2019届高考数学一轮复习第二章函数导数及其应用第5节对数与对数函数练习新人教A版

2019届高考数学一轮复习第二章函数导数及其应用第5节对数与对数函数练习新人教A版
2019届高考数学一轮复习第二章函数导数及其应用第5节对数与对数函数练习新人教A版

第二章 第5节 对数与对数函数

[基础训练组]

A .a >b >c

B .b >a >c

C .a >c >b

D .c >a >b

解析:C [c =? ????15log 30.3 可化为c =5log 3103, 如图所示,结合指数函数的单调性可知选项C 正确.]

2.(2018·揭阳市二模)函数f (x )=

x log a |x |

|x |

(0

解析:C [特殊值法.取a =1

2

,当x =2时,f (2)=-1<0,排除A ,B.当x =-2时,

f (-2)=1>0,排除D.故选C.]

3.已知函数f (x )=log 2(x 2

-2x -3),则使f (x )为减函数的区间是( ) A .(-∞,1) B .(-1,1) C .(1,3)

D .(-∞,-1)

解析:D [由x 2

-2x -3>0知,定义域为(-∞,-1)∪(3,+∞).而函数u =x 2

-2x -3在(-∞,-1)上为减函数,所以使f (x )为减函数的区间是(-∞,-1).]

4.不等式log a x >(x -1)2

恰有三个整数解,则a 的取值范围为( ) A.?

??

?16

5,94 B.?

??

?16

5,94 C.??

?

?1,165 D.??

?

?1,94 解析:B [不等式log a x >(x -1)2

恰有三个整数解,画出示意图可知a >1,其整数解集

为{2,3,4},则应满足?

????

log a 4>4-12

log a 5≤5-12

,得

16

5≤a <9

4,故选B.]

5.(2017·高考全国Ⅰ卷)已知函数f (x )=ln x +ln(2-x ),则( ) A .f (x )在(0,2)单调递增 B .f (x )在(0,2)单调递减

C .y =f (x )的图象关于直线x =1对称

D .y =f (x )的图象关于点(1,0)对称

解析:C [由题意知,f (2-x )=ln(2-x )+ln x =f (x ),所以f (x )的图象关于直线x =1对称,C 正确,D 错误;又f ′(x )=1x -12-x =

2

1-x

x 2-x

(0<x <2),在(0,1)上单调递增,在[1,2)上单调递减,A ,B 错误.故选C.]

答案:1

7.(理科)(2018·抚顺市省重点高中协作校一模)设函数f (x )=?????

1+log 6x ,x ≥4

f x 2

,x <4

则f (3)+f (4)= ________ .

解析:∵f (x )=?

????

1+log 6x ,x ≥4

f x 2

,x <4,

∴f (3)=f (9)=1+log 69,f (4)=1+log 64,

∴f (3)+f (4)=2+log 69+log 64=2+log 636=2+2=4. 答案:4

7.(文科)(2018·南平市一模)已知f (x )是定义R 上的偶函数,且当x >0时,f (x )=2x

,则f (log 419

)的值为 ___________ .

解析:∵f (x )是R 上的偶函数,∴f (-x )=f (x ). ∵当x >0时,f (x )=2x

,∴f (log 419)=f (log 49)

=f (log 23)=3.

答案:3

8.已知函数f (x )=a x

+log a x (a >0,a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为 ________ .

解析:[显然函数y =a x 与y =log a x 在[1,2]上的单调性相同,因此函数f (x )=a x

+log a x 在[1,2]上的最大值与最小值之和为f (1)+f (2)=(a +log a 1)+(a 2

+log a 2)=a +a 2

+log a 2=log a 2+6,故a +a 2

=6,解得a =2或a =-3(舍去).]

答案:2

10.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1), 且f (1)=2.

(1)求a 的值及f (x )的定义域;

(2)求f (x )在区间????

??0,32上的最大值.

解:(1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.

由?

??

??

1+x >0,3-x >0,得x ∈(-1,3),

∴函数f (x )的定义域为(-1,3).

(2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x ) =log 2[-(x -1)2

+4],

∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,

函数f (x )在????

??0,32上的最大值是f (1)=log 24=2.

[能力提升组]

11.(理科)(2018·南平市一模)已知函数f (x )=2 017x

+log 2 017(x 2

+1+x )-2 017-x

,则关于x 的不等式f (2x +3)+f (x )>0的解集是( )

A .(-3,+∞)

B .(-∞,-3)

C .(-∞,-1)

D .(-1,+∞)

解析:D [根据题意,对于f (x )=(2 017x

+log 2 017(x 2

+1+x )-2 017-x

),其定义域为R ,关于原点对称,f (-x )=2 017

-x

+log 2 017(x 2+1-x )-2 017x =-[2017x

log 2017(x 2

+1+x )-2017-x

]=-f (x );即函数f (x )为奇函数;对于f (x )=2 017x

+log 2

017

(x 2+1+x )-2 017-x

,分析易得其为增函数.所以f (2x +3)+f (x )>0?f (2x +3)>-

f (x )?f (2x +3)>f (-x )?2x +3>-x ,解得x >-1;即不等式f (2x +3)+f (x )>0的解

集是(-1,+∞).故选D.]

