放缩法典型例题一

放缩法典型例题一
放缩法典型例题一

典型例题一

例1 若10<-(0>a 且1≠a ).

分析1 用作差法来证明.需分为1>a 和10<

解法1 (1)当1>a 时, 因为 11,110>+<-

>--=x a . (2)当10<+<-

)1(l o g )1(l o g

x x a a ++-= 0)1(l o g

2>-=x a . 综合(1)(2)知)1(log )1(log x x a a +>-.

分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比较法.

因为 )1(log )1(log x x a a +--

a x a x lg )

1lg(lg )1lg(+--=

[])1lg()1lg(lg 1

x x a +--= [])1lg()1lg(lg 1

x x a +---= 0)1lg(lg 12>--=x a ,

所以)1(log )1(log x x a a +>-.

说明:解法一用分类相当于增设了已知条件,便于在变形中脱去绝对值符号;解法二用对数性质(换底公式)也能达到同样的目的,且不必分而治之,其解法自然简捷、明快.

典型例题二

例2 设0>>b a ,求证:.a

b

b

a

b a b a >

分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式.

证明:b a a

b b a a

b b a b a b a b a b a ---=?=)(

∵0>>b a ,∴.

0,1>->b a b a

∴1)(>-b

a b a . ∴a b b a b a b a .1>

又∵0>a

b b a ,

∴.a

b

b

a

b a b a >. 说明:本题考查不等式的证明方法——比较法(作商比较法).作商比较法证明不等式的步骤是:判断符号、作商、变形、判断与1的大小.

典型例题三

例3 对于任意实数a 、b ,求证444

()

22a b a b ++≥(当且仅当a b =时取等号)

分析 这个题若使用比较法来证明,将会很麻烦,因为,所要证明的不等式中有4()

2a b +,

展开后很复杂。若使用综合法,从重要不等式:22

2a b ab +≥出发,再恰当地利用不等式的有关性质及“配方”的技巧可得到证明。

证明:∵ 222a b ab +≥(当且仅当22

a b =时取等号)

两边同加4444222

():2()()a b a b a b ++≥+,

即:44222

()22a b a b ++≥ (1)

又:∵ 22

2a b ab +≥(当且仅当a b =时取等号)

两边同加22222

():2()()a b a b a b ++≥+

∴ 222

()22a b a b ++≥

∴ 2224()()

22a b a b ++≥ (2)

由(1)和(2)可得444

()22a b a b ++≥(当且仅当a b =时取等号).

说明:此题参考用综合法证明不等式.综合法证明不等式主要是应用均值不等式来证明,

要注意均值不等式的变形应用,一般式子中出现有平方和乘积形式后可以考虑用综合法来解.

典型例题四

例4 已知a 、b 、c R +

∈,1a b c ++=,求证1119.a b c ++≥

分析 显然这个题用比较法是不易证出的。若把111a b c ++

通分,则会把不等式变得较

复杂而不易得到证明.由于右边是一个常数,故可考虑把左边的式子变为具有“倒数”特征

的形式,比如b a a b +

,再利用“均值定理”就有可能找到正确的证明途径,这也常称为“凑

倒数”的技巧.

证明:∵1a b c ++=

∴ 111a b c ++a b c a b c a b c a b c ++++++=++

(1)(1)(1)

b c a c a b a a b b c c =++++++++ 3()()()

b a

c a c b a b a c b c =++++++

∵2b a a b +≥=,同理:2c a a c +≥,2c b b c +≥。 ∴ 111

32229.a b c ++≥+++=

说明:此题考查了变形应用综合法证明不等式.题目中用到了“凑倒数”,这种技巧在

很多不等式证明中都可应用,但有时要首先对代数式进行适当变形,以期达到可以“凑倒数”的目的.

典型例题五

例5 已知c b a >>,求证:a c c b b a -+

-+-1

11>0.

分析:此题直接入手不容易,考虑用分析法来证明,由于分析法的过程可以用综合法来书写,所以此题用两种方法来书写证明过程.

证明一:(分析法书写过程)

为了证明a c c b b a -+

-+-1

11>0

只需要证明c b b a -+

-11>c a -1

∵c b a >>

∴0,0>->->-c b b a c a ∴c b c a b a ---1

,

11 >0

∴c b b a -+

-11>c a -1

成立

∴a c c b b a -+

-+-1

11>0成立

证明二:(综合法书写过程)

∵c b a >>∴0,0>->->-c b b a c a

∴b a -1>c a -1 c b -1

>0

∴c b b a -+

-11>c a -1

成立

∴a c c b b a -+

-+-1

11>0成立

说明:学会分析法入手,综合法书写证明过程,但有时这两种方法经常混在一起应用,

混合应用时,应用语言叙述清楚.

