,是目前最常用的固定相。标准的聚硅氧烷是由许多单个的硅氧烷链接而成。每个硅原子与两个功能集团相连,最常见的功能集团为甲基和苯基,此外还有氰丙基和三氟丙基。这些功能集团的类型和数量决定了色谱柱固定相的性质。最基本的聚硅氧烷是由100%甲基取代的,相应的柱子牌号有:HP-1、BP-1、DB-1、SE-30等。若有其他取代基取代甲基时,该取代基的数量一般由一个百分数来表示。例如:5%二苯基-95%二甲基聚硅氧烷表示其包含有5%的苯基集团和95%的甲基集团(“二”是表示每个硅原子包含有两个特定集团)。相应的柱子牌号有:HP-5、BP-5、DB-5、SE-54等。如果甲基的百分数没有表征,则表示它们的含量是100%(如50%苯基-甲基聚硅氧烷表示甲基的含量为50%)。相应的柱子牌号有:HP-50+、BPX-200、DB-17等。 2、聚乙二醇 聚乙二醇是另外一类广泛应用的固定相。有些我们称之为“WAX”或“FFAP”。聚乙二醇的稳定性、使用温度范围都比聚硅氧烷要差一些。聚乙二醇固定相色谱柱的寿命较短,而且容易受温度和环境(有氧环境等)的影响。但由于它的极性比较强,对极性物质有特殊的分离效能,所以仍是我们常用的固定相之一。为了提高分离效能,还有用pH阳离子改性聚乙二醇固定相。FFAP柱就是一类用对苯二甲酸改性的聚乙二醇作为固定相的(DB-FFAP)。这种色谱柱常用于分析分离酸性化合物。另外,我们也用碱性化合物对聚乙二醇固定相改性用来分析分离碱性化合物(CAM)。相应的柱子牌号有:HP-Wax、DB-Wax、Carbowax-10,HP-INNOWax、DB-WAXetr、Carbowax-20M,HP-FFAP、DB FFAP、OV-351等。 3、气-固固定相 气-固固定相就是在管壁表面粘合很薄一层的小颗粒物质,通常叫做多孔层开口管(PLOT)柱。样品是通过在气—固固定相上产生吸附/脱附作用来分离的。它们常用来分离各种气体及低沸点溶剂。最为常用的PLOT柱固定相有苯乙烯衍生物、氧化铝和分子筛等。相应的柱子牌号有:HP PLOT Al2O3“S”、HP PLOT Al2O3“KCl”、GS-Al2O3、CP-Al2O3/KCl、HP PLOT Q、HP PLOT U等。 4、键合和交联固定相为了改善柱子的性能,常采用键合和交联的方式。交联是将多个聚合物链单体通过共价键进行连接,键合是将其再通过共价键与管壁表面相连。这样处理的结果使得固定相的热稳定性和溶剂稳定性都有较大的提高。所以,键合交联固定相色谱柱可以通过溶剂的浸洗,从而去除柱内的污染物。