11.(文科)(2018·佛山市一测)已知函数f (x )=x ln(e 2x

+1)-x 2

+1,f (a )=2,则f (-

a )的值为( )

A .1

B .0

C .-1

D .-2

解析:B [f (x )+f (-x )=x ln(e 2x

+1)-x 2

+1+[-x ln(e -2x

+1)-(-x )2

+1]

=x [ln(e 2x

+1)-ln(e

-2x

+1)]-2x 2

+2

=x ln e 2x +1e -2x +1-2x 2+2=x lne 2x -2x 2

+2

=2x 2

-2x 2

+2=2,∴f (a )+f (-a )=2. ∵f (a )=2,∴f (-a )=2-f (a )=0.]

12.(理科)(2018·荆州市模拟)若函数f (x )=?

????

log a x ,x >2,

-x 2

+2x -2,x ≤2(a >0,且a ≠1)

的值域是(-∞,-1],则实数a 的取值范围是 ________ .

解析:x ≤2时,f (x )=-x 2

+2x -2=-(x -1)2

-1,f (x )在(-∞,1)上递增,在(1,2]上递减,∴f (x )在(-∞,2]上的最大值是-1,又f (x )的值域是(-∞,-1],∴当x >2时,log a x ≤-1,故0

2

≤a <1.

答案:????

??12,1 12.(文科)(2018·潍坊市一模)函数f (x )(x ∈R )满足f (1)=2且f (x )在R 上的导数

f ′(x )满足f ′(x )-3>0,则不等式f (lo

g 3x )<3log 3x -1的解集为 ________ .

解析:令g (x )=f (x )-3x ,则g ′(x )=f ′(x )-3>0, 可得g (x )在R 上递增.

由f (1)=2,得g (1)=f (1)-3=-1,

f (lo

g 3x )<3log 3x -1,即g (log 3x )<g (1),

故log 3x <1,解得0<x <3. 答案:(0,3)

13.(2018·成都市一模)对于函数f (x )定义域中任意的x 1,x 2(x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)·f (x 2); ②f (x 1·x 2)=f (x 1)+f (x 2); ③

f x 1-f x 2

x 1-x 2

>0;

④f ?

??

??x 1+x 22

当f (x )=lg x 时,上述结论中正确结论的序号是_________________________________. 解析:①f (x 1+x 2)=lg(x 1+x 2)≠f (x 1)f (x 2) =lg x 1·lg x 2.

②f (x 1·x 2)=lg x 1x 2=lg x 1+lg x 2=f (x 1)+f (x 2).

③f (x )=lg x 在(0,+∞)单调递增,则对任意的0<x 1<x 2,d 都有f (x 1)<f (x 2),即

f x 1-f x 2

x 1-x 2

>0.

④f ? ??

??x 1+x 22=lg x 1+x 22,f x 1+f x 22

=lg x 1+lg x 22=lg x 1 x 2

2

. ∵

x 1+x 2

2

≥ x 1x 2,∴lg

x 1+x 2

2≥lg x 1x 2=1

2

lg x 1 x 2.

答案:②③

14.已知函数f (x )=ln

x +1

x -1

. (1)求函数f (x )的定义域,并判断函数f (x )的奇偶性; (2)对于x ∈[2,6],f (x )=ln x +1x -1>ln m

x -17-x

恒成立,求实数m 的取值范围.

解:(1)由

x +1

x -1

>0, 解得x <-1或x >1,

∴定义域为(-∞,-1)∪(1,+∞), 当x ∈(-∞,-1)∪(1,+∞)时,

f (-x )=ln

-x +1-x -1=ln x -1x +1=-ln x +1

x -1

=-f (x ), ∴f (x )=ln

x +1

x -1

是奇函数.

