放缩法经典题库

放缩法经典题库
放缩法经典题库

放缩法在不等式的应用

所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的“度”,否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:

一. “添舍”放缩

通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a ,b 为不相等的两正数,且a 3

-b 3

=a 2

-b 2

,求证143

<+<

a b 。 证明:由题设得a 2

+ab +b 2

=a +b ,于是(a +b )2

>a 2

+ab +b 2

=a +b ,又a +b >0,得a +b >1,又

ab <

14(a +b )2

,而(a +b )2

=a +b +ab <a +b +14(a +b )2

,即34(a +b )2

<a +b ,所以a +b <43

,故有1<a +b <

43

例2. 已知a 、b 、c 不全为零,求证:

a a

b b b b

c c c ac a a b c 22222232

++++++++++>()

证明:因为

a a

b b a b b a b a b a b 22222

2342

22++=

+++=++()>()≥,同理

b b

c c b c 222

+++>,c ac a c a 222+++>。 所以

a a

b b b b

c c c ac a a b c 22222232

++++++++++>()

二. 分式放缩

一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。

例3. 已知a 、b 、c 为三角形的三边,求证:12<

++<a b c b a c c a b

+++。 证明:由于a 、b 、c 为正数,所以

a b c a a b c +++>,b a c b a b c +++>,c a b c a b c

+++>,

所以

a b c b a c c a b a a b c b a b c c a b c

+++++>++++++++=1,又a ,b ,c 为三角形的边,故b +c >a ,则

a b c

+为真分数,则a b c a a b c +++<2,同理b a c b a b c +++<2,c a b c a b c +++<2,

a b c b a c c a b

a a

b

c b a b c c a b c +++++++++=++<++2222.

综合得12<

++<a b c b a c c a b

+++。

三. 裂项放缩

若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。

例4. 已知n ∈N*,求n 2n

13

12

11<…+

++

+

证明:因为

1221

21n

n n

n n n n =

++-=--<

(),则112

13

+

+

+

…<()()…()<+

+-+-++--=-1122123221212n

n n n n

,证毕。

例 5. 已知*

N n ∈且)1n (n 3221a n +++?+?= ,求证:2

)1(2)1(2

+<

<+n a n n n 对所有正整数n 都成立。

证明:因为

n n n n =>+2)1(,所以2

)1n (n n 21a n +=

+++> , 又

2

)

1()1(+<

+n n n n , 所以2

)1n (21n 225232)1n (n 232221a 2

n +=

++++=++++++< ,综合知结论成立。 例6 设数列}{n a 满足).,2,1(1

,211 =+

==+n a a a a n

n n (Ⅰ)证明12+>n a n 对一切正整数n 成立;(Ⅱ)令),2,1( ==n n

a b n n ,判定n b 与1+n b 的大小,并说明理由(04年重庆卷理科第(22)

题)

简析 本题有多种放缩证明方法,这里我们对(Ⅰ)进行减项放缩,有 法1 用数学归纳法(只考虑第二步)1)1(22121

222

1

2++=++>+

+=+k k a a a k

k k ;

法2 2122

2

21

2

+>+

+=+n n

n n a a a a

.1,,2,1,2221-=>-?+n k a a k k 则?+>+>?->-1222)1(22

212

n n a n a a n n

1

2+>n a n .

四. 利用重要不等式放缩 1.均值不等式

利用已知的公式或恒不等式,把欲证不等式变形后再放缩,可获简解。

例7 设.)1(3221+++?+?=n n S n 求证.2

)1(2)1(2

+<<+n S n n n

解析 此数列的通项为.,,2,1,)1(n k k k a k

=+=

2121)1(+

=++<+

1∑∑==+<<∴n

k n n

k k S k , 即.2

)1(22)1(2)1(2

+<++<<+n n n n S n n n 注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式2

b a ab +≤,若放成

1)1(+<+k k k 则得2)1(2)3)(1()1(2

1

+>

++=+<∑=n n n k S n

k n ,就放过“度”了! ②根据所证不等式的结构特征来选取所需要的重要不等式,这里

n

a a n a a a a a a n

n

n

n

n n

2

2111111++≤

++≤≤++ 其中,3,2=n 等的各式及其变式公式均可供选用。

例8已知b a ,为正数,且111=+b

a ,

试证:对每一个*

∈N n ,1222)(+-≥--+n n n n n b a b a .(88年全国联赛题) 简析 由

111=+b a 得b a ab +=,又42)11)((≥++=++a

b

b a b a b a ,故4≥+=b a ab ,而n

n n r r n r n n n n n

n b C b a C b a C a C b a +++++=+-- 110)(, 令

n n n b a b a n f --+=)()(,则)(n f =11

11----++++n n n r r n r n n n ab C b a C b a C ,因为i n n i

n

C C -=,倒序相加得

)(2n f =)()()(111

111b a ab C b a b a C ab b a C n n n n r n r r r n r n n n n -------+++++++ ,

而12

11

1

1

2422+------=?≥≥+==+==+n n

n

n n n r

n r r r

n n n b a b a ab

b

a b a

ab

b a

,则

)(2n f =)

)(22())((1

1r r n r n r n r r n r n r n n r n n b a b a b a b a C C C -----+-=+++++

?-≥)22(n 12+n ,所以)(n f ?-≥)22(n n 2,即对每一个*∈N n ,1222)(+-≥--+n n n n n b a b a .