典型例题六

例6 若0,0a b >>,且2c a b >+,求证:

c a c <<

分析 什么直接的联系,所以可以采用分析的方法来寻找证明途径.但用“分析”法证不等式,要有严格的格式,即每一步推出的都是上一步的充分条件,直到推出的条件是明显成立的(已知条件或某些定理等).

证明:为要证c a c <<

只需证a c <-<

即证

a c -< 也就是

22

()a c c ab -<-, 即证2

2a ac ab -<-,

即证2()ac a a b >+, ∵0,2,0a c a b b >>+>,

∴2a b

c +>

≥2c ab >即有20c ab ->,

又 由2c a b >+可得2()ac a a b >+成立,

∴ 所求不等式c a c <<

说明:此题考查了用分析法证明不等式.在题目中分析法和综合法是综合运用的,要注意在书写时,分析法的书写过程应该是:“欲证……需证……”,综合法的书写过程是:“因为(∵)……所以(∴)……”,即使在一个题目中是边分析边说明也应该注意不要弄混.

典型例题七

例7 若23

3=+b a ,求证2≤+b a .

分析:本题结论的反面比原结论更具体、更简、宜用反证法.

证法一:假设2>+b a ,则)(2))((222233b ab a b ab a b a b a +->+-+=+, 而23

3=+b a ,故1)(22<+-b ab a . ∴ab b a ab 212

2≥+>+.从而1

2<+<+ab b a .

∴4222)(2

22<+<++=+ab ab b a b a . ∴2<+b a .

这与假设矛盾,故2≤+b a .

证法二:假设2>+b a ,则b a ->2,

故3333)2(2b b b a +->+=,即2

61282b b +->,即0)1(2<-b , 这不可能.从而2≤+b a .

证法三:假设2>+b a ,则8)(3)(3

33>+++=+b a ab b a b a .

由23

3=+b a ,得6)(3>+b a ab ,故2)(>+b a ab .

又2))((2

233=+-+=+b ab a b a b a , ∴))(()(2

2b ab a b a b a ab +-+>+.

∴ab b ab a <+-2

2,即0)(2

<-b a . 这不可能,故2≤+b a .

说明:本题三种方法均采用反证法,有的推至与已知矛盾,有的推至与已知事实矛盾. 一般说来,结论中出现“至少”“至多”“唯一”等字句,或结论以否定语句出现,或结论肯定“过头”时,都可以考虑用反证法.

典型例题八

例8 设x 、y 为正数,求证3

3

32

2y x y x +>+. 分析:用综合法证明比较困难,可试用分析法.

证明:要证333

22y x y x +>+,只需证233322)()(y x y x +>+, 即证6

336642246233y y x x y y x y x x ++>+++,

化简得334224233y x y x y x >+,0)323(2

222>+-y xy x y x . ∵033442

2

2>+-y xy x . ∴0)323(2

222>+-y xy x y x . ∴原不等式成立.

说明:1.本题证明易出现以下错误证法:xy y x 222≥+,32

32

33

332y x y x ≥+,然后分(1)1>>y x ;(2)1<x 且10<y 且10<

2.用分析法证明数学问题,要求相邻两步的关系是B A ?,前一步是后一步的必要条件,后一步是前一步的充分条件,当然相互为充要条件也可以.

典型例题九

例9 已知212

2≤+≤y x ,求证321

22≤+-≤y xy x .

分析:联想三角函数知识,进行三角换元,然后利用三角函数的值域进行证明. 证明:从条件看,可用三角代换,但需要引入半径参数r .

∵212

2≤+≤y x ,

∴可设θ=cos r x ,θ=sin r y ,其中π≤θ≤≤≤2021,

r . ∴)

2sin 21

1(cos sin 22222θ-=θθ-=+-r r r y xy x .

由232sin 2112

1≤θ-≤,故2

2223)2sin 211(21r r r ≤θ-≤. 而21212≥r ,3232

≤r ,故3

2122≤+-≤y xy x .

说明:1.三角代换是最常见的变量代换,当条件为222r y x =+或2

22r y x ≤+或

122

22=±b y a x 时,均可用三角代换.2.用换元法一定要注意新元的范围,否则所证不等式的变量和取值的变化会影响其结果的正确性.

典型例题十

例10 设n 是正整数,求证1

212

11121<+++++≤n n n . 分析:要求一个n 项分式n n n 212

111+

++++ 的范围,它的和又求不出来,可以采用“化整为零”的方法,观察每一项的范围,再求整体的范围.

证明:由),,2,1(2n k n k n n =>+≥,得n k n n 1121<

+≤.