(2)由x ∈[2,6]时,f (x )=ln x +1x -1>ln m

x -17-x

恒成立. ∴

x +1x -1>m

x -17-x

>0, ∵x ∈[2,6],

∴0

+16,x ∈[2,6],

由二次函数的性质可知x ∈[2,3]时函数g (x )单调递增,x ∈[3,6]时函数g (x )单调递减,

x ∈[2,6]时,g (x )min =g (6)=7,

∴0

高考数学-指数函数图像和性质及经典例题 【基础知识回顾】 一、指数公式部分 有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a a b =)( ),0,0(Q r b a ∈>>. 正数的分数指数幂的意义 )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 二、指数函数 1.指数函数的概念:一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数的图象和性质 1.在同一坐标系中画出下列函数的图象: (1)x )31(y = (2)x )2 1 (y = (3)x 2y = (4)x 3y = (5)x 5y =

【指数函数性质应用经典例题】 例1.设a 是实数, 2 ()()21 x f x a x R =- ∈+,试证明:对于任意,()a f x 在R 上为增函数. 证明:设1212,,x x R x x ∈<,则 12()()f x f x -12 22()()2121 x x a a =- --++ 21222121 x x = - ++ 121 22(22)(21)(21) x x x x -=++, 由于指数函数2x y =在R 上是增函数, 且12x x <, 所以1222x x < 即1 2220x x -<, 又由20x >, 得1 1 20x +>,2120x +>, ∴12()()0f x f x -< 即12()()f x f x <, 所以,对于任意,()a f x 在R 上为增函数. 例2.已知函数2 ()1 x x f x a x -=+ +(1)a >, 求证:(1)函数()f x 在(1,)-+∞上为增函数;(2)方程()0f x =没有负数根.

指数函数和对数函数知识点总结及练习题 一.指数函数 (一)指数及指数幂的运算 n m n m a a = s r s r a a a +=? rs s r a a =)( r r r b a ab =)( (二)指数函数及其性质 1.指数函数的概念:一般地,形如x a y =(0>a 且1≠a )叫做指数函数。 2.指数函数的图象和性质 10<a 6 54321 -1 -4-2 2460 1 6 5 4 3 2 1 -1 -4-2 246 1 定义域 R 定义域 R 值域y >0 值域y >0 在R 上单调递减 在R 上单调递增 非奇非偶函数 非奇非偶函数 定点(0,1) 定点(0,1) 二.对数函数 (一)对数 1.对数的概念:一般地,如果N a x =(0>a 且1≠a ),那么x 叫做以a 为底N 的对数,记作N x a log =,其中a 叫做底数,N 叫做真数,N a log 叫做对数式。 2.指数式与对数式的互化 幂值 真数 x N N a a x =?=log 底数 指数 对数

3.两个重要对数 (1)常用对数:以10为底的对数N lg (2)自然对数:以无理数 71828.2=e 为底的对数N ln (二)对数的运算性质(0>a 且1≠a ,0,0>>N M ) ①MN N M a a a log log log =+ ②N M N M a a a log log log =- ③M n M a n a log log = ④换底公式:a b b c c a log log log =(0>c 且1≠c ) 关于换底公式的重要结论:①b m n b a n a m log log = ②1log log =?a b b a (三)对数函数 1.对数函数的概念:形如x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量。 2对数函数的图象及性质 01 32.5 2 1.51 0.5-0.5 -1-1.5-2-2.5 -1 1 23456780 1 1 32.5 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -2.5 -1 1 2345678 1 1 定义域x >0 定义域x >0 值域为R 值域为R 在R 上递减 在R 上递增 定点(1,0) 定点(1,0)

对数函数图像和性质及经典例题 第一部分:回顾基础知识点 对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数其中x 是自变量,函数的定义域是(0,+∞). 对数函数的图象和性质 ○ 1 在同一坐标系中画出下列对数函数的图象; (1) x y 2log = (2) x y 2 1log = (3) x y 3log = (4) x y 3 1log = ○ 2 对数函数的性质如下: 图象特征 函数性质 1a > 1a 0<< 1a > 1a 0<< 函数图象都在y 轴右侧 函数的定义域为(0,+∞) 图象关于原点和y 轴不对称 非奇非偶函数 向y 轴正负方向无限延伸 函数的值域为R 函数图象都过定点(1,1) 11=α 自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数 减函数 第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0 0log ,1>>x x a 0log ,10><x x a ○ 3 底数a 是如何影响函数x y a log =的. 规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.

第二部分:对数函数图像及性质应用 例1.如图,A ,B ,C 为函数x y 2 1log =的图象上的三点,它们的横坐标分别是t , t +2, t +4(t ≥1). (1)设?ABC 的面积为S 。求S=f (t ) ; (2)判断函数S=f (t )的单调性; (3) 求S=f (t)的最大值 . 解:(1)过A,B,C,分别作AA 1,BB 1,CC 1垂直于x 轴,垂足为A 1,B 1,C 1, 则S=S 梯形AA 1B 1B +S 梯形BB 1C 1C -S 梯形AA 1C 1C . )44 1(log )2(4log 2 3223 1t t t t t ++=++= (2)因为v =t t 42+在),1[+∞上是增函数,且v ≥5, [)∞++=.541在v v 上是减函数,且1

