高速铁路无砟轨道裂缝控制技术研究

高速铁路无砟轨道裂缝控制技术研究
高速铁路无砟轨道裂缝控制技术研究

无砟轨道维修技术调研报告范本

附件15: 无砟轨道维修技术调研报告 一、概述 为实现列车的高安全性和高乘坐舒适性,无砟轨道结构必须具备高平顺性和高稳定性。高平顺性也即高速行车时轨面的平顺性,对行车平稳与行车安全影响较大;高稳定性也即轨道在高速运营条件下保持高平顺性与均匀弹性、维持部件有效性与完整性的能力,要求轨道结构有合理的刚度,维持纵向轨道刚度分布的均匀性,若轨道结构有病害或者较大的损伤、损坏,会影响到轨道结构保持高平顺性与均匀弹性的能力,须进行必要的保养和维修。因此保持轨面的平顺性与轨道结构的高稳定性就是维修工作的核心。 受施工不良、列车动荷载、雨雪侵蚀、环境温度等多种作用的影响,无砟轨道不可避免的会产生各种病害、损坏,如轨道板的开裂、CA砂浆层破损、轨道板或底座与CA砂浆层脱离、钢筋锈蚀等。对无砟轨道所出现的问题以及对国外无砟轨道维修技术进行调研、分析,对今后无砟轨道的养护维修、无砟轨道优化设计等有重要作用。 二、日本铁路无砟轨道维修技术现状 1、新干线CA砂浆的维修材料 (1)轨道板和CA砂浆层间的小空隙的填充材料-丙烯类树脂(MACH) ①材料组成:MACH是将异丁烯树脂液和硬化剂、填充碳酸钙混合而获得的用于轨道板下小空隙的填充材料。 ②材料特征:流动性良好,可用于轨道板和CA砂浆的小缝隙(1mm左右);硬化性良好,通过添加适当的硬化剂和硬化促凝剂,可在1小时硬化并表现出强度;即使是在低温的条件下,通过添加适当的硬化剂和硬化促凝剂,亦可立即硬化;机械强度、接合性、耐久性良好;耐酸、碱性良好。 ③技术参数: 液态特性(见下表):

(2)轨道板和CA砂浆层间的大空隙(大于等于5mm小于15mm)的填充材料-- 氨基甲酸乙酯树脂CUS-UC20MQ ①材料组成:CUS-UC20MQ是高性能聚氨基甲酸乙酯类树脂填充材料,按照规定的混合比例搅拌A材料与B材料,可充分发挥其性能,弹性常数20MN/m适用于所要求的轨道用途。用于修补CA砂浆填充层(大于等于5mm小于15mm)。 ②材料特征:常温下硬化---按规定的比例混合A材料和B材料,用电动搅拌机进行充分搅拌,在常温下,短时间能得到表现强度。灌注操作性良好---由于混合物粘度低,可使用时间长,因此现场的灌注操作性良好,尤其适合轨道的修补。耐久性良好---在轨道树脂填充材料规格所要求的疲劳强度试验中显示出良好的耐久性,此外,能缓解列车荷载、震动和冲击,可长期保持机械强度。没有硬化收缩---按照树脂成分等严格的配合进行制造,不会出现硬化后的收缩。 ③技术参数: 液态性能:

某高铁无砟轨道施工组织设计

沪杭铁路客运专线六标 DK103+850~DK135+152 CRTSⅡ型无碴轨道板铺设施工组织设计 编制:夏铭 复核:陈忠 中铁十一局集团沪杭铁路客运专线六标项目经理部 2009年11月12日

DK103+850~DK135+152 CRTSⅡ型无碴轨道板铺设施工组织设计一、编制范围 沪杭铁路客运专线六标段范围内DK103+850~DK135+152段CRTSII型无碴轨道的滑动板铺设,桥梁底座板、端刺、临时端刺的施工,路基混凝土支承层施工,轨道板粗铺、精调、灌浆和轨道板的张拉锁定、侧向挡块的施做。 二、编制依据 1、铁四院提供的施工图设计; 2、CRTSII型无碴轨道板施工的暂行技术条件 3、京津城际CRTSII型无碴轨道板施工工艺技术总结、经验教训; 4、京津城际无砟轨道施工实际工效; 5、施工沿线范围内水文、地质、建构筑物分布、施工便道布设等情况; 6、我公司目前掌握的CRTSII型轨道板铺设设备性能、工效、技术能力以及熟练技术操作工人的实际状况; 7、六标段内控架梁计划。 三、工程概况 1、工程概况及技术标准 新建上海至杭州铁路客运专线站前工程HHZQ-6标段,正线起讫里程DK103+850~DK135+512,全长31.985km,其中路基3345.836m,桥梁28.639km,无碴轨道铺设63.97单线公里,无轨道板约制造14269块,铺设约9918块。标段主要由嘉桐特大桥、桐海特大桥、海航特大桥、桐乡车站、海宁西站五大主要工程项目组成,其中桐乡车站设计框架通道涵洞及中小桥7座,海宁西站框架通道涵洞7座。设计CRTSII型轨道板铺设主要工程数量见表1。

高速铁路无砟轨道施工技术难点分析

龙源期刊网 https://www.360docs.net/doc/e414314594.html, 高速铁路无砟轨道施工技术难点分析 作者:朱本兵 来源:《中国高新科技·下半月》2018年第03期 摘要:文章以实际工程为例,阐述高速铁路无砟轨道施工过程中遇到的技术问题,分析无砟轨道需要控制的因素,提出控制施工材料的质量、严格控制无砟轨道的精度、沉降观测点的设置、严格控制无砟轨道的刚度、严格把控混凝土的浇筑过程等技术措施,保证了施工质量和进度,达到了预期要求。 关键词:高度铁路;无砟轨道;沉降观测点;混凝土浇筑文献标识码:A 中图分类号: U213 1工程概况 二十里堡隧道为单洞双线隧道,隧道进口至DK37+474.829段位于直线上; DK37+474.829~DK38+107.301段位于左偏曲线上,曲线半径R=2800m;DK38+289.293~ DK39+196.376段位于右偏曲线上,曲线半径R=4000m;DK39+554.387~DK40+967.233段位于右偏曲线上,曲线半径lR=5000m;DK43+899.704至出口段段位于右偏曲线上,曲线半径 R=4000m;其余段落均位于直线上。隧道内全线为上坡,其中DK37+035~DK40+970段坡率为4.9%。;DK40+970~DK44+680段坡率为5.1%。无砟轨道起讫里程为DK37+065~ DK44+650,全长7.585km。 2高速铁路无砟轨道施工过程中遇到的技术问题 (1)无砟轨道的形式以扣件体系为主,所以对铁轨地基的稳定性要求特别高。但是在实际的施工过程中,铁轨地基的稳定性受到沉降或变形等因素的影响特别大,所以铁轨地基性的稳定性是很难把握的。 (2)因为无砟轨道高速铁路的施工技术过于先进,以往的探测技术等已不能满足该技术的施工需要。所以,为了保证无砟轨道高速铁路的质量水平,还需大力发展和应用更高水平的测量技术和测量设备。 (3)无砟轨道高速铁路在建设的过程中很难控制轨道的平顺性,因为轨道地基的变化比较大,无砟轨道在安装好后就不能随意进行变动,所以轨道的平顺性也成为了无砟轨道建设的一大难题。 (4)无砟轨道在岔路口进行施工时要注意无砟铁轨各个区域之间的无缝对接,施工技术人员和监督部门要按照施工的相关要求对整个工程的工序进行严格的监督。 3无砟轨道需要控制的因素