当1=k 时,n n n 11121<

+≤;

当2=k 时,n n n 12121<

+≤

……

当n k =时,n n n n 1121<

+≤. ∴1

212111221=<+++++≤=n n n n n n n .

说明:1、用放缩法证明不等式,放缩要适应,否则会走入困境.例如证明

4712111222<+++n .由k k k 11112--<,如果从第3项开始放缩,正好可证明;如果从第2项放缩,可得小于2.当放缩方式不同,结果也在变化.

2、放缩法一般包括:用缩小分母,扩大分子,分式值增大;缩小分子,扩大分母,分式值缩小;全量不少于部分;每一次缩小其和变小,但需大于所求,第一次扩大其和变大,但需小于所求,即不能放缩不够或放缩过头,同时放缩后便于求和.

典型例题十一

例11 已知0>>b a ,求证:

b b a ab b a a b a 8)(28)(2

2-<

-+<-. 分析:欲证不等式看起来较为“复杂”,宜将它化为较“简单”的形式,因而用分析法证明较好.

证明:欲证

b b a ab b a a b a 8)(28)(2

2-<-+<-, 只须证b b a ab b a a

b a 4)(24)(22-<

-+<-. 即要证2

2

22)(2?

??? ??-<-

? ??-b b a b a a b a , 即要证b b

a b a a

b a 22-<

-<-.

即要证b b a a b

a 212+<<+, 即要证

b

b

a a

b a +<

<+2.

即要证

1

21+<

<+

b

a a

b ,即b a a

b <

<1. 即要证b a

a

b <

<1 (*) ∵0>>b a ,∴(*)显然成立,

故b b a ab b a a b a 8)(28)(22-<-+<- 说明:分析法证明不等式,实质上是寻求结论成立的一个充分条件.分析法通常采用“欲证——只要证——即证——已知”的格式.

典型例题十二

例12 如果x ,y ,z R ∈,求证:3

32332332888y x z x z y z y x z y x ++≥++.

分析:注意到不等式左边各字母在项中的分布处于分离状态,而右边却结合在一起,因而要寻求一个熟知的不等式具有这种转换功能(保持两边项数相同),由

0)()()(222≥-+-+-a c c b b a ,易得ca bc ab c b a ++≥++222,此式的外形特征符合要求,

因此,我们用如下的结合法证明.

证明:∵2

42424888)()()(z y x z y x ++=++

444444x z x y y x ++≥

2

22222222)()()(x z z y y x ++=

2

22222222222y x x z x z z y z y y x ?+?+?≥ 2

22222)()()(y zx x yz z xy ++=

z xy y zx y zx x yz x yz z xy 2

22222?+?+?≥

3

32332332y x z x z y z y x ++=.

∴3

32332332888y x z x z y z y x z y x ++≥++.

说明:分析时也可以认为是连续应用基本不等式ab b a 22

2≥+而得到的.左右两边都是三项,实质上是ca bc ab c b a ++≥++2

22公式的连续使用.

如果原题限定x ,y ,z +∈R ,则不等式可作如下变形:)

1

11(333888z y x z y x z y x ++≥++进一步可得到:z y x y x z z x y z

y x 1

113

35335335++≥++. 显然其证明过程仍然可套用原题的思路,但比原题要难,因为发现思路还要有一个转化的过程.

典型例题十三

例13 已知10<

三数中,

不可能都大于41

分析:此命题的形式为否定式,宜采用反证法证明.假设命题不成立,则

a c c

b b a )1()1()1(---,,三数都大于41

,从这个结论出发,进一步去导出矛盾.

证明:假设a c c b b a )1()1()1(---,,

三数都大于41

, 即

41)1(>-b a ,41)1(>-c b ,41

)1(>

-a c . 又∵10<

21)1(>

-b a ,21)1(>-c b ,21

)1(>-a c . ∴

23

)1()1()1(>

-+-+-a c c b b a ① 又∵21)1(b a b a +-≤-,21)1(c b c b +-≤-,21)1(a

c a c +-≤

-.

以上三式相加,即得:

23

)1()1()1(≤

?-+?-+?-a c c b b a ②

显然①与②相矛盾,假设不成立,故命题获证. 说明:一般情况下,如果命题中有“至多”、“至少”、“都”等字样,通常情况下要用反证法,反证法的关键在于“归谬”,同时,在反证法的证明过程中,也贯穿了分析法和综合法的解题思想.

典型例题十四

例14 已知a 、b 、c 都是正数,求证:?