2.9 指数 指数函数 ——指数函数、对数函数是高考考查的重点内容之一 一、明确复习目标 1.理解分数指数幂的概念,掌握有理指数幂的运算性质,能正确进行指数式运算; 2.掌握指数函数的概念、图象和性质,并能灵活运用图象和性质去解决有关问题。 二.建构知识网络 1.幂的有关概念 (1)正整数指数幂)(*∈????=N n a a a a a n n 48476Λ个 零指数幂)0(10 ≠=a a ; 负整数指数幂()1 0,n n a a n N a -*= ≠∈ (2)正分数指数幂()0,,,1m n m n a a a m n N n *=>∈>; (3)负分数指数幂()10,,,1m n m n m n a a m n N n a a -* == >∈> (4)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质: ()()10,,r s r s a a a a r s Q +=>∈ ()()()20,,s r rs a a a r s Q =>∈ ()()()30,0,r r r ab a b a b r Q =>>∈ 3.根式 (1)根式的定义:如果a x n =()1,n n N >∈,那么x 叫做a 的n 次方根,用 n a 表 示, n a 叫做根式,n 叫根指数,a 叫被开方数。 (2)根式的性质: ①当n 是奇数,a a n n =; 当n 是偶数,?? ?<-≥==0 0a a a a a a n n ②负数没有偶次方根,③零的任何次方根都是零 4.指数函数: (1)定义:y=a x (a >0且a ≠1),叫指数函数,x 是自变量,y 是x 的函数。 (2)图象:

一、自然常数e 1、求导x a dx d 令x a y = 已知导数差商公式定义式: x x f x x f x f x ?-?+=→?) ()()(lim 0 ' 由导数差商定义式得: x a a x a a x x f x x f x f x x x x x x x x ?-?=?-=?-?+=?→??+→?→?1 )()()(lim lim lim 000'(因子x a 与x ?无关,因此我们可以将它提到极限号前面) 注意到上式中的极限是函数)(x f 的导数在0=x 处的值,即 x a a f x x ?-?=?→?1)0(lim 00 ' 因此,我们已经说明了如果指数函数x a x f =)(在0=x 处是可微的,则该函数是处处可微的,并且 x a f x f ?=)0()('' 上述等式说明了任何指数函数的变化率是和指数函数本身成正比的. 令x a a f a M x x ?-?==?→?1 )0()(lim 00 ' 0,因为x a 已知,要求)('x f 必须 求得)(0a M ,从x a a M x x ?-=?→?1 )(l i m 0 0的定义式可以猜测)(0a M 可能 是一个无线不循环的数值,只能无限取小x ?值求得)(0a M 的估算值,

这种估算的过程相当繁琐且得不到)(0a M 的准确数值. h h h 1 2- h h 1 3- 0.1 0.7177 1.1612 0.01 0.6956 1.1047 0.001 0.6934 1.0992 0.0001 0.6932 1.0987 在上表中,给出了2=a 和3=a 时的情况,通过数值举例,说明了)0('f 的存在.极限明显存在并且 当2=a ,69.012)0(lim 0 ' ≈?-=?→?x f x x 当3=a ,10.11 3)0(lim 0' ≈?-=?→?x f x x 实际上,我们将在《微积分》5.6节说明它们极限存在并且精确到小数点后六位,如下: 693147.0)2(0≈=x x dx d 098612.1)3(0 ≈=x x dx d 因此,由等式①,我们有 x x dx d 2)69.0()2(?≈ x x dx d 3)10.1()3(?≈ 在等式①对于底数a 的所有可能的选择中,当1)0('=f 时,微分 公式最为简单,即x e y =,x e y =',并且有11 )(lim 00=?-=?→?x e e M x x ,

2.9 指数 指数函数 ——指数函数、对数函数是高考考查的重点内容之一 一、明确复习目标 1.理解分数指数幂的概念,掌握有理指数幂的运算性质,能正确进行指数式运算; 2.掌握指数函数的概念、图象和性质,并能灵活运用图象和性质去解决有关问题。 二.建构知识网络 1.幂的有关概念 (1)正整数指数幂)(*∈????=N n a a a a a n n 个 零指数幂)0(10 ≠=a a ; 负整数指数幂()1 0,n n a a n N a -*= ≠∈ (2)正分数指数幂()0,,,1m n m n a a a m n N n *=>∈>; (3)负分数指数幂()10,,,1m n m n m n a a m n N n a a -* == >∈> (4)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质: ()()10,,r s r s a a a a r s Q +=>∈ ()()()20,,s r rs a a a r s Q =>∈ ()()()30,0,r r r ab a b a b r Q =>>∈ 3.根式 (1)根式的定义:如果a x n =()1,n n N >∈,那么x 叫做a 的n 次方根,用 n a 表示, n a 叫做根式,n 叫根指数,a 叫被开方数。 (2)根式的性质: ①当n 是奇数,a a n n =; 当n 是偶数,?? ?<-≥==0 0a a a a a a n n ②负数没有偶次方根,③零的任何次方根都是零 4.指数函数: (1)定义:y=a x (a >0且a ≠1),叫指数函数,x是自变量,y 是x 的函数。 (2)图象:

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

专题九 指数函数 【高频考点解读】 1.了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算. 3.理解指数幂的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点. 4.知道指数函数是一类重要的函数模型. 【热点题型】 题型一 指数函数性质的考查 例1、求下列函数的定义域和值域. (1)y =????23-|x +1|;(2)y =2 x 2x +1 ;(3)y =. 【提分秘籍】 解决与指数函数的性质问题时应注意 (1)大小比较时,注意构造函数利用单调性去比较,有时需要借助于中间量如0,1判断. (2)与指数函数单调性有关的综合应用问题,要注意分类讨论思想及数形结合思想的应用. 【举一反三】 已知函数f (x )= . (1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.

【热点题型】 题型二指数函数的图象及应用 例2、(1)已知函数f(x)=(x-a)·(x-b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=a x+b的图象是() (2)若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.

【答案】(1)A(2)[-1,1] 【提分秘籍】 1.与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象. 2.y=a x,y=|a x|,y=a|x|(a>0且a≠1)三者之间的关系: y=a x与y=|a x|是同一函数的不同表现形式. 函数y=a|x|与y=a x不同,前者是一个偶函数,其图象关于y轴对称,当x≥0时两函数图象相同. 【举一反三】 当a≠0时,函数y=ax+b和y=b ax的图象只可能是下图中的( ) 【热点题型】 题型三分类讨论思想在指数函数中的应用 例3、设a>0且a≠1,函数y=a2x+2a x-1在[-1,1]上的最大值是14,求a的值.

高三第三章导数--对数函数与指数函数的导数练习题 一、选择题(本大题共6小题,每小题3分,共18分) 1.下列求导数运算正确的是 A.(x +x 1)′=1+21x B.(log 2x )′=2ln 1x C.(3x )′=3x log 3e D.(x 2cos x )′=-2x sin x 2.函数y =ln(3-2x -x 2)的导数为 A.32+x B.2231x x -- C.32222-++x x x D.3 2222-+-x x x 3.函数y =lncos2x 的导数为 A.-tan2x B.-2tan2x C.2tan x D.2tan2x 4.函数y =x x a 22-(a >0且a ≠1),那么y ′为 A.x x a 22-ln a B.2(ln a ) x x a 22- C.2(x -1) x x a 22-·ln a D.(x -1) x x a 22-ln a 5.函数y =x ln 的导数为 A.2x x ln B.x x ln 2 C.x x ln 1 D.x x ln 21 6.函数y =sin32x 的导数为 A.2(cos32x )·32x ·ln3 B.(ln3)·32x ·cos32x C.cos32x D.32x ·cos32x 二、填空题(本大题共5小题,每小题3分,共15分) 7.设y =x x e e 2 )12(+,则y ′=___________. 8.在曲线y =5 9++x x 的切线中,经过原点的切线为 9.函数y =x 22的导数为y ′=___________. 10.函数y =log 3cos x 的导数为___________. 11.曲线y =e x -e ln x 在点(e ,1)处的切线方程为___________. 三、解答题(本大题共3小题,每小题9分,共27分) 12.求函数y =ln(21x +-x )的导数.

一、幂函数 1、幂的有关概念 正整数指数幂: ...() n n a a a a n N =∈ g123 零指数幂: 01(0) a a =≠ 负整数指数幂: 1 (0,) p p a a p N a -=≠∈ 分数指数幂:正分数指数幂的意义是: (0,,,1) m n m n a a a m n N n =>∈> 且 负分数指数幂的意义是: 1 (0,,,1) m n m n m n a a m n N n a a - ==>∈> 且 2、幂函数的定义 一般地,函数 a y x =叫做幂函数,其中x是自变量,a是常数(我们只讨论a是有理数的情况). 3、幂函数的图象 幂函数a y x = 当 11 ,,1,2,3 32 a= 时的图象见左图;当 1 2,1, 2 a=--- 时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:

a y x =有下列性质: (1)0a >时: ①图象都通过点(0,0),(1,1); ②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时: ①图象都通过点(1,1); ②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. 二、指数函数 ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞; 3)当10<a 时函数为增函数. 4)有两个特殊点:零点(0,1),不变点(1,)a . 5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=?-= 三、对数函数 如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b = log b a a N N b =?=(0a >,1a ≠,0N >). 1.对数的性质 ()log log log a a a MN M N =+. log log log a a a M M N N =-.