色谱基础知识

精品文档 气相色谱柱固定相简介 毛细管色谱柱最常用的是聚硅氧烷和聚乙二醇,另外还有一类是小的多孔粒子组成的聚合物或沸石(例如 氧化铝、分子筛等)。 1、聚硅氧烷 聚硅氧烷由于其用途广泛、性能稳定性,是目前最常用的固定相。标准的聚硅氧烷是由许多单个的硅氧烷链接而成。 每个硅原子与两个功能集团相连,最常见的功能集团为甲基和苯基,此外还有氰丙基和三氟丙基。这些功能集团的类 型和数量决定了色谱柱固定相的性质。最基本的聚硅氧烷是由100%甲基取代的,相应的柱子牌号有:HP-1、BP-1、DB-1 、SE-30 等。若有其他取代基取代甲基时,该取代基的数量一般由一个百分数来表示。例如:5%二苯基-95% 二甲基聚硅氧烷表示其包含有5%的苯基集团和95%的甲基集团(“二”是表示每个硅原子包含有两个特定集团)。相应的柱子牌号有:HP-5、BP-5、DB-5 、SE-54 等。如 果甲基的百分数没有表征,则表示它们的含量是100%(如50%苯基-甲基聚硅氧烷表示甲基的含量为50%)。相应的柱子牌号有:HP-50+ 、BPX-200 、DB-17 等。 2、聚乙二醇 聚乙二醇是另外一类广泛应用的固定相。有些我们称之为“WAX或“FFAP。聚乙二醇的稳定性、使 用温度范围都比聚硅氧烷要差一些。聚乙二醇固定相色谱柱的寿命较短,而且容易受温度和环境(有氧环境等)的影响。但由于它的极性比较强,对极性物质有特殊的分离效能,所以仍是我们常用的固定相之一。为了提高分 离效能,还有用pH 阳离子改性聚乙二醇固定相。FFAP 柱就是一类用对苯二甲酸改性的聚乙二醇作为固定相的 (DB-FFAP)。这种色谱柱常用于分析分离酸性化合物。另外,我们也用碱性化合物对聚乙二醇固定相改性用来分析分离碱性化合物(CAM)。相应的柱子牌号有:HP-Wax、DB-Wax 、Carbowax-10,HP-INNOWax 、DB-WAXetr 、Carbowax-20M,HP-FFAP、DB FFAP、OV-351 等。 3、气-固固定相 气-固固定相就是在管壁表面粘合很薄一层的小颗粒物质,通常叫做多孔层开口管(PLOT)柱。样品是 通过在气—固固定相上产生吸附/脱附作用来分离的。它们常用来分离各种气体及低沸点溶剂。最为常用的PLOT 柱固定相有苯乙烯衍生物、氧化铝和分子筛等。相应的柱子牌号有:HP PLOT Al 2O3 “S、”HP PLOT Al2O3“KCl、”GS-Al2O3、CP-Al2O3/KCl、HP PLOT Q、HP PLOT U 等。 4、键合和交联固定相为了改善柱子的性能,常采用键合和交联的方式。交联是将多个聚合物链单体通过共价键进行 连接,键合是将其再通过共价键与管壁表面相连。这样处理的结果使得固定相的热稳定性和溶剂稳定性都有较大的提高。所以,键合交联固定相色谱柱可以通过溶剂的浸洗,从而去除柱内的污染物。

气相色谱柱的基本知识

气相色谱柱的基本知识 本文简单介绍了气相色谱柱固定相极性、保留机制、基本柱参数,以及气相柱固定相选择的方法。仅供参考。 1、固定相极性:极性或非极性。相似相容原理:非极性化合物-非极性固定相 80%的应用使用最普遍的固定相:ZB-1、ZB-5、ZB-WAX;其他20%的应用使用特殊固定相。 Q Q 3 0 9 3 3 5 7 4 0 5 2、固定相保留机制:(1)色散力;(2)永久偶极;(3)诱导偶极;(4)H-键合;(5)π-π键合(1)色散力:非极性相互作用,最弱的作用力,按沸点差别分离 对应色谱柱:ZB-1、ZB-1ms、ZB-5、ZB-5ms (2)偶极-偶极:极性相互作用,中等强度,最普遍用于含O、N或卤化的化合物 对应色谱柱:ZB-624、ZB-1701、ZB-wax、ZB-waxplus、ZB-FFAP (3)H-键合:极性相互作用,最强的相互作用(有时是不利的) 对应色谱柱:ZB-wax、ZB-waxplus、ZB-FFAP (4)π-π作用:π电子的相互作用,中等强度,如芳香族、腈类、羰类和烯/炔 对应色谱柱:ZB-5、ZB-5ms、ZB-35、ZB-50、ZB-624、ZB-1701 3、气相柱基本柱参数,膜厚、柱容量、色谱柱极限温度 图1 色谱柱规格描述 (1)膜厚:一根气相柱的膜厚度会影响到几个重要的色谱参数 ①保留:厚膜柱对低沸点化合物有更强保留 ②柱效:膜越薄柱效越高 ③活性:膜越厚对酸碱的活性越低 ④载样量:膜越厚载样量越大 ⑤流失:膜越薄流失越低

(2)柱容量:色谱柱对溶质可容纳的最大值,超过该值,峰型会发生畸变。 与柱容量相关的因素:①固定相与溶质极性的匹配性;②膜厚;③内径;④柱长 (3)色谱柱温度极限: ①温度下限---低于该温度使用柱效会降低,但不会破坏固定相; ②恒温温度上限---可在此温度长时间使用; ③程序升温温度上限---不可超过此温度,在此温度不能超过10分钟。 图 2 Zebron系列气相柱固定相类型