高速铁路有砟、无砟轨道结构及精调.

第二章高速铁路有砟、无砟轨道结构及精调 第一节概述 无砟轨道是以混凝土或沥青混合料等取代散粒道碴道床而组成的轨道结构形式。由于无碴轨道具有轨道平顺性高、刚度均匀性好、轨道几何形位能持久保持、维修工作量显著减少等特点,在各国铁路得到了迅速发展。特别是高速铁路,一些国家已把无碴轨道作为轨道的主要结构形式进行全面推广,并取得了显著的经济效益和社会效益。以下是无砟轨道的主要优势和缺点。 一、无砟轨道的优势主要有: 1、轨道结构稳定、质量均衡、变形量小,利于高速行车; 2、变形积累慢,养护维修工作量小; 3、使用寿命长—设计使用寿命60年; 二、无砟轨道的缺点主要有: 1、轨道造价高:有砟180万/km,双块式350万,1型板式450万,2型 板式500万。 2、对基础要求高因而显著提高修建成本:有砟轨道可允许15cm工后沉 降,无砟轨道允许3cm,由此引起的以桥代路及路基加固投资巨大。 3、振动噪声大:减振降噪型无砟轨道目前尚不成功,减振无砟轨道选型 存在较大困难。 4、一旦损坏整治困难:尤其是连续式无砟轨道。 第二节无砟轨道结构 一、国外铁路无碴轨道结构型式 国外铁路无碴轨道的发展,数量上经历了由少到多、技术上经历了由浅到深、品种上经历了由单一到多样、铺设范围上经历了由桥梁、隧道到路基、道岔的过程。无碴轨道已成为高速铁路的发展趋势。 1.日本 日本是发展无碴轨道最早的国家之一。早在20世纪60年代中期,日本就开始了无碴轨道的研究与试验并逐步推广应用,无碴轨道比例愈来愈大,成为高速铁路轨道结构的主要形式。据统计,日本高速铁路无碴轨道比例,在20世纪70年代达到60%以上,而90年代则达到80%以上。

铁路工程无砟轨道施工技术分析与研究

铁路工程无砟轨道施工技术分析与研究 发表时间:2020-03-25T02:27:13.367Z 来源:《防护工程》2019年21期作者:樊晶晶[导读] 铁路作为我国交通体系的重要构成,我国在不断提高铁路车速的同时,不断完善铁路工程建设,扩大高速铁路覆盖面积。 中国水利水电第七工程局有限公司四川成都 610000摘要:铁路作为我国交通体系的重要构成,我国在不断提高铁路车速的同时,不断完善铁路工程建设,扩大高速铁路覆盖面积。基于此,本文先简单介绍了无砟轨道施工技术优势,提出了施工技术难点,最后详细强调了无砟轨道施工技术要点。以期妥善应用施工技术, 提高铁路工程整体质量,让铁路工程稳定运行,为我国铁路事业奠定良好的基础,能够带动经济的发展。 关键词:铁路工程;无砟轨道施工;技术要点 引言:我国铁路工程建设快速发展,对轨道安全、稳定性和强度提出了更高的要求。无砟轨道技术凭借其高强度和高稳定性,逐渐被广泛应用于铁路工程中。但由于无砟轨道施工难度较高,我国施工经验有所欠缺。在实际应用上还需要进一步对无砟轨道施工技术展开分析,强调其施工要点,才能保证铁路工程的顺利展开。 1 无砟轨道施工技术优势 从目前我国铁路工程施工情况来分析,使用无砟轨道结构可有效满足铁路的高速运行,该结构采取单元式纵连结构,具有良好的整体性优势。同时在桥梁路段可采取对应的处理方法,把握梁面的平整程度,单元结构的轨道受力均衡,施工作业更加简单,质量把控相对便捷。常见病害,如损伤、裂缝等问题,在日常维修中即可解决。另一方面,无砟轨道具有可修性优势。由于单元结构在道床板和底座之间利用砂浆进行隔离,从纵向平面分析,利用板缝完成分离,维修性较强。 2 无砟轨道施工技术难点 无砟轨道施工主要在线性控制和尺寸控制上存在技术难点,施工方需要严格依据设计要求,控制轨道结构件、扣件以及接头等零件的尺寸和型号。施工期间需要严格执行安装工艺,尤其是钢轨接头位置,需要将轨枕和绝缘段控制在70mm以上的距离。浇筑施工按照应力释放要求,对单元轨道长度加强控制。单元轨道长度一般在600m至1800m之间,根据设计要求对外轨进行严格控制,严格控制轨道误差,安装时需要打磨无砟轨道,保证误差控制在0.3mm之内,横截面误差也应当控制在0.2mm之内,安装无砟轨道,将高程误差控制在4~6mm之内,而线性误差不应超过8mm。尤其是中心线误差,严格控制在2mm之内。想要提高无砟轨道线性控制以及尺寸控制的精度,可采取预设偏高轨方法进行控制,避免螺杆扭矩和支撑力等影响测量精度,进而保证尺寸和规格的精准性。在对轨道内围结构进行控制时,应当对轨道精密性进行校正,保证铁路安全运行,焊接接头上应当对连接缝进行严格控制,以提高线性精度。 另外在路桥连接段施工时,需要保证轨道刚度的一致性,均衡轨道刚度也是技术难点,施工期间需要对工序进行科学安排,减少交叉施工的情况。并建立统一的技术标准,要求施工队伍严格执行技术标准,在施工全程达到技术标准要求,从而保证轨道全体路段高度的一致性,达到统一的性能指标。 3 铁路工程无砟轨道施工技术分析 3.1 工程概述 本文以某铁路工程路段为例,该工程全长16km,采取CRTSⅠ双块式无砟轨道结构,主要包含铁轨、道床板、端梁、支承层、扣件等施工结构,路基地段815mm,隧道地段515mm,该路段铁路设计车速为350km/h。总结该工程施工经验,对无砟轨道施工技术进行下述分析。 3.2 施工工序控制 在无砟轨道施工中,主要可以分成工底底板施工和道床板施工两个施工环节。工底座板施工主要包含放线、钢筋安装、模板施工、铺设隔离层、混凝土浇筑等工序。道床板施工主要包括放线、钢筋、底板模板安装、框架组装、精调、混凝土施工等工序[1]。每道工序均需要由专业施工人员进行施工作业,才能保证达到质量标准,因此需要对施工工序进行合理安排,务必保证有序展开施工作业,避免交叉作业引发施工安全问题,影响施工整体质量。 3.3 施工前准备 施工前需要对工程沉降情况进行评估,在无砟轨道施工范围内,对桥梁以及隧道工程均需要进行沉降评估,经过评估后达到无砟轨道施工条件,才能准许施工。通过沉降评估后,由第三方机构进行重复检测,提供评估结果。完成工序设计后,进行工序交接,由施工方、设计方、建设方和监理方共同组织会议,讨论工序交接以及验收问题,以合同方式规范,得到多方人员的签字确认,在施工中妥善落实。 3.4 支承层施工