?? ??-++≤??? ??-+3332

2abc c b a ab b a . 分析:用分析法去找一找证题的突破口.要证原不等式,只需证3

32abc c ab -≤-,即只需证3

32abc ab c ≥+.把ab 2变为ab ab +,问题就解决了.或有分析法的途径,也很容易用综合法的形式写出证明过程.

证法一:要证???

??-++≤-??

? ??+33322abc c b a ab b a , 只需证3

32abc c b a ab b a -++≤-+,

即332abc c ab -≤-,移项,得3

32abc ab c ≥+.

由a 、b 、c 为正数,得3

32abc ab ab c ab c ≥++=+. ∴原不等式成立.

证法二:∵a 、b 、c 为正数,

3333abc ab ab c ab ab c =?≥++∴.

即332abc ab c ≥+,故3

32abc c ab -≤-.

332abc c b a ab b a -++≤-+∴,

???

??-++≤-??? ??+∴33322abc c b a ab b a .

说明:题中给出的2b

a +,a

b ,3

c b a ++,3

abc ,只因为a 、b 、c 都是正数,形

式同算术平均数与几何平均数定理一样,不加分析就用算术平均数与几何平均数定理来求证,问题就不好解决了.

原不等式中是用“不大于”连结,应该知道取等号的条件,本题当且仅当ab c =时取“=”号.证明不等式不论采用何种方法,仅仅是一个手段或形式问题,我们必须掌握证题的关

键.本题的关键是证明3

32abc ab c ≥+.

典型例题十五

例15 已知0>a ,0>b ,且1=-b a .求证:

1)1)(1(10<+-<

b b a a a .

分析:记

)

1

)(1(10b b a a a M +-<=,欲证10<

∈R b a 、可

换元,围绕公式1tan sec 2

2=θ-θ来进行.

证明:令θ=2

sec a ,θ=2

tan b ,且

20π<

θ<, 则)tan 1(tan )sec 1(sec sec 1)1)(1(12θ+θ?θ-θθ=+-b b a a a

)

sin cos cos sin ()cos cos 1(cos 2θθ

+θθ?θ-θθ= θ

=θθ?θθ?θ=sin cos sin 1cos sin cos 22

∵20π<

θ<,∴1sin 0<θ<,即1)1)(1(10<+-

说明:换元的思想随处可见,这里用的是三角代换法,这种代换如能将其几何意义挖掘出来,对代换实质的认识将会深刻得多,常用的换元法有:(1)若1≤x ,可设R x ∈αα=,sin ;

(2)若122=+y x ,可设α=cos x ,α=sin y ,R ∈α;(3)若12

2≤+y x ,可设α=cos r x ,

α=sin r y ,且1≤r .

典型例题十六

例16 已知x 是不等于1的正数,n 是正整数,求证n

n n

n

x x x ?>+++1

2)1)(1(. 分析:从求证的不等式看,左边是两项式的积,且各项均为正,右边有2的因子,因此可考虑使用均值不等式.

证明:∵x 是不等于1的正数,

∴021>>+x x ,

∴n

n n x x 2)1(>+. ①

又021>>+n

n x x . ② 将式①,②两边分别相乘得

n n n n n x x x x ??>++22)1)(1(,

∴n

n n

n

x x x ?>+++1

2)1)(1(.

说明:本题看起来很复杂,但根据题中特点,选择综合法求证非常顺利.由特点选方法是解题的关键,这里因为1≠x ,所以等号不成立,又因为①,②两个不等式两边均为正,所以可利用不等式的同向乘性证得结果.这也是今后解题中要注意的问题.

典型例题十七

例17 已知,x ,y ,z +

∈R ,且1=++z y x ,求证3≤++z y x .

分析:从本题结构和特点看,使用比较法和综合法都难以奏效.为找出使不等式成立的充分条件不妨先用分析法一试,待思路清晰后,再决定证题方法.

证明:要证3≤++z y x ,

只需证3)(2≤+++++yz xz xy z y x ,

只需证1≤++yz xz xy .

∵x ,y ,z +

∈R ,

∴xy y x 2≥+,xz z x 2≥+,yz z y 2≥+, ∴)(2)(2yz xz xy z y x ++≥++,

∴1≤+

+yz xz xy 成立.

∴3≤++z y x .

说明:此题若一味地用分析法去做,难以得到结果.在题中得到只需证

1≤++yz xz xy 后,思路已较清晰,这时改用综合法,是一种好的做法.通过此例可以看出,用分析法寻求不等式的证明途径时,有时还要与比较法、综合法等结合运用,决不可把某种方法看成是孤立的.

典型例题十八

例18 求证2131211222<++++

n .

分析:此题的难度在于,所求证不等式的左端有多项和且难以合并,右边只有一项.注

意到这是一个严格不等式,为了左边的合并需要考查左边的式子是否有规律,这只需从2

1n 下手考查即可.