2.利用有用结论

例9 求证.12)1

21

1()511)(311)(11(+>-+

+++n n 简析 本题可以利用的有用结论主要有:

法1 利用假分数的一个性质)0,0(>>>++>m a b m

a m

b a b 可得

>-??122563412n n =+??n n 212674523 )12(212654321+?-??n n

n ?12)1

22563412(2+>-??n n n 即.12)1211()511)(311)(11(+>-++++n n

法 2 利用贝努利不等式

)

0,1,2,(1)1(≠->≥∈+>+*x x n N n nx x n 的一个特例

1

2121)1211(2-?

+>-+

k k (此处

121,2-==k x n )得 =-+∏?-+>-+

=)1211(1212121

11k k k k n k .121

2121+=-+∏=n k k n k 注:例9是 上海高考试题,以此题为主干添“枝”加“叶”而编拟成1998年全国高考文科试题;进行升维处理并加参数而成理科姊妹题。如理科题的主干是:

证明.13)2

31

1()711)(41

1)(11(3+>-+

+++n n (可考虑用贝努利不等式3=n 的特例) 例10 已知函数.2,,10,)1(321lg )(≥∈≤

n a n x f x

x x x 给定

求证:

)0)((2)2(≠>x x f x f 对任意*∈N n 且2≥n 恒成立。

(90年全国卷压轴题) 简析 本题可用数学归纳法证明,详参高考评分标准;这里给出运用柯西(Cauchy )不等式

∑∑∑===≤n

i i

n

i i

n

i i i b

a

b a 1

21

2

2

1

])([的简捷证法:

?>)(2)2(x f x f >?+-++++n n a n x x x x 2222)1(321lg n

n a n x

x x x ?+-++++)1(321lg

2 2])1(321[x x x x n a n ?+-++++? ])1(321[2222x x x x n a n n ?+-++++?<

而由Cauchy 不等式得2))1(1312

111(x x x x

n a n ?+-?++?+?+?

?++<)11(22 ])1(321[22222x x x x n a n ?+-++++ (0=x 时取等号)

])1(321[2222x x x x n a n n ?+-++++? (10≤

例11 已知11211

1,(1).2

n n n

a a a n n +==+

++)(I 用数学归纳法证明2(2)n a n ≥≥;)(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈ )(05年辽宁卷第22题) 解析 )(II 结合第)(I 问结论及所给题设条件ln(1)x x +<(0x

>)的结构特征,可得放缩思路:

?+++

≤+n n n a n n a )2111(21?++++≤+n n

n a n n a ln )21

11ln(ln 21

n n n n a 211ln 2+++≤。于是n n n n n a a 2

1

1ln ln 21++≤-+,

.

221122

11)21

(111ln ln )2

11()ln (ln 1

121

1

111

<--=--+-≤-?++≤---=+-=∑

n n n i n i i i n i n n a a i i a a 即.2ln ln 21e a a a n n

注:题目所给条件ln(1)x x +<(0x >)为一有用结论,可以起到提醒思路与探索放缩方向的

作用;当然,本题还可用结论)2)(1(2

≥->n n n n

来放缩:

?-+-+

≤+)

1(1))1(11(1n n a n n a n n ?+-+≤++)1)()1(1

1(11n n a n n a

.

)1(1

))1(11ln()1ln()1ln(1-<-+≤+-++n n n n a a n n

11

1)1ln()1ln()1(1)]1ln()1ln([21

2

11

2

<-<+-+?-<+-+?∑

∑-=+-=n

a a i i a a n n i i i n i ,

即.133ln 1)1ln(2e e a a n n

<-

例12 已知不等式

].[log 2,],[log 2

1

1312122n n N n n n >∈>+++* 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(1

1

1

≥+≤

>=--n a n na a b b a n n n

求证.3,]

[log 222≥+<

n n b b

a n (05年湖北卷第(22)题)

简析 当2≥n

时n

a a a n a a n na a n n n n n n n 1

1111111+=+≥?+≤

-----,即

n a a n n 1

111≥--.1)11(212k

a a n

k k k n k ∑∑=-=≥-

? 于是当3≥n

时有?>-][log 2

11121

n a a n

.]

[log 222n b b

a n +<

注:①本题涉及的和式

n

1

3121+++ 为调和级数,是发散的,不能求和;但是可以利用所给题设结论

][log 2

1

131212n n >+++ 来进行有效地放缩; ②引入有用结论在解题中即时应用,是近年来高考创新型试题的一个显著特点,有利于培养学生

的学习能力与创新意识。 例13 设n n

n

a )1

1(+=,求证:数列}{n a 单调递增且.4

解析 引入一个结论:若0>>a b

则)()1(11a b b n a b n n n -+<-++(证略)

整理上式得].)1[(1

nb a n b a n n -+>+(?)