《高速铁路有砟轨道线路维修规则(试行)》(2013)29

TG/GW116-2013 高速铁路有砟轨道线路维修规则 (试行) 2013年2月

前言 线路养护维修技术是高速铁路技术体系的重要组成部分,为指导我国高速铁路有砟轨道线路养护维修,满足线路高可靠性、高稳定性、高平顺性的要求,特制定本规则。 本规则在总结高速铁路有砟轨道相关研究成果和国内外养护维修技术基础上编制而成。在编写过程中,得到了南昌、武汉铁路局的大力支持。 本规则共分九章和十二个附录,阐述了高速铁路有砟轨道线路主要设备技术标准和维修要求,规定了线路设备检查内容和周期、维修标准、维修作业要求、线路质量评定及精测网应用与维护要求等。 在执行本规则过程中,希望各单位结合工作实践,认真总结经验、积累资料,如有需要补充和完善之处,请及时将意见和有关资料反馈铁道部运输局工务部(北京市复兴路10号,邮政编码:100844),供今后修订时参考。 本规则技术总负责人:康高亮、郭福安、曾宪海、赵有明。 本规则编制单位:中国铁道科学研究院,高速铁路轨道维护管理技术组。 本规则主要起草人:吴细水、肖俊恒、王邦胜、姚冬、刘丙强、江成、黎国清、姜子清、田新宇、段剑峰、万坚、张银花、王长进、邹定强、杨桉、吕关仁、吴仕凤、李传勇、肖卫军、马德东、蒋金洲、王树国、周清跃、李力、黎连修、田常海、高睿、宋贲。 本规则主要审查人:康高亮、郭福安、曾宪海、赵有明、张军政、侯文英、沈榕、杨忠吉、许有全、刘建基、田斌、郭良浩、寇东华、梁春方、张冠军、乔连军、张金龙、谭敦枝、胡永乐、杨厚昌。 本规则由铁道部运输局工务部负责解释。

目录 第一章总则 (7) 第二章线路设备维修工作内容及计划 (9) 第一节工作分类 (9) 第二节工作内容 (9) 第三节管理组织 (11) 第四节工作计划 (11) 第三章线路设备标准和修理要求 (13) 第一节线路平面 (13) 第二节线路纵断面 (15) 第三节道床 (16) 第四节轨枕 (17) 第五节钢轨 (17) 第六节扣件 (21) 第七节道岔及调节器 (24) 第八节无缝线路 (28) 第九节标志标识 (31) 第四章线路设备检查 (33) 第一节一般要求 (33) 第二节线路动态检查 (33) 第三节线路静态检查 (34) 第四节钢轨检查 (36) 第五节量具检查 (39) 第五章线路设备维修主要作业要求 (41) 第一节一般要求 (41) 第二节钢轨修理 (41) 第三节扣件维修及轨道几何尺寸调整作业 (46) 第四节轨枕修理作业 (49) 第五节道岔及调节器作业 (49) 第六节大型养路机械起拨道、捣固、稳定作业 (51) 第七节无缝线路作业 (52) 第八节冻害整治作业 (55) 第六章线路设备维修标准 (57) 第一节线路设备维修周期 (57)

无砟轨道的精测和精调技术 毕业论文

毕业设计(论文)中文题目:无砟轨道的精测和精调技术 学习中心(函授站): 专业:土木工程(铁道工程) 姓名: 学号: 指导教师: 北京交通大学远程与继续教育学院 2016年6月

毕业设计(论文)承诺书与版权使用授权书我所呈交的毕业论文是我在指导教师指导下独立研究、写作的成果。除了文中特别加以标注和致谢之处,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得北京交通大学或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 本毕业论文是本人在读期间所完成的学业的组成部分,同意学校将本论文的部分或全部内容编入有关书籍、数据库保存,并向有关学术部门和国家相关教育主管部门呈交复印件、电子文档,允许采用复制、印刷等方式将论文文本提供给读者查阅和借阅。 论文作者签名:_________________ ______年_______月______日 指导教师签名:_________________ _______年_______月______日

毕业设计(论文)成绩评议

毕业设计(论文)任务书 本任务书下达给:级专业学生设计(论文)题目: 一、毕业设计(论文)基本内容 二、基本要求

三、重点研究的问题 四、主要技术指标 五、其他要说明的问题 下达任务日期:年月日要求完成日期:年月日指导教师:

开题报告 题目:无砟轨道的精测和精调技术 学生姓名:学号: 2016 年 1 月 22日 一、文献综述 高速铁路作为现代社会的一种新的运输方式,具有极为明显的优势,高铁中的无砟轨道是当今世界先进的轨道技术。无砟轨道精调贯穿了无砟轨道施工及联调联试全过程,从无砟轨道施工至无缝线路铺设后轨道具备高速行车条件为止,根据轨道静态测量数据对轨道进行全面,系统地分析调整,将轨道几何尺寸调整到允许范围内,对轨道线性进行优化调整,合理控制规矩,水平,轨向,高低变化率,使轨道静态精度满足高速行车条件。 无砟轨道是以整体道床代替碎石道床的一种新型轨道,其平顺性、稳定性、精度和标准要求高,传统的施工技术和工艺已不能满足设计和运营的要求。这种新型的轨道结构,其静态几何状态中线为2mm,高程2mm,轨距±1mm,检测方法为全站仪配合轨道几何状态测量仪检测。 对于无砟轨道要求的高标准性,施工中一般是采用全站仪配合静态轨检小车对已铺设成型的线路轨道进行测量,人工配合进行线路调整。使用全站仪配合轨检小车进行轨道几何状态测量是一项费时细致的工作,再加上没有成熟的调整顺序和方法,会出现调整过一遍后,再进行复测时又出现线路的几何状态不能满足规范要求,需进行反复测量反复调整。不仅影响铺轨精调的整体进度,而且给钢轨和扣件带来一定的影响,最大的问题是不能保证联调联试的正常进行。在现有的施工技术条件下,如何在保证精调精度的同时提高铺轨精调的速度,本文对此进行探讨,寻求一种快速的精调作业方法,提高铺轨精调的速度。 随着应用经验的积累,高速铁路无砟轨道以其高稳定性、高平顺性和少维修等特点,在铁路运营中逐渐取得了明显优势,正在被广泛的使用。但是无砟轨道不同于有砟轨道,有极高的平顺性要求,CPIII(control points of III level)测量控制网为无砟轨道精调提供控制基础,而良好的精调过程可以实现高平顺性,因此CPIII测量控制网与无砟轨道的精调施工已成为高速铁路建设的热门研究课题之一。本文以大西高铁客运专线为依托,详细地介绍了CPIII建网与无砟轨道精调的施工过程,总结了CPIII控制网与无

高速铁路无砟轨道施工技术

高速铁路无砟轨道施工技术 摘要:高速铁路轨道结构普遍采用的是高平顺性、高稳定性的无砟轨道结构型式。但是,我国铁路在无砟轨道施工技术方面的经验目前还不够成熟。因此,探讨无砟轨道施工的技术难点和的若干关键技术问题是很有必要的。 关键字:无砟轨道;高速铁路;施工技术 1 引言 近年来,伴随着国家综合国力的全面提升,我国高速铁路建设取得历史性跨越,进入全面建设时期。高速铁路的最显著特点表现为高速度,与传统的有砟轨道结构铁路相比,高速铁路对轨道的结构要求更高,它需要轨道具有高平顺性和高稳定性。所以,需要开展针对高速铁路的轨道结构施工技术。无砟轨道作为一种稳定性高、轨道刚度均匀、具有较强的结构耐久性、容易维护、可降低桥梁二期恒载、减少隧道净空开挖、综合效益高的轨道结构形式,目前已在国外高速铁路建设中得到广泛应用。在我国无砟轨道研究起步较晚,目前基本处于应用的初级阶段。因此,对无砟轨道施工技术进行研究是很有必要的。 2 无砟轨道施工技术难点 与普通铁路有砟轨道相比,高速铁路无砟轨道系统的施工工艺更为复杂,技术含量更高,其难点主要体现在以下五个方面: (l)轨道基础地基沉降变形规律难以控制。无砟轨道整体形态是通过扣件系统进行维持,因此,必须采取技术经济合理的处理措施保证轨道地基的稳定性,线下工程的设计和施工,以满足无砟轨道系统设计的技术要求。 (2)精密测量技术。传统的测量技术已经无法满足高速铁路无砟轨道系统的施工建设需求,需要采用高精度的现代工程测量方法来保证保证无砟轨道线路平顺性。 (3)轨道平顺度控制。高速铁路与普通有砟铁路的最显著区别是需要一次性建成可靠、稳固的轨道基础

工程和高平顺性的轨道结构。轨道的高平顺性是实现列车高速运行的最基本条件。实现和保持高精度的轨道内外部几何状态是高速铁路建设的关键技术,是最重要的基础性技术工作。 (4)无砟道岔施工。道岔区无砟轨道施工应严格按相关规程进行,在保证无砟轨道的道岔间无缝的同时还要注意与不同区间、不同标段间无缝线路施工相互协调。所以在进行无砟道岔施工时,应严格按设计进行预铺装、严格对位并精细地调整几何形位,应严格按设计焊接道岔内的钢轨并锁定道岔以保证工程质量。 3 无砟轨道施工关键技术 3.1 不同线路地段轨道系统的组成 根据不同的线路地段特点,需要设计不同的轨道系统结构,以保证车辆的运行安全和高速特点。 对于正线一般地段,轨道系统主要由以下几部分构成:最底层是路基防冻层,作用是防止毛细孔,路基防冻层上是水硬性混凝土材料支承层,轨道铺设在支承层上并通过混凝土道床板与支承层连接。路基段的曲线超高在路基防冻层表层上实现,超高部分需要通过缓和曲线完成过渡,同时,在不同超高段,顶层沥青硅覆盖方式也不同。路基段采用不分轨道单元,道床板连续铺筑方式,当温度变化区间超过15℃或道床板混凝土浇筑不能连续进行时,需用通过设置工作缝方式来保证道床板结构均匀 过渡段轨道施工是无砟轨道施工重点,实现线路不同结构物之间的刚度均匀过渡是保证高速列车运行舒适的关键,因此需要严格控制不同结构物过渡段轨道施工质量,当路基长度在10米以内时,路基地段不设置端板和端梁;当路基长度处于10~20米之间时,在桥台5-10米范围内的路基中间设置2.8×0.8×l.3米的端梁;当路基长度超过20米时,需要按照设计要求设置端板和端梁。在隧道口无论路基长短内均需按设计要求设置4×5销钉,同时使用环氧树脂进行锚固 3.2无砟轨道测量 无砟轨道施工阶段测量主要包括三个内容:线下施工测量、无砟轨道铺设测量以及竣工测量。线下施工阶段测量主要工作是控制网的复测和控制网加密;对于无砟轨道铺设阶段测量,关键工作就是CPⅢ控制网的布设,平面测量要求满足五等导线精度,线路起闭于CPⅠ或CPⅡ控制点。导线长度不超过2km,点间距150~200m之间,距线路中线3~4m,需要再线下施工完成后无砟轨道铺设前进行施测,控制点需要用钢筋混凝土包桩,以保证其精度不受环境影响。高程测量采用起闭于二等水准点的精密水准测量施测,水准线路不超过2km。竣工阶段测量主要是维护基桩测量和轨道几何形状测量。 3.3水硬性混凝土支承层铺设