证明:∵)

2(111)1(11112≥--=-

∴ +???

??-+??? ??-+<++++

3121211111312112

22n 212111<-=??? ??--+n n n .

说明:此题证明过程并不复杂,但思路难寻.本题所采用的方法也是解不等式时常用的一种方法,即放缩法.这类题目灵活多样,需要巧妙变形,问题才能化隐为显,这里变形的这一步极为关键.

典型例题十九

例19 在ABC ?中,角A 、B 、C 的对边分别为a ,b ,c ,若B C A 2≤+,求证

4442b c a ≤+.

分析:因为涉及到三角形的边角关系,故可用正弦定理或余弦定理进行边角的转化.

证明:∵B B C A 2≤-π=+,∴

21cos 3≤

π≥B B ,. 由余弦定理得ac c a B ac c a b -+≥-+=2

2222cos 2 ∴ac b c a +≤+2

22,

22222442)(c a c a c a -+=+ =)2)(2(2

222ac c a ac c a -+++ ])12([])12([2

2ac b ac b --?++≤

2

2242c a b ac b -?+=

4

4222)(b b b ac ≤+--=

说明:三角形中最常使用的两个定理就是正弦和余弦定理,另外还有面积公式

C

ab S sin 21

=.本题应用知识较为丰富,变形较多.这种综合、变形能力需要读者在平时

解题时体会和总结,证明不等式的能力和直觉需要长期培养.

高中数列放缩法技巧大全

高中数列放缩法技巧大全 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 121 42的值; (2)求证:2 1153n k k =<∑ . 解析:(1)因为 1 21 121)12)(12(21422+- -=+-= -n n n n n ,所以1 2212111 42 1 2 += +- =-∑=n n n k n k (2)因为22211411214121214 n n n n n ??<==- ?--+??- , 所以35321121121513121112 =+

2021年典型例题:用放缩法证明不等式

用放缩法证明不等式 欧阳光明(2021.03.07) 所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的“度”,否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。下面举例谈谈运用放缩法证题的常见题型。 一. “添舍”放缩 通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a ,b 为不相等的两正数,且a 3-b 3=a 2-b 2,求证 143 <+<a b 。 证明:由题设得a 2+ab +b 2=a +b ,于是(a +b )2>a 2+ab + b 2=a +b ,又a +b >0,得a +b >1,又ab <14 (a +b )2,而(a +b )2=a +b +ab <a +b +14 (a +b )2,即34(a +b )2<a +b ,所以a +b <43,故有1<a +b <43 。 例2. 已知a 、b 、c 不全为零,求证: 证明:因为 a a b b a b b a b a b a b 22222 2342 22++= +++=++()>()≥,同理b bc c b c 222 +++>,c ac a c a 222+++>。

所以 a a b b b b c c c ac a a b c 22222232 ++++++++++>() 二. 分式放缩 一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。 例3. 已知a 、b 、c 为三角形的三边,求证: 12<++<a b c b a c c a b +++。 证明:由于a 、b 、c 为正数,所以a b c a a b c +++> ,b a c b a b c +++>,c a b c a b c +++>,所以 a b c b a c c a b a a b c b a b c c a b c +++++>++++++++=1,又a ,b ,c 为三角 形的边,故b +c >a ,则a b c +为真分数,则a b c a a b c +++<2,同理b a c b a b c +++<2,c a b c a b c +++<2, 故a b c b a c c a b a a b c b a b c c a b c +++++++++=++<++2222. 综合得12<++<a b c b a c c a b +++。 三. 裂项放缩 若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。 例4. 已知n ∈N*,求n 2n 131211<…+ +++。 证明:因为,则11213+ ++

(完整版)高二数学归纳法经典例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

高中数学放缩法技巧全总结材料

2010高考数学备考之放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 142 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为??? ??+--=-=- <1211212144 4 11 1 222n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1)1(1 ≥--<+n n n n n (15) 11 1) 11)((1122222 222<++++= ++ +--= -+-+j i j i j i j i j i j i j i 例2.(1)求证:)2()12(2167) 12(1513112 22≥-->-++++n n n (2)求证:n n 412141361161412 -<++++ (3)求证:1122642)12(531642531423121-+< ????-????++????+??+n n n (4) 求证:)112(213 12 11)11(2-+<++++<-+n n n

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题 惠州市华罗庚中学 欧阳勇 摘要:纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。处理数列型不等式最重要要的方法为放缩法。放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的学生带来一盏明灯。 关键词:放缩法、不等式、数列、数列型不等式、压轴题 主体: 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