指数函数 一、选择题(共17小题;共85分) 1. 已知 a =(?12)?1 ,b =2?12 ,c =(12)?1 2 ,d =2?1,则此四数中最大的是 ( ) A. a B. b C. c D. d 2. 已知 a = √5?1 2 ,函数 f (x )=a x ,若实数 m ,n 满足 f (m )>f (n ) ,则 m ,n 的关系为 ( ) A. m +n <0 B. m +n >0 C. m >n D. m c >b B. a >b >c C. c >a >b D. c >b >a 6. 函数 y =(12) 2x?x 2 的值域为 ( ) A. [1 2,+∞) B. (?∞,1 2] C. (0,1 2] D. (0,2] 7. 若函数 y =a x ?(b +1)(a >0,a ≠1) 的图象在第一、三、四象限,则有 ( ) A. a >1 且 b <1 B. a >1 且 b >0 C. 00 D. 0y 1>y 2 B. y 2>y 1>y 3 C. y 1>y 2>y 3 D. y 1>y 3>y 2 9. 若 x >y >1,0y b B. x a b y 10. 函数 f (x )=a x?1+4(a >0,且 a ≠1)的图象过一个定点,则这个定点坐标是 ( ) A. (5,1) B. (1,5) C. (1,4) D. (4,1) 11. 下列各式比较大小正确的是 ( ) A. 1.72.5>1.73 B. 0.6?1>0.62 C. 0.8?0.1>1.250.2 D. 1.70.3<0.93.1 12. 已知实数 a ,b 满足等式 2017a =2018b ,下列五个关系式:① 00,且 a ≠1)的图象经过点 P (2,1 ),则 f (?1) 等于 ( )

课 题: 3.5对数函数与指数函数的导数(1) 教学目的: 1.理解掌握对数函数的导数的两个求导公式. 2.在学习了函数四则运算的求导法则与复合函数求导法则的基础上,应用对数函数的求导公式,能求简单的初等函数的导数 教学重点:应用对数函数的求导公式求简单的初等函数的导数. 教学难点:对数函数的导数的记忆,对数函数求导公式的灵活运用. 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1. 常见函数的导数公式: 0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -= 2.法则1 )()()]()([' ''x v x u x v x u ±=±. 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, [()]'(Cu x Cu x '= 法则3 ' 2 '' (0)u u v uv v v v -??=≠ ??? 3.复合函数的导数:设函数u =?(x )在点x 处有导数u ′x =?′(x ),函数y =f (u ) 在点x 的对应点u 处有导数y ′u =f ′(u ),则复合函数y =f (? (x ))在点x 处也有导数,且x u x u y y '''?= 或f ′x (? (x ))=f ′(u ) ?′(x ). 4.复合函数的求导法则 复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数 5.复合函数求导的基本步骤是:分解——求导——相乘——回代. 二、讲解新课: ⒈对数函数的导数(1): x x )'(ln = 证明:∵ x x f y ln )(==

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01 且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0 ,y x =0,当x ≤0,函数值不存在。 a =1 时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ???=212 10,, 的图象的认识。 图象特征与函数性质: 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐标都大于1,在第二象限内的纵坐标都小于1,y x =?? ? ? ?12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101, 则, 则 (4)y y x x ==210,的图象自左到右逐渐(4)当a >1时,y a x =是增函数,

第二章 指数函数与对数函数及函数的应用 一、知识网络 二、课标要求和最新考纲要求 1、指数函数 (1)通过具体实例(如细胞的分裂,考古中所用的14 C 的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景; (2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。 (3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点; (4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型。 2、对数函数 (1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用; (2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点; 3、知道指数函数x a y =与对数函数x y a log =互为反函数(a >0,a ≠1)。 4、函数与方程

(1)了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。 (2)理解并掌握连续函数在某个区间上存在零点的判定方法。能利用函数的图象和性质判别函数零点的个数. 5、函数模型及其应用 (1)了解指数函数、对数函数以及幂函数的增长特征。知道直线上升、指数增长、对数增长等不同函数类型增长的含义。 (2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。 (3)能利用给定的函数模型解决简单的实际问题。 三、命题走向 函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题.在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新.以基本函数为模型的应用题和综合题是高考命题的新趋势. 考试热点:①考查函数的表示法、定义域、值域、单调性、奇偶性和函数的图象.②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点.③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想. 指数函数、对数函数、幂函数是三类常见的重要函数,在历年的高考题中都占据着重要的地位。从近几年的高考形势来看,对指数函数、对数函数、幂函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题。为此,我们要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。 预测2010年对本节的考查是:1.题型有两个选择题和一个解答题;2.题目形式多以指数函数、对数函数、幂函数为载体的复合函数来考查函数的性质。同时它们与其它知识点交汇命题,则难度会加大。