无砟轨道施工技术要点

无砟轨道施工技术要点 一、无砟轨道施工工艺流程 (1)施工工作面清理→ (2)轨道板施工放线→ (3)摆放纵向钢筋→ (4)散枕机散枕→ (5)安装工具轨、组装轨排、安装调节器→ (6)轨道粗调定位→ (7)钢筋网绑扎、接地焊接、绝缘电阻测试→ (8)纵、横向模板安装→ (9)轨道精调→ (10)道床混凝土浇筑→ (11)螺杆调节器松弛、扣件松开 (12)道床混凝土抹面、养生→ (13)拆卸模板、调节器和工具轨→ (14)封堵螺杆孔→ (15)无缝线路铺设→ (16)轨道精细调整和验收。 二、物流组织 双块式无砟轨道施工可按左右线交替顺序施工,也可两线同步组织施工。沿线路方向,根据施工区段实际,设置施工便道入口,各工序所需施工材料在施工便道入口处进入施工区,沿线上施工通道送达

作业面。长大桥梁,可在桥下设置材料临时存放点,提升至桥上。 左右线交替施工时,可利用邻线作为物流通道。 三、施工关键技术 1、支承层施工 施工方法:为有效的减少支承层裂纹的产生,支承层应具有一定的抗压强度、抗弯强度且收缩率不应过大。路基上的支承层应采用水硬性材料,摊铺机摊铺;桥梁、隧道上的支承层可采用低塑性贫砼,模筑法施工。所用原材料、配合比、施工工艺必须符合有关技术条件。 切缝标准:支承层施工后应做好养生工作,形成强度后一般4-5m 左右锯切裂缝,裂缝深度一般为支承层厚度的1/2,用土工布覆盖、喷淋,继续养生。 切缝条件:支承层的锯缝时间以锯切时既不破坏结构又不造成困难为准。常温下,支承层须在12h以内锯缝,高温、低温条件下,锯切时间可适当调整。 养护标准: 采用摊铺成型:在进行表面平整之后,盖上粗麻布等薄垫保水材料,然后在粗麻布(土工布,黄麻布)上进行3d的湿养护 模筑混凝土:在进行表面平 整之后,马上盖上薄塑料布, 混凝土终凝后,立即盖上粗 麻布(土工布,黄麻布)上 进行7d的湿养护

高速铁路无砟轨道桥面防水层施工研究与应用

高速铁路无砟轨道桥面防水层施工研究与应用 发表时间:2018-10-01T17:33:57.933Z 来源:《基层建设》2018年第26期作者:王双宇 [导读] 摘要:目前中国正处在可持续发展的关键阶段,为了满足人们日益增长的出行需求,高铁正在大量修建,并对桥梁工程的质量提出更高要求,而桥面防水施工质量则直接影响桥梁的耐久性,关系到桥梁的使用寿命。 中铁十局二公司河南省郑州市 450000 摘要:目前中国正处在可持续发展的关键阶段,为了满足人们日益增长的出行需求,高铁正在大量修建,并对桥梁工程的质量提出更高要求,而桥面防水施工质量则直接影响桥梁的耐久性,关系到桥梁的使用寿命。以下主要结合高速铁路桥面薄涂型聚氨酯防水层施工技术的应用进行简单分析,希望能够为高铁建设提供一些帮助。 关键词:薄涂型聚氨酯防水层;施工技术应用 引言 理想的高铁桥面防水体系必须满足以下要求:1)良好的不透水性能;2)与混凝土桥面有足够的粘结力,特别是边角部分;3)步行交通和高铁正常运营条件不易破损;4)良好的耐高、低温性能;5)对桥面状况(平整度、清洁度、温度、湿度等)有广泛的适应性;6)能抵御桥面裂缝的影响;7)良好的耐紫外老化性能和耐化学腐蚀性能;8)施工简单、快捷,不受桥面几何因素的制约等。 1 高速铁路桥面薄涂型聚氨酯防水层施工技术的应用的重要意义 1.1确保桥面防水工程的质量 高铁桥面防水体系中最重要的性能是不透水性能,桥面防水体系的病害主要表现在防水性能的丧失。目前薄涂型聚氨酯防水层施工作为一种新型的防水施工工艺,缺乏成熟的施工技术,防水层刷涂、滚涂施工的外观质量差;现有的刷涂、滚涂施工方法具有一定的局限性,且防水层容易产生气泡,返工率较高;而采用该施工技术,经检测均满足质量要求,无返工情况,经长时间检查,无问题出现。 1.2提高桥面防水施工进度 常见的刷涂、滚涂法施工周期长,不利于大批量施工;人力劳动强度,采用本技术喷涂法施工工艺能够达到目标要求,简化施工工序,提高工作效率,加快施工进度,缩短工期。 1.3提高经济效益 采用该施工技术进行施工控制,施工质量保证,避免材料的浪费,杜绝返工,每公里材料同比节省5万元,有明显的经济效益,工期的缩短也带来显著的成本节约。 2 高速铁路桥面薄涂型聚氨酯防水层施工技术 2.1施工工艺流程及操作要点 2.1施工工艺流程 施工工艺流程为:基面清理→基面修补(潮湿基面处理)→封闭漆施工→底面漆(PPU-M1)施工→表面漆(PPU-M2)施工。 2.2 操作要点 2.2.1基面清理 施工中首先进行梁面标高采集,根据标高数据,泄水孔位置,定出排水坡度方向。打磨分两遍进行,第一遍用打磨机进行粗略打磨,尖角、凸起等打磨平整或圆滑,必要时按照排水坡度进行深度打磨。使用吸尘器或吹风机清除粉尘杂质,清理干净后,检查基面,发现不合格的地方用打磨机、钢丝刷进行第二遍打磨,使用稀料等溶剂清除污垢,并用清水冲洗。施工中采用2m平尺进行平整度检查。严禁打磨过深,破坏梁面保护层,影响梁面耐久性。底座板、防护墙根部切除掉不密实部位,清理干净,保证以后的倒角处防水搭接。 等待雨天或梁面浇水,检查梁面有无积水现象。如局部积水,则需进行疏水处理,确保桥面排水畅通。 梁面打磨是一道关键前期工作,打磨程度的好坏直接影响桥面平整度、桥面排水坡度、防水层的粘结力等,必须确保打磨到位。 2.2.2基面修补 混凝土表面明显的裂缝、蜂窝、麻面、孔洞、掉块等缺陷,用石英砂修补,修补前要先清除杂物粉尘。 对于雨天影响,基面潮湿,影响施工进度,现场采用拖把去水,晾晒,必要时采用热风机吹干,保证基面干燥。 基层面应进行验收,基层应作到平整、不起砂及无凹凸不平现象,平整度的要求:用2米长靠尺测量,空隙不大于3mm,空隙只允许平缓变化,每米不超过一处。桥面基层无浮渣、浮灰、油污,直径≥5mm气孔已封闭等,同时防护墙根部应无蜂窝、麻面。梁面清洁、干燥后方可进入防水层施工。 5.2.3封闭漆施工 组成:环氧类材料,封闭细裂缝和混凝土表面的毛细孔,防止混凝土表面的碱性对涂装材料的性能影响,并增加涂装材料与混凝土表面的附着力,所以底涂材料要求有较好的渗透性、封闭性、柔韧性和抗冲击性,并与面涂材料有较好的相容性与附着力。 施工时环境温度在5°C-35°C,环境相对湿度不大于85%,风力不大于5级,当低于5°C,材料流动性、硬化降速度降低,影响材料性能,温度过高,容易出现涂层气泡。 施工以喷涂工艺为主,刷涂工艺为辅。待修补空洞完毕后的基面清洁、干燥后即可进行封闭漆施工,施工时应确保封闭漆充分湿润基面。参考用量为0.3kg/㎡~0.4kg/㎡。底漆为A、B双组分,混合比例为5:1,使用时应在20min内完成施工。封闭漆施工后检查有无漏涂、气泡、等缺陷,通过刺破气泡补涂。 封闭漆原则上是涂刷一遍,一遍后仍存在不平整、孔洞,细微裂缝地方,再用封闭漆掺入一定量的80目-150目的石英砂涂刷第二遍,起到封闭平整的作用,为后面底面漆施工提供封闭的基面,避免出现鱼眼、气泡等。 2.2.4底面漆施工 底面漆:介于封闭漆与表面漆之间,不宜暴露于大气环境的涂层。底面漆采用PPU-M1薄涂型改性聚氨酯防水漆,属芳香族聚氨酯防水漆,芳香族聚氨酯涂料价格较低,涂层具有较高的物理力学性能(较高的拉伸强度、断裂伸长率等),所以在桥梁防水领域得到广泛应用。由于含有苯环,在室外使用不耐阳光曝晒,易出现黄变、粉化,所以平时存放在遮阳处。 底面漆涂装工作应在封闭漆涂装后的24h后施工。施工时环境温度在5°C-35°C,环境相对湿度不大于85%,风力不大于5级,当低于