(完整版)放缩法典型例题

放缩法典型例题 数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列的前项的和,满足,试求: (1)数列的通项公式; (2)设,数列的前项的和为,求证: 解:(1)由已知得,时,,作差得: ,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以 (2),所以 注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这 里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和. 二.先放缩再求和 1.放缩后成等差数列,再求和 例2.已知各项均为正数的数列的前项和为,且. (1) 求证:; (2)求证:

解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得 ∴ 所以,, 所以 (2)因为,所以,所以 ; 2.放缩后成等比数列,再求和 例3.(1)设a,n∈N*,a≥2,证明:; (2)等比数列{a n}中,,前n项的和为A n,且A7,A9,A8成等差数列.设,数列{b n}前n项的和为B n,证明:B n<. 解:(1)当n为奇数时,a n≥a,于是,. 当n为偶数时,a-1≥1,且a n≥a2,于是 .(2)∵,,,∴公比. ∴..

∴.3.放缩后为差比数列,再求和 例4.已知数列满足:,.求证: 证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:. 令,所以,两式相减得: ,所以,所以, 故得. 4.放缩后为裂项相消,再求和 例5.在m(m≥2)个不同数的排列P1P2…P n中,若1≤i<j≤m时P i>P(即前面某数大于后面某数),则称P i与P j构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为a n,如排列21的逆序数,排列321的逆序数.j (1)求a4、a5,并写出a n的表达式; (2)令,证明,n=1,2,…. (2)因为,

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

典型例题:用放缩法证明不等式

用放缩法证明不等式 所谓放缩法就是利用不等式的传递性, 对照证题目标进行合情合理的放大和缩小的过程, 在使用 放缩法证题时要注意放和缩的 度”否则就不能同向传递了,此法既可以单独用来证明不等式,也可 以是其他方法证题时的一个重要步骤。下面举例谈谈运用放缩法证题的常见题型。 一. 添舍”放缩 通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1.设a ,b 为不相等的两正数,且a 3— b 3 = a 4 5 — b 2,求证1a 2+ ab + b 2= a + b ,又 a + b >0,得 a + b > 1,又 ab < 4 (a + b ) 2,而(a + b ) 2 = a + b + ab 2 (a b C ) 一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加 上同一个正数则分式值变大,禾U 用这些性质,可达到证题目的。 b 2 bc c 2 > b C , ?. c 2 ac a 2 > C a 。 5 2 所以 a 2 ab b 2 b 2 bc C 2 心 ac a 2 > 2 ( a b C ) 二. 分式放缩 例3.已知a b 、C 为三角形的三边,求证:1< L + L + J < 2 o b C a C a b 证明:由于a b 、C 为正数,所以严> —,4 > J ,七 > —,所以 b C a b c a C a b c a b a b C

导数典型例题(含答案)

导数典型例题 导数作为考试内容的考查力度逐年增大.考点涉及到了导数的所有内容,如导数的定义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等,考查的题型有客观题(选择题、填空题)、主观题(解答题)、考查的形式具有综合性和多样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考查成为新的热点. 一、与导数概念有关的问题 【例1】函数f (x )=x (x -1) (x -2)…(x -100)在x=0处的导数值为 .1002 C ! 解法一 f '(0)=x f x f x ?-?+→?) 0()0(lim = x x x x x ?--?-?-??→?0 )100()2)(1(lim 0 Λ =lim 0 →?x (Δx -1)(Δx -2)…(Δx -100)=(-1)(-2)…(-100)=100! ∴选D. 解法二 设f (x )=a 101x 101+ a 100x 100+…+ a 1x +a 0,则f '(0)= a 1,而a 1=(-1)(-2)…(-100)=100!. ∴选D. 点评 解法一是应用导数的定义直接求解,函数在某点的导数就是函数在这点平均变化率的极限.解法二是根据导数的四则运算求导法则使问题获解. 【例2】 已知函数f (x )=n n n k k n n n n x c n x c k x c x c c 11212210 ++++++ΛΛ,n ∈N *,则 x x f x f x ??--?+→?) 2()22(lim 0 = . 解 ∵ x x f x f x ??--?+→?) 2()22(lim 0 =2x f x f x ?-?+→?2) 2()22(lim + []x f x f x ?--?-+→?-) 2()(2lim 0 =2f '(2)+ f '(2)=3 f '(2), 又∵f '(x )=1 1 2 1 --+++++n n n k k n n n x c x c x c c ΛΛ, ∴f '(2)= 21(2n n n k n k n n c c c c 222221+++++ΛΛ)=21[(1+2)n -1]= 2 1(3n -1). 点评 导数定义中的“增量Δx ”有多种形式,可以为正也可以为负,如 x m x f x m x f x ?--?-→?-)()(000 lim ,且其定义形式可以是 x m x f x m x f x ?--?-→?) ()(000 lim ,也可以是 00 ) ()(lim x x x f x f x --→?(令Δx =x -x 0得到),本题是导数的定义与多项式函数求导及二项式定理有关 知识的综合题,连接交汇、自然,背景新颖. 【例3】 如圆的半径以2 cm/s 的等速度增加,则圆半径R =10 cm 时,圆面积增加的速度是 .