色谱基础知识

色谱基础知识 相色谱的分离基本原理是什么? 1、利用混合物中各组分在流动相和固定相中具有不同的溶解和解吸能力,或不同的吸附和脱附能力或其他亲和性能作用的差 异。 2、当两相作相对运动时样品各组分在两相中反复多次受到各种作用力的作用,从而使混合物中各组分获得分离。 简述气相色谱仪的基本组成。 基本部件包括5个组成部分。 1、气路系统; 2、进样系统; 3、分离系统; 4、检测系统; 5、记录系统。 根据固定相不同色谱法分为几类? 根据1、固定相不同可分为两类: 2、气固色谱法,液固色谱 3、气液色谱法,液液色谱 简述气相色谱法的特点? 1、高分离效能; 2、高选择性; 3、高灵敏度; 4、快速; 5、应用广泛。 什么叫保留时间? 1、从进样开始至每个组分流出曲线达极大值所需的时间, 2、可作为色谱峰位置的标志,

3、此时间称为保留时间,用表示。 什么是色谱图? 进样后色谱柱1、流出物通过检测器系统时,所产生的 2、响应信号时 3、时间或载气流出气体积的 4、曲线图称为色谱图。 什么是色谱峰?峰面积? 1、色谱柱流出组分通过检测器系统时所产生的响应信号的微分曲线称为色谱峰。 2、出峰到峰回到基线所包围的面积,称为峰面积。 怎样测定载气流速? 高档色谱仪上均安装有自动测试装置,无自动测试装置可用皂膜流量计测,将皂膜流量计连接在测检测出口 (也可将色谱柱与检测器断开皂膜流量计 测接在色谱柱一端),测试每分钟的流速。测完后色谱升温压力表指示会升高,原因是温度升高色谱柱对气 体的阻力增加,不要把压力调下来,当色谱温度升高稳流指示不会改变。测试载气流速在室温下测试。 怎样控制载气流速? 载气流速的控制主要靠气路上高压钢瓶上的减压阀减压,然后经仪器的稳压阀稳压,再经稳流阀以达到控制载 气流量稳定,减压阀给出的压力要高出稳压后的压力。非程序升温色谱一般没有稳流阀,只靠稳压阀控制流速。 气相色谱分析怎样测其线速度? 1、一般测定线速度实际上是测定色谱柱的死时间; 2、甲烷作为不滞留物,测定甲烷的保留时间(TCD检测器以空气峰), 3、用色谱柱的长度除以甲烷的保留时间得到色谱柱的平均线速度。