对数函数与指数函数的运算 1.化简下列各式(其中各字母均为正数): (1) ;)(65312121132 b a b a b a ????-- (2).)4()3(6521 332121231----?÷-??b a b a b a 2.化简(1) 313 2)3(---a y x (2) )111)((2211b ab a b a +-+-- 3.化简下列各式 (1) 6113175.0231729)95()27174(256)61(027 .0------+-+-- (2) (a 3+a -3)(a 3-a -3)÷[(a 4+a -4+1)(a-a -1)] 4.求值(1)lg14-2lg 37+lg7-lg18 (2)9lg 243lg

(3) 2.1lg 10lg 38lg 27lg -+ (4)(lg2)3+(lg5)3+3lg2?lg5 (5)化简22)4(lg 16lg 25lg )25(lg ++ 答案: 1.(1)原式= .100653121612131656131212131=?=?=?-+-+--b a b a b a b a b a (2)原式=- )(45)4(25233136121332361------÷-=?÷b a b a b a b a .45145452 32321ab ab ab b a -=?-=?-=-- 2. (1) 639 27x a y ; (2) 3311b a +;

3.(1) 5132;(2) a a 1 ; 4. (1) 0;(2) 25;(3) 23;(4) 1;(5) 2 ;

第八节 对数与对数函数 [知识能否忆起] 1.对数的概念 (1)对数的定义: 如果a x =N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.当a =10时叫常用对数.记作x =lg_N ,当a =e 时叫自然对数,记作x =ln_N . (2)对数的常用关系式(a ,b ,c ,d 均大于0且不等于1): ①log a 1=0. ②log a a =1. ③对数恒等式:a log a N =N . ④换底公式:log a b =log c b log c a . 推广log a b =1 log b a ,log a b ·log b c ·log c d =log a d . (3)对数的运算法则: 如果a >0,且a ≠1,M >0,N >0,那么: ①log a (M ·N )=log a M +log a N ; ②log a M N =log a M -log a N ; ③log a M n =n log a M (n ∈R); ④log am M n =n m log a M . 2.对数函数的概念 (1)把y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)函数y =log a x (a >0,a ≠1)是指数函数y =a x 的反函数,函数y =a x 与y =log a x (a >0,a ≠1)的图象关于y =x 对称. 3.对数函数的图象与性质

图象 性质 定义域:(0,+∞) 值域:R 过点(1,0),即x =1时,y =0 当x >1时,y >0当01时,y <0当00 在(0,+∞)上是增函数 在(0,+∞)上是减函数 [小题能否全取] 1.(教材习题改编)设A ={y |y =log 2x ,x >1},B =? ??? ?? y |y =??? ?12x ,00},B =? ??? ??y |120,a ≠1)的图象经过定点A ,则A 点坐标是( ) A.????0,2 3 B.???? 23,0 C .(1,0) D .(0,1) 解析:选C 当x =1时y =0. 3.函数y =lg |x |( ) A .是偶函数,在区间(-∞,0)上单调递增 B .是偶函数,在区间(-∞,0)上单调递减 C .是奇函数,在区间(0,+∞)上单调递减 D .是奇函数,在区间(0,+∞)上单调递增 解析:选B y =lg |x |是偶函数,由图象知在(-∞,0)上单调递减,在(0,+∞)上单调递增. 4.(2012·江苏高考)函数f (x )= 1-2log 6x 的定义域为________.

指数与指数函数 一?填空题 1. 已知f(x)=(a2-1)x是减函数,则a的取值范围是________. 2. (-1.8)0+(1.5)-2× 2 3 3 3 8 ?? ? ?? -(0.01)-0.5+ 3 2 9=________. 3. 指数函数y=? ? ?? ?b a x的图象如图所示,则二次函数y=ax2+bx的顶点横坐 标的取值范围是________. 4. 已知0≤x≤2,则y= 1 2 4325 x x - -?+的最大值为________. 5. 已知函数f(x)=(x-a)(x-b)(其中a>b),若f(x)的图象如图所示,则g(x)=a x+b的图象是________. 6. (2011·新沂一中模拟)已知f(x)= ()1 1,0 2 ,0 x a x a x a x ? -++< ? ? ?≥ ? 是(-∞,+∞)上的减函数,那么实数a的取值范围是________. 7. 若函数f(x)?g(x)分别是R上的奇函数?偶函数,且满足f(x)-g(x)=e x,则有________. ①f(2) ??, 则f(2 010)=________.