高中数学放缩法公式

“放缩法”证明不等式的基本策略 1、添加或舍弃一些正项(或负项) 例1、已知* 21().n n a n N =-∈求证: *12 231 1...().23n n a a a n n N a a a +-<+++∈ 证明: 111211111111 .,1,2,...,,2122(21)2 3.222232 k k k k k k k k a k n a +++-==-=-≥-=--+-Q 1222311111111 ...(...)(1),2322223223 n n n n a a a n n n a a a +∴ +++≥-+++=-->- *122311...().232 n n a a a n n n N a a a +∴-<+++<∈ 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的 值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩时就舍去了22k -,从而是使和式得到化简. 2、先放缩再求和(或先求和再放缩) 例2、函数f (x )= x x 414+,求证:f (1)+f (2)+…+f (n )>n + )(2 1 21*1 N n n ∈-+. 证明:由f (n )= n n 414+=1- 11 11422n n >-+? 得f (1)+f (2)+…+f (n )>n 2211221122112 1 ?- ++?- +?-Λ )(21 2 1)2141211(41*11N n n n n n ∈-+=++++-=+-Λ. 此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。 3、逐项放大或缩小

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 2.1 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n个数a ij(i 1,2, ,m; j 1,2, , n)组成的m行n 列的矩形数表 a11 a12 a1n a2n a m1 a m2 a mn 称为m×n矩阵,记为 A (a ij )m n 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下)三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是 1 的对角阵,记为E; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设 A (a ij )mn; B (b ij )mn 若a ij b ij(i 1,2, ,m; j 1,2, ,n),则称 A 与B相等,记为A=B 2.1.2 矩阵的运算

1.加法 (1)定义:设 A (A ij )mn ,B (b ij ) mn ,则 C A B (a ij b ij )mn (2) 运算规律 ① A+B=B+A ; ②( A+B )+C=A+(B+C ) ③ A+O=A ④ A+(-A ) =0, –A 是 A 的负矩阵 2.数与矩阵的乘法 (1)定义:设 A (a ij ) mn , k 为常数,则 kA (ka ij )mn (2)运算规律 ①K (A+B) =KA+KB , ② (K+L )A=KA+LA , ③ (KL) A= K (LA) 3.矩阵的乘法 (1)定义:设 A (a ij )mn ,B (b ij )np .则 n AB C (C ij )mp ,其中 C ij a ik b kj k1 (2) 运算规律 ① (AB)C A (BC) ;② A(B C) AB AC ③ (B C)A BA CA 3)方阵的幂 ①定义:A (a ij ) n ,则 A k A K A ②运算规律: A m A n A m n (A m )n A (4)矩阵乘法与幂运算与数的运算不同之处。 ① AB BA ② AB 0, 不能推出 A 0或B 0; ③ (AB)k A k B k 4.矩阵的转置 (1) 定义:设矩阵 A=(a ij )mn ,将 A 的行与列的元素位置交换,称为矩阵 A 的转置,记为 A T (a ji )nm , (2) 运算规律 ①(A T )T A; ②(A B)T A T B T ; ③(kA)T KA T ; ④ (AB)T B T A T 。

高中数学方法讲解之放缩法

高中数学方法讲解之放 缩法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

放缩法 将不等式一侧适当的放大或缩小以达证题目的的方法,叫放缩法。 放缩法的方法有: ⑴添加或舍去一些项,如:a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如: 4lg 16lg 15lg )2 5lg 3lg ( 5lg 3log 2 =<=+k k k k k (程度大) Ⅲ、 )1111(21)1)(1(11 112 2+--=+-=- c b a d d b a d c c a c b a b d c b a a m

2=+++++++< c d d d c c b a b b a a m ∴1 < m < 2 即原式成立 例2.当 n > 2 时,求证:1)1(log )1(log <+-n n n n 【巧证】:∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n ∴ 2 22 2)1(log 2)1(log )1(log )1(log )1(log ?? ????-=??? ???++-<+-n n n n n n n n n n 12log 22=?? ? ??? 2时, 1)1(log )1(log <+-n n n n 例3.求证: 21 3121112222<++++n 【巧证】:n n n n n 1 11)1(112 --=-< ∴ 21 21113121211113121112 222<-=+-++-+-+<++++n n n n 十二、放缩法: 巧练一:设x > 0, y > 0,y x y x a +++=1, y y x x b +++=11,求 证:a < b 巧练一:【巧证】: y y x x y x y y x x y x y x +++<+++++=+++11111 巧练二:求证:lg9?lg11 < 1 巧练二:【巧证】: 122299lg 211lg 9lg 11lg 9lg 2 2 2 =?? ? ??