高效液相色谱基本常识

被分离组分在柱中的洗脱原理 Ⅱ基本概念和理论 一、基本概念和术语 1.色谱图和峰参数 ⊕色谱图(chromatogram)--样品流经色谱柱和检测器,所得到的信号-时间曲线,又称色谱流出曲线(elution profile). ⊕基线(base line)--流动相冲洗,柱与流动相达到平衡后,检测器测出一段时间的流出曲线。一般应平行于时间轴。 ⊕噪音(noise)――基线信号的波动。通常因电源接触不良或瞬时过载、检测器不稳定、流动相含有气泡或色谱柱被污染所致。 ⊕漂移(drift)基线随时间的缓缓变化。主要由于操作条件如电压、温度、流动相及流量的不稳定所引起,柱内的污染物或固定相不断被洗脱下来也会产生漂移。 ⊕色谱峰(peak)--组分流经检测器时相应的连续信号产生的曲线。流出曲线上的突起部分。正常色谱峰近似于对称性正态分布曲线(高斯Gauss曲线)。不对称色谱峰有两种:前延峰(leading peak)和脱尾峰(tailing peak ).前者少见。 ⊕拖尾因子(tailing factor,T)--T=B/A,用以衡量色谱峰的对称性。也称为对称因子(symmetry factor)或不对称因子(asymmetry factor)《中国药典》规定T应为0.95~1.05。T<0.95为前延峰,T>1.05为拖尾峰。 ⊕峰底――基线上峰的起点至终点的距离。 ⊕峰高(Peak height,h)――峰的最高点至峰底的距离。 ⊕峰宽(peak width,W)--峰两侧拐点处所作两条切线与基线的两个交点间的距离。W=4σ。⊕半峰宽(peak width at half-height,Wh/2)--峰高一半处的峰宽。W h/2=2.355σ。 ⊕标准偏差(standard deviation, σ)--正态分布曲线x=±1时(拐点)的峰宽之半。正常峰宽的拐点在峰高的0.607倍处。标准偏差的大小说明组分在流出色谱柱过程中的分散程度。σ小,分散程度小、极点浓度高、峰形瘦、柱效高;反之,σ大,峰形胖、柱效低。 ⊕峰面积(peak area,A)――峰与峰底所包围的面积。A=×σ×h=2.507σh=1.064Wh/2h 2.定性参数(保留值) ⊕死时间(dead time,t0)--不保留组分的保留时间。即流动相(溶剂)通过色谱柱的时间。在反相HPLC中可用苯磺酸钠来测定死时间。 ⊕死体积(dead volume,V0)――由进样器进样口到检测器流动池未被固定相所占据的空间。它包括4部分:进样器至色谱柱管路体积、柱内固定相颗粒间隙(被流动相占据,Vm)、柱出口管路体积、检测器流动池体积。其中只有Vm参与色谱平衡过程,其他3部粉只起峰扩展作用。为防止峰扩展,这3部分体积应尽量减小。V0=F×t0(F为流速) ⊕保留时间(retention time,tR)--从进样开始到某个组分在柱后出现浓度极大值的时间。⊕保留体积(retention volume,VR)--从进样开始到某个组分在柱后出现浓度极大值时流出溶剂的体积。又称洗脱体积。VR=F*tR . ⊕调整保留时间(adjusted retention time,tR’)--扣除死时间后的保留时间。也称折合保留时间(reduced retention time)。在实验条件(温度、固定相等)一定时,tR’只决定于组分的性质,因此,tR’(或tR)可用于定性。TR’=tR-t0 ⊕调整保留体积(adjusted retention volume,VR’)--扣除死体积后的保留体积。VR=VR-V0 或VR=F*tR’ 3.柱效参数 ⊕理论塔板数(theoretical plate number,N)用于定量表示色谱柱的分离效率(简称柱效)。 N取决于固定相的种类、性质(粒度、粒径分布等)、填充状况、柱长、流动相的种类和流速及测定柱效所用物质的性质。如果峰形对称并符合正态分布,N可近似表示为: N=(tR/σ)2=16(tR)2/W =5.54(tR/W1/2)2 W:峰宽;σ:曲线拐点处峰宽的一半,即峰高0.607处峰宽的一半。 N为常量时,W随tR成正比例变化。在一张多组分色谱图上,如果各组份含量相当,则后洗脱的峰比前面的峰要逐渐加宽,峰高则逐渐降低。 用半峰宽计算理论塔板数比用峰宽计算更为方便和常用,因为半峰宽更容易准确测定,尤其是对稍有拖尾的峰。

最新气相色谱基础知识习题及答案教学内容

1.简要说明气相色谱分析的基本原理 借在两相间分配原理而使混合物中各组分分离。 气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。 组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。 2.气相色谱仪的基本设备包括哪几部分?各有什么作用? 气路系统.进样系统、分离系统、温控系统以及检测和记录系统. 气相色谱仪具有一个让载气连续运行管路密闭的气路系统. 进样系统包括进样装置和气化室.其作用是将液体试样,在进入色谱柱前瞬间气化, 然后快速定量地转入到色谱柱中. 3.试述“相似相溶”原理应用于固定液选择的合理性及其存在的问 题。 解:样品混合物能否在色谱上实现分离,主要取决于组分与两相亲和力的差别,及固定液的性质。组分与固定液性质越相近,分子间相互作用力越强。根据此规律: (1)分离非极性物质一般选用非极性固定液,这时试样中各组分按沸 点次序先后流出色谱柱,沸点低的先出峰,沸点高的后出峰。 (2)分离极性物质,选用极性固定液,这时试样中各组分主要按 极性顺序分离,极性小的先流出色谱柱,极性大的后流出色谱柱。 (3)分离非极性和极性混合物时,一般选用极性固定液,这时非 极性组分先出峰,极性组分(或易被极化的组分)后出峰。

(4)对于能形成氢键的试样、如醉、酚、胺和水等的分离。一般 选择极性的或是氢键型的固定液,这时试样中各组分按与固定液分子间形成氢键的能力大小先后流出,不易形成氢键的先流出,最易形成氢键的最后流出。 (5)对于复杂的难分离的物质可以用两种或两种以上的混合固定液。 以上讨论的仅是对固定液的大致的选择原则,应用时有一定的局限性。事实上在色谱柱中的作用是较复杂的,因此固定液酌选择应主要靠实践。 5.色谱定性的依据是什么?主要有哪些定性方法 解:根据组分在色谱柱中保留值的不同进行定性. 主要的定性方法主要有以下几种: (1)直接根据色谱保留值进行定性 (2)利用相对保留值r21进行定性 (3)混合进样 (4)多柱法 (5)保留指数法 (6)联用技术 (7)利用选择性检测器