无砟轨道框架法施工技术交底

技术交底书 技术交底书 表格编号 轨排施工 项目名称中铁十局万铁路段三分部 交底编号共8页 工程名称刁河特大桥 设计文件图号万豫施(轨)-02 施工部位桥涵CRTS1型无砟轨道 交底日期2017.06.20 技术交底容: (一)编制依据 1.1万豫施(轨)-02 1.2高速铁路轨道工程施工技术指南(铁建设[2010]241号) 1.3高速铁路轨道工程施工质量验收标准(TB 10754-2010) (二)技术交底围 本交底适用于刁河特大桥桥上CRTSI型双块式无砟轨道轨排施工。 (三)技术要求 轨排框架法施工是采用厂制高精度轨排框架,使用龙门吊现场组装和铺设轨排,粗调时使用轨距尺、全站仪通过轨道框架横竖向调整机构对轨排方向和高程进行初步调整;精调时根据轨道几何状态测量仪显示数据,通过同步调整轨排框架两侧的横向螺杆(轨向锁定器)实现轨向调整,通过垂直转动轨排框架两侧的竖向螺杆(螺柱支腿)实现高程和水平调整。 (四)施工配置说明 4.1轨排框架法施工主要施工设备有:轨排框架及纵横向模板、10t跨双

轨枕专用吊具”。 轨排、轨枕专用吊具 (五)施工程序 5.1吊装轨枕:将待用轨枕使用龙门吊按轨排使用数量吊放在移动式分枕平台上,每次起吊4根轨枕,吊装时需低速起吊、运行。 5.2匀枕:按照组装平台上轨枕定位器按设计间距匀枕,并对轨枕承轨槽表面封堵螺栓孔的胶带进行清理。 5.3检查调整轨枕块位置,并根据紧线器将一侧的螺栓孔布成一条线,偏差小于1mm。 5.4吊装轨道排架:人工配合龙门吊,将轨道排架按标记的扣件螺栓孔位置与轨枕上螺栓孔位置对齐,平稳、缓慢地将排架放置于轨枕上。复查轨枕位置并用专用扭矩扳手上紧扣件。 5.5扣件安装注意事项:一是安装前检查螺栓孔是否有杂物,螺栓螺纹上是否有砂粒等,并在螺栓螺纹上涂抹专用油脂;二是将螺栓旋入螺栓孔,用手试拧螺栓,看是否能顺利旋进,若出现卡住现象,则调整后重新对准、旋入;三是使用专用扳手按照扭矩要求上紧螺栓(WJ-8B扭矩大小为160N·m),扣件与轨枕顶、钢轨底必须密贴,弹条前端三点要与轨距挡块密贴(双控措施)。 5.6对轨排螺栓安装质量及轨枕间距进行检查。合格后堆放在一侧待用,

高铁无砟轨道精调施工方案

无砟轨道长轨精调施工要点 1 工程概况 中国××××项目部管段起点于DK000+000,止于DK000+000,全长00.000公里。途经××市、××市××开发区和××市。管段包括桥梁00座(特大桥00座、大桥00座、中桥00座),桥梁全长00000.00m,占管段长的00.0%,制架箱梁000孔,连续梁(刚构)0联;路基全长00000.00m(含××车站一座,长0.0km),占管段长的00%;隧道1座长000m,占管段长的0.0%;涵洞00座,计0000.00横延米;公路桥00座。 2编制依据 1、《高速铁路无砟轨道施工质量验收标准》 2、《高速铁路施工测量规范》 3、《高速铁路无砟轨道施工测量暂行标准》 4、《WJ-7扣件安装说明书》 3 主要作业内容 3.1 施工准备 3.1.1控制网复核 长轨精调测量前,应对CPⅢ控制网进行复测,并检查确认控制点工作状态良好,其精度复核精调作业要求。及时恢复破坏的CPⅢ控制点,并拉入整网进行平差。连续梁上的控制点必须在长轨精调前进行复核测量,精度不满足要求时,应在长轨精调前一天对控制点坐标进行测量更新。 3.1.2资料复核 认真核对设计资料,确保设计线形等资料输入正确。重点核对平面曲线要素、变坡点位置和竖曲线要素、曲线超高等。确定基准轨,平面位置以高轨为基准,高程以低轨为基准,直线区间上的基准轨参考大里程方向的曲线。 3.1.3扣件安装