高中数学方法讲解之放缩法

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 放缩法 将不等式一侧适当的放大或缩小以达证题目的的方法,叫放缩法。 放缩法的方法有: ⑴添加或舍去一些项,如:a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶ 利用基本不等式,如: 4lg 16lg 15lg )2 5lg 3lg ( 5lg 3log 2 =<=+k k k k k (程度大) Ⅲ、)1 1 11(21)1)(1(11112 2+--=+-=-< k k k k k k ; (程度小)

例1.若a , b , c , d ∈R +,求证: 21<+++++++++++< c a d d b d c c a c b b d b a a 【巧证】:记m =c a d d b d c c a c b b d b a a +++ ++++++++ ∵a , b , c , d ∈R + ∴ 1=+++++++++++++++> c b a d d b a d c c a c b a b d c b a a m 2=+++++++ 2 时,求证:1)1(log )1(log <+-n n n n 【巧证】:∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n ∴ 2 22 2)1(log 2)1(log )1(log )1(log )1(log ?? ????-=??????++-<+-n n n n n n n n n n 12log 22=?? ? ??? 2时, 1)1(log )1(log <+-n n n n 例3.求证:21 3121112222<++++n 【巧证】:n n n n n 111)1(112 --=-< ∴ 21 21113121211113121112 222<-=+-++-+-+<++++n n n n 十二、放缩法: 巧练一:设x > 0, y > 0,y x y x a +++=1, y y x x b +++=11,求 证:a < b

放缩法证明数列不等式经典例题

放缩法证明数列不等式 主要放缩技能: 1.211111111(1)(n 1)1n n n n n n n n -=<<=-++-- 2221144112()141(21)(21)21214 n n n n n n n <===--+--+- ==>= ==<= =<= == =< = = 5. 121122211(21)(21)(22)(21)(21)2121 n n n n n n n n n n ---<==-------- 6. 111 22(1)11(1)2(1)22(1)2n n n n n n n n n n n n n +++++-==-+?+??+?

例1.设函数2*2()1x x n y n N x -+=∈+的最小值为n a ,最大值为n b , 且n c =(1)求n c ;(2)证明: 4444123111174n c c c c ++++ < 例2.证明:1611780<+ ++< 例3.已知正项数列{}n a 的前n 项的和为n s ,且12n n n a s a + =,*n N ∈; (1)求证:数列{} 2n s 是等差数列; (2)解关于数列n 的不等式:11()48n n n a s s n ++?+>- (3)记312311112,n n n n b s T b b b b = = ++++,证明:312n T <<

例4. 已知数列{}n a 满足:n a n ?????? 是公差为1的等差数列,且121n n n a a n ++=+; (1) 求n a ;(2 12n na +++< 例5.在数列{}n a 中,已知1112,2n n n n a a a a a ++==-; (1)求n a ;(2)证明:112233(1)(1)(1)(1)3n n a a a a a a a a -+-+-++-< 例6. 数列{}n a 满足:11122,1()22 n n n n n a a a n a ++==++; (1)设2n n n b a =,求n b ;(2)记11(1)n n c n n a +=+,求证:12351162 n c c c c ≤++++<

数学归纳法典型例题

实用文档 文案大全数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 数学归纳法的原理及应用 四. 知识分析 【知识梳理】 数学归纳法是证明关于正整数n的命题的一种方法,在高等数学中有着重要的用途,因而成为高考的热点之一。近几年的高考试题,不但要求能用数学归纳法去证明现代的结论,而且加强了对于不完全归纳法应用的考查,既要求归纳发现结论,又要求能证明结论的正确性,因此,初步形成“观察—-归纳—-猜想—-证明”的思维模式,就显得特别重要。 一般地,证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n = n0时命题成立; (2)(归纳递推)假设n= k()时命题成立,

证明当时命题也成立。 只要完成这两个步骤,就可以断定命题对从开始的所有正整数n 都成立。上述证明方法叫做数学归纳法。 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步 实用文档 文案大全各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n =k+1时也成假设了,命题并没有得到证明。 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。 2、运用数学归纳法时易犯的错误 (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。

相关文档
最新文档