色谱基础知识

一、生产物料性质及用途 1 基本概念 熔点:一般认为使固体物质在标准大气压(1.01×105Pa)压力下从固态转变为液态的温度为该物质的熔点。 沸点:当液体的蒸汽压增大到与外界施于液面上的总压力(常压为 1.01×105Pa )相等时,就有大量的气泡从液体内部逸出,称为沸腾,此时的温度就是该液体的沸点。纯物质有固定的沸点,沸点变化范围在1-3℃间。若含有杂质则沸点上升,沸点变化范围会超过3-5℃。 密度:是指在20℃时单位体积物质的质量,以ρ表示,单位为g/mL或g/cm3。 闪点:在规定的试验条件下,物质发生闪燃时的最低温度称为闪点。 闪燃:可燃液体挥发的蒸汽与空气混合达到一定浓度,遇明火发生一闪即逝的燃烧,或者将可燃固体加热到一定温度后,遇明火发生一闪即灭的燃烧现象,叫闪燃。 燃点:将物质在空气中加热时,开始并继续燃烧的最低温度叫燃点。 自燃点:指在规定的条件下,可燃物质产生自燃的最低温度是该物质的自燃点。爆炸极限:可燃物质(可燃气体、蒸气和粉尘)与空气(或氧气)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为爆炸极限,或爆炸浓度极限。 结晶点:在标准大气压(1.01×105Pa)的气压下物质由液体变为固体的温度称为结晶点。纯物质有固定不变的结晶点,如含有杂质则结晶点降低。 2 本车间生产物料性质及用途(附页) 二、数据处理 1 相关概念 有效数字:在分析工作中实际能测量到的数字就称为有效数字。 重复性:用本方法在正常和正确操作情况下,由同一操作人员,在同一实验室内,使用同一仪器,并在短期内,对相同试样所做两个单次测定结果,在95%概率水平两独立测试结果的最大差值。 再现性:用本方法在正常和正确操作情况下,由两名操作人员,在不同化验室内,对相同试样各做单次测试结果,在95%概率水平两独立测试结果的最大差值。 精密度:是指在相同条件下,n次重复测定结果彼此相符合的程度。精密度的好坏用偏差表示,偏差越小说明精密度越好。偏差分为绝对偏差和相对偏差。绝对偏差是指单次测定与平均值的差值。相对偏差是指绝对偏差在平均值中所占的百分率。 准确度:是指实验测得值与真实值之间相符合的程度。准确度的高低,常以误差的大小来衡量,即误差越小,准确度越高;误差越大,准确度越底。误差分为绝对误差和相对误差。绝对误差是指测得值与真实值的差值。相对误差是指绝对误差在真实值中所占得百分率,它更具有实际意义。实际工作中往往用“标准值”来代替真实值。

色谱理论基础

色谱理论基础

色谱发展历史
30年代 茨维特分离绿叶色素 40年代 TLC,纸色谱 50年代 GC出现使色谱具备分离和在线 分析功能 60年代末 HPLC出现,使色谱分析范围进 一步拓展. 70年代末 联用仪器:GC-MS,HPLCMS

原理
定义:色谱是一种把混合物中 色谱 多组份分离的实验技术。将气 化的混合物或气体通过柱中某 种物质,基于柱中物质与不同 化合物的相互作用不同而得到 分离,然后经过检测器记录物 质的响应值随时间的变化,就 是色谱图,每一个峰可代表最 初混合样品中某一个组分。 简而言之,色谱是利用物质的物 理化学性质建立的分离、分析 方法 实质:分离 目的:定性分析或定量分析

色谱的分离机制
? 分配色谱:利用在流动相和固定相中 分配系数的不同分离 ? 吸附色谱:利用物理吸附性能的差异 分离 ? 离子交换色谱:利用离子交换能力的 差别分离 ? 空间排阻色谱:利用排阻作用力的不 同 ? 要注意,在常用的色谱中,通常都是 几种分离机制共同作用的结果。

分配色谱
色谱系统 固定相→机械吸附在惰性载体上的液体 流动相→必须与固定相不为互溶 载体→惰性,性质稳定。不与固定相 和流动相发生化学反应 分配系数
Cs X s Vs K= = C m X m Vm
色谱过程 分配系数的微小差异→吸附能力的微小差异 微小差异积累→较大差异→吸附能力弱的组 分先流出;吸附能力强的组分后流出
K与组分的性质、流动相的性质、 固定相的性质以及柱温有关

相关文档
最新文档