1)施工流程 WJ-7B型扣件安装流程:承轨台表面清理→绝缘缓冲垫板安装→铁垫板安装→平垫块安装→锚固螺栓安装→轨下垫板安装→安放钢轨→绝缘块安装→T型螺栓安装→弹条安装→平垫圈、螺母安装→质量检查。 2)施工要求 1、扣件安装前,应清除轨道板面上的淤泥和杂物及预埋套管里的杂物和积水。 2、铺设绝缘垫板时,垫板孔应与预埋套管孔对中。并用铁垫板安装专用工装定位两对基准铁垫板,其间距以20m左右为宜,且基准铁垫板安装位置的轨道板横向偏差不能大于0.7m。然后拉铁线定位中间的铁垫板。 3、铁垫板安装时,轨底坡(铁垫板上的箭头方向)应朝向轨道内侧。 4、平垫块应安装在铁垫板上,且平垫块距圆孔中心较长一侧朝内。 5、将锚固螺栓套上弹簧垫圈,并将螺纹部分涂满铁路专用防护油脂,旋入预埋套筒中,在锚固螺栓拧紧前调整铁垫板位置使铁垫板上标记线与平垫块上的标记线对齐。

无砟轨道施工方法

5.4 正线轨道工程施工方法及工艺 5.4.1轨道板运输 5.4.1.1运输 本标段轨道板由其他标段板厂供应,本标段只设置4处轨道板厂存放场。 ①由本单位负责将板运至各铺设点存放,采用平板车运板,汽车吊配合装卸。 ②运输时应采取防止轨道板倾倒和三点支承的相应措施,并应保证轨道板不受过大的冲击。 ③在运输过程中轨道板之间用方木垫起。在运输过程中为防止紧急刹车时,轨道板因滑动而造成板体损坏,可用草帘作为填塞衬垫加以防护。 ④轨道板在存放和运输时,应在定位螺母和起吊螺母等处安装相应的防护装置。 5.4.1.2运输注意事项 ①吊板用钢丝绳应有足够的安全系数,钢丝绳存在有影响承载力的缺陷时不应再用。 轨道板起吊采用专用的起吊架进行吊装作业,操作人员要定期的对起吊设备、机具进行安全检查(如:起吊螺母是否弯曲、开裂、滑丝、吊装钢丝绳是否断丝或磨损严重,桁车的机械性能有无保证等)。 ②轨道板的起吊螺栓必须充分拧紧后才能开始起吊工作。 ③轨道板翻转作业中,采用专用的翻板架和起吊机械进行,保证轨道板边缘不受损伤,轨道板与地面相接触部位必须垫以10cm以上的硬杂木。④轨道板起吊必须保持板体水平,且缓慢进行。吊装过程中必须有操作人员扶着板体,以便于掌握轨道板的运行方向,使轨道板不受到振动和碰撞。 ⑤装车前先画出车辆底板纵横中心线,以横向中心线为界对称装载。 ⑥每叠轨道板纵横向中心线要重合,其纵向中心线投影与车底板纵中

心线应重合,偏差控制在±20mm以内,并采用钢丝绳进行加固,保证运输过程中轨道板与运输车辆间不发生相对移动。 ⑦装车时应注意不同板型的装车顺序,确保装车顺序与现场铺设顺序基本一致。 5.4.1.3轨道板场外存放 ①临时存放点应设置承载力满足要求的存板台座,不应产生不均匀沉降。存板台座要求坚固、平整、并要求在台座上铺设橡胶皮,以保证轨道板边角不受损伤。 ②轨道板存放以垂直立放为原则,并采取防倾倒措施。 ③为防止在轨道板两侧倾倒,相邻轨道板间用专用连接装置(连接螺栓、U型卡等)连接。 ④轨道板现场存放时间不宜过长,可按存板数量稍大于铺板进度需求控制,否则,必须采取相应的防护措施。 ⑤在夏季时,为避免日光直射使板体表面产生龟裂,应覆盖草帘等作为防护措施。 5.4.2施工测量 5.4.2.1施工条件评估 (1)板式轨道施工前,应由建设单位组织相关单位对线下工程的沉降变形观测资料进行分析评估,并提出分析评估报告。 (2)在分析评估工后沉降变形符合设计要求后,方可进行板式轨道的施工。 5.4.2.2轨道控制网CPⅢ测设 根据现行《高速铁路工程测量规范》的相关要求进行施工测量。施工测量采用分期建网,下部结构工程和无砟轨道工程根据同一设计交桩网测设施工控制网,按照先整体后局部,高精度控制低精度的原则,结合设计平面图、现场平面布置及施工现场的具体情况,选择通视条件好、安全易保护的地点布置网点、选定网型。 采用GPS、全站仪、水准仪等精密测量仪器测设控制网,确保轨道板铺设精度和满足质量要求。其测量平面控制网分三级布设,第一级为基础平面控制网(CPⅠ),第二级为线路控制网(CPⅡ),第