二?解答题 10. 计算 ÷ 3a -73a 13; (2)2 3338-??- ??? +120.002--10(5-2)-1+(2-3)0; (3)已知1 1224m m -+=,求33221122m m m m -- -+的值. 11. 函数f (x )= 2-x x -1 的定义域为集合A ,关于x 的不等式22ax <2a +x (a ∈R )的解集为B , 求使A ∩B =A 的实数a 的取值范围. 12. (2011·丹阳中学期中)设函数f (x )=ka x -a -x (a >0且a ≠1)是奇函数. (1)求k 的值; (2)若f (1)>0,试求不等式f (x 2+2x )+f (x -4)>0的解集; (3)若f (1)=32 ,且g (x )=a 2x +a -2x -2mf (x )在[1,+∞)上的最小值为-2,求m 的值

指数函数和对数函数的重点知识 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为 1,但y x =1的反函数不存在, 因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210 ,,的图象的认识。 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐 标都大于1,在第二象限内的纵坐标都小于1,y x =?? ???12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101 ,则,则 (4)y y x x ==210,的图象自左到右逐渐上升,y x =?? ? ? ?12的图象逐渐下降。 (4)当a >1时,y a x =是增函数, 当01<

高考数学专题:对数与对数函数 最新考纲 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,1 2的对数函数的图象;3.体会对数函数是一类重要的函数模型.4.了解指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数. 知 识 梳 理 1.对数的概念 如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数. 2.对数的性质、换底公式与运算性质 (1)对数的性质:①a log a N =N ;②log a a b =b (a >0,且a ≠1) (2)对数的运算法则 如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N =log a M -log a N ; ③log a M n =n log a M (n ∈R ); ④log a m M n =n m log a M (m ,n ∈R ,且m ≠0). (3)对数的重要公式 ①换底公式:log b N =log a N log a b (a ,b 均大于零且不等于1); ②log a b =1 log b a ,推广log a b ·log b c ·log c d =log a d . 3.对数函数及其性质 (1)概念:函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)对数函数的图象与性质

求指数、对数函数的导数 例 求下列函数的导数: 1.1ln 2+=x y ;2.)132(log 22++=x x y ; 3.)sin(b ax e y +=; 4.).12cos(3+=x a y x 分析:对于比较复杂的函数求导,除了利用指数、对数函数求导公式之外,还需要考虑应用复合函数的求导法则来进行.求导过程中,可以先适当进行变形化简,将对数函数的真数位置转化为有理函数的形式后再求导数. 解:1.解法一:可看成1,,ln 2+===x v v u u y 复合而成. .1 11 2)1(2 111 )2(2 11222212221 +=+?+=?+?+=??='?'?'='--x x x x x x x x x v u v u y y x v u x 解法二:[])1(111ln 222'++= '+='x x x y .12112111)1()1(2 111 22222122+=?+?+= '+?+?+=-x x x x x x x x 解法三:)1ln(2 11ln 22+=+=x x y , [] .1122)1(1121)1ln(2122222+=+='+?+?='+='x x x x x x x y 2.解法一:设132,log 2 2++==x x u u y ,则 )34(log 12+??='?'='x e u u y y x u x

.1 32log )34()34(132log 2222++?+=+++?=x x e x x x x e 解法二:[] )132(1 32log )132(log 22222'++?++='++='x x x x e x x y .132log )34()34(132log 2222+++=+?++=x x e x x x x e 3.解法一:设b ax v v u e y u +===,sin ,,则 )sin()cos( cos b ax u x v u x e b ax a a v e u u y y +?+=??='?'?'=' 解法二:[][]'+?='='++)sin()sin()sin(b ax e e y b ax b ax )sin()sin()cos()()cos(b ax b ax e b ax a b ax b ax e ++?+=' +?+?= 4.])12cos([3'+='x a y x )].12s i n (2)12c o s (ln 3[) 12sin(2)12cos(ln 3)12)](12sin([)12cos()3(ln ])12[cos()12cos()(3333333+-+?=+?-+?=' ++-++'??=' +?++'=x x a a x a x a a x x a x x a a x a x a x x x x x x x 说明:深刻理解,掌握指数函数和对数函数的求导公式的结构规律,是解决问题的关键,解答本题所使用的知识,方法都是最基本的,但解法的构思是灵魂,有了它才能运用知识为解题服务,在求导过程中,学生易犯漏掉符合或混淆系数的错误,使解题走入困境. 解题时,能认真观察函数的结构特征,积极地进行联想化归,才能抓住问题的本质,把解题思路放开. 变形函数解析式求导 例 求下列函数的导数: (1)12223+-++=x x x x y ; (2)x x y +-=11ln ;

相关文档
最新文档