高速铁路无砟轨道主要病害

混凝土无砟轨道病害类型及处理方法 高铁3103 第八组 组员:李红刚曾晔波张一格 马飞史琨赵凡

一、病害 (缺陷)类型 目前国内高速铁路采用的无砟轨道主要有两种, 即板 式无砟轨道与双块式无砟轨道。图 1给出的是路基段双块 式无砟轨道结构病害分布示意图。图 1中 a , b , c , d 4个虚 圈圈定的是无砟轨道常见病害发育部位, 详细病害总结见 表 1 。 表 1 高速铁路无砟轨道中的主要病害类型及其原因 二、病害 (缺陷 )处理方法 针对无砟轨道质量缺陷检测, 包含地质雷达法、 瞬变电磁法、 混凝土钢筋探测仪法、 超声回弹法在内的多种方法可供考虑。然而, 针对无砟轨道中出现的混凝土结构层间裂隙、 层内不密实或空隙、 各混凝土层的破损或破裂及钢筋缺失和错位此类病害 (缺陷 ), 根据混凝土轨道内部配筋密度, 天窗点限制及对病害准确定位的检测要求, 采用地质雷达法是开展该项检测的最佳方法。 1、地质雷达法是一种地球物理探测方法, 它通过发射器向地下连续发射脉冲式高频电磁波, 电磁波向下传播过程中, 遇到有电性差异的界面或目标体 (介电常数和电导率不同 )时会发生反射和透射。接收器接收并记录在某界面或目标体 ( 介电常数和电导率不同 )上反射回来的反射波。根据记录到的反射波的到达时间, 电磁波在该介质中的传播速度, 可以确定界面 或目标体的深度, 根据反射波的形态、 强弱及其频率特征等组 合特征可以进一步判定目标体的形态和性质。如图 2所示。 图 2 地质雷达探测原理示意图

地质雷达参数: 雷达主机为美国GSSI公司的SI R20主机, 开双通道; 天线为与SI R20配套的900 M 天线; 采集时窗分别为, 15 ns与30 ns ; 采样点数为2048 点。检测速度, 3 km /h 。 15 ns时窗, 主要考虑对45 cm 左右深度范围内病害的检测, 能够有限识别出道床板、轨道板内诸如空隙、钢筋、含水等病害。 30 ns时窗, 主要考虑对1.5m 深度范围内病害的检测, 能够有效检测出支撑层内部、支撑层与级配碎石间的病害(缺陷)。 1.1 正常的无砟轨道 正常的无砟轨道, 钢筋混凝土道床板(轨道板)、素混凝 土支撑层( CA砂浆层)与级配碎石(路基基床表层)分层性 特征明显, 层间特征反射面光滑、平整;道床板内部钢筋反应 清晰明显, 钢筋粗细及位置均一,表现在地质雷达图像上为 形态相似的强反射区点(图3中标识)。图3中已用黑色框线 清楚标示出各层结构范围及钢筋反射特征。在该图中, 各结构 层内除钢筋强反射外, 无强烈反射位置, 表征层内密实程度较 好, 无不密实、空隙及空洞存在; 各层间反射同相轴较均一, 未见强烈反射, 表征道床板与支撑层, 支撑层与级配碎石层间 接触良好, 无空隙或破损起伏。图 3 正常的无砟轨道典型检测图像 1.2 道床板与支撑层间病害 道床板施工过程中, 由于未能对下层支撑层表面进行充分凿毛、浮渣去除、粉尘清除或两层施工间 隔较长(尤其相隔冬夏)等原因, 混凝土在干缩与长期高速荷 载冲击振动下, 导致道床板与支撑层间产生明显空隙或脱空 现象。由于捣固不均或层间空隙发展, 致使素混凝土( CA砂 浆)层发生磨损、破损并表现为层面裂损、起伏。道床板与 支撑层间空隙、裂缝的存在, 会加速道床板混凝土(垂向) 裂缝的发育, 并最终两者贯通。道床板与支撑层间空隙与垂向 裂缝的贯通, 使得降水在空隙中积聚且由于周边封闭无法排 出。图4中, 展示了道床板与支撑层间的空隙、空隙含水及 支撑层的磨(破)损起伏。图4 道床板与支撑层间的空隙及支撑层起伏 1.3 道床板内部病害 由于混凝土施工质量或施工过程中捣固不到位或捣固不均与 裂缝发育等多种原因, 道床板上下两层钢筋网内部、下层钢筋与 支撑层间混凝土常形成欠密实区域。在高速荷载冲击振动之下, 欠密实区域多发展成为空隙或空洞, 形成道床板内部的病害。图 5即是该种病害对应的典型图像, 图中椭圆形虚线圈圈定的强反 射区域即为道床板内空隙病害。 图 5 道床板内部空隙或不密实探测典型图像 1.4 道床板内钢筋异常 钢筋混凝土道床板或钢筋混凝土底座, 配筋过程中, 常有配筋缺陷: 配筋大小不一、配筋密度不够、配筋位置发生错位。这都影响着钢筋 混凝土层的承载力和位置形态, 进而影响轨道的承载力和平顺性。图6 展示了客运专线道床板上的配筋异常, 主要是左右段配筋粗细不一。 图 6 道床板中的配筋异常

高速铁路无砟轨道主要病害

高速铁路无砟轨道主要病害

混凝土无砟轨道病害类型及处理方法 高铁3103 第八组 组员:李红刚曾晔波张一格 马飞史琨赵凡

一、病害(缺陷)类型 目前国内高速铁路采用的 无砟轨道主要有两种, 即板式 无砟轨道与双块式无砟轨道。 图1给出的是路基段双块式无砟轨道结构病害分布示意图。图1中 a , b , c , d 4个虚圈圈定的是无砟轨道常见病害发育部位, 详细病害总结见表 1 。 表 1 高速铁路无砟轨道中的主要病害类型及其原因 病害部 位 病害类型可能原因发展结果 道床板表面裂缝设计配筋与施工 质量等 上下贯穿裂 缝 道床板内部不密实、空 隙、空洞、 钢筋异常 施工捣固不均等 配筋大小不一或 错位 承载力过 低、道床板 破裂 道床板承载 力不均、破 损 道床板 与空隙、脱 空、抗剪销 凿毛、去渣, 干 缩, 道床板裂缝 承载力过 低、道床板

支撑层间钉缺失等 未做抗剪销钉 破裂、支承 层破裂 道床板挠曲 变形、层间 空隙, 道床 板破裂 支撑层表层空隙、起伏找平或道床板下 部破坏摩擦引发 道床板、支 撑层整体破 损、破裂 支撑层内部空隙、不密 实、破裂 捣固不均, 异物 掺杂等 支撑层破 损、破裂 级配碎石下沉地基下沉等道床整体下 沉、破损等 双块轨枕周边空隙、裂缝捣固不均、干缩 等 道床板裂缝 等 二、病害(缺陷)处理方法 针对无砟轨道质量缺陷检测, 包含地质雷达法、瞬变电磁法、混凝土钢筋探测仪法、超声回弹法在内的多种方法可供考虑。然而, 针对无砟轨道中出现的混凝土结构层间裂隙、层内不密实或空隙、各混凝土层的破损或破裂及钢筋缺失和错位此类病害(缺

相关文档
最新文档