以n b n a 11,111+=++

=代入(?)式得>++

+1)111(n n .)11(n n

+ 即}{n a 单调递增。

以n

b a 21

1,1+==代入(?)式得.4)211(21)211(12<+??+>n n n n

此式对一切正整数n 都成立,即对一切偶数有4)11(<+n n

,又因为数列}{n a 单调递增,所以对一切正整数n 有4)11(<+

n

n

。 注:①上述不等式可加强为.3)1

1(2<+≤

n n

简证如下:

利用二项展开式进行部分放缩:.1111)11(221n

n n n n n n n C n C n C n a ++?+?+=+= 只取前两项有.2111=?+≥n

C a n n 对通项作如下放缩: .212211!111!111-=?≤<+-?-??=k k k n k n k n n n n n k n

C 故有.32/11)2/1(12122

12121111

12

<--?+=+++++<--n n n a ②上述数列}{n a 的极限存在,为无理数e ;同时是下述试题的背景: 已知

n

m i ,,是正整数,且

.1n m i <≤<(1)证明i

n i i m i A m A n <;(2)证明

.)1()1(m n n m +>+(01年全国卷理科第20题)

简析 对第(2)问:用n /1代替n 得数列n

n

n n b b 1

)

1(:}{+=是递减数列;借鉴此结论可有如

下简捷证法:数列

}

)1{(1n

n +递减,且

,1n m i <≤<故,

)1()1(11n

m

n m +>+即

m n n m )1()1(+>+。

当然,本题每小题的证明方法都有10多种,如使用上述例5所提供的假分数性质、贝努力不等式、甚至构造“分房问题”概率模型、构造函数等都可以给出非常漂亮的解决! 例14 设数列

{}n a 满足()++∈+-=N n na a a n n n 121,当31≥a 时证明对所有,1≥n 有

2)(+≥n a i n ;2

1

111111

)(21

≤+++++

+n a a a ii (02年全国高考题)

解析 )(i 用数学归纳法:当1=n 时显然成立,假设当k

n ≥时成立即2+≥k a k

,则当

1+=k n 时312)2(1)2(1)(1+>+?+≥+-+≥+-=+k k k k a k a a a k k k k ,成立。

)(ii 利用上述部分放缩的结论

121+≥+k k a a 来放缩通项,可得

?+≥++)1(211k k a a .2

1

11242)1(2111111++--≤+?

=?≥+≥≥+k k k k k k a a a

.212

11)21

(14

12111

11

1

≤--?

=≤++==∑∑

n

i n

i i n

i a

注:上述证明

)

(i 用到部分放缩,当然根据不等式的性质也可以整体放缩:

31)2)(2(1+>+-++≥+k k k k a k ;证明)(ii 就直接使用了部分放缩的结论121+≥+k k a a 。

五 利用单调性放缩 1. 构造数列

如对上述例7,令2

)1(2

+-

=n S T n n 则0232)2)(1(1<+-++=-+n n n T T n n ,

}{,1n n n T T T ∴>?+递减,有0221<-=

≤T T n ,故.2

)1(2

+

2)121

1()511)(311)(11(+-++++=n n T n

则13

212221>+++==+n n n T T

n n ,即

}{,1n n n T T T ∴<+递增,有13

21>=

≥T T n ,得证!

注:由此可得例9的加强命题.123

32)1211()5

11)(3

1

1)(11(+≥-+

+++n n 并可改造成为探索性问题:求对任意1≥n 使12)1

211()511)(311)(11(+≥-++++n k n 恒成立的正整数k 的最大值;同理可得理科姊妹题的加强命题及其探索性结论,读者不妨一试! 2.构造函数

例15 已知函数

2

23)(x ax x f -

=的最大值不大于61,又当]2

1,41[∈x 时

.8

1

)(≥x f (Ⅰ)求a 的

值;(Ⅱ)设*+∈=<

1

011,证明.11+<

n a n (04年辽宁卷第21题) 解析 (Ⅰ)a =1 ;(Ⅱ)由),(1

n n a f a =+得6

1

61)31(2323221≤+--=-=+n n n n a a a a 且

.0>n a 用数学归纳法(只看第二步):)(1k k a f a =+在)1

1,

0(+∈k a k 是增函数,则得

.2

1

)11(2311)11(

)(21+<+-+=+<=+k k k k f a f a k k 例16 数列

{}n x 由下列条件确定:01>=a x ,,211???

? ?

?+

=+n

n n x a

x x N n ∈.(I )证明:对2≥n

总有a x n ≥;(II)证明:对2≥n 总有1+≥n n x x (02年北京卷第(19)题)

解析 构造函数

,21)(??

?

??+=

x a x x f 易知)(x f 在),[+∞a 是增函数。 当1+=k n

时???

? ?

?+

=+k

k k x a x x 211在),[+∞a 递增故.)(1a a f x k =>+ 对(II)有=

-+1n n

x x ???? ??-n n x a x 21,构造函数,21)(??? ??-=x a x x f 它在),[+∞a 上是增函数,故有=

-+1n n x x ≥???? ?

?-n n x a x 210)(=a f ,得证。 注:①本题有着深厚的科学背景:是计算机开平方设计迭代程序的根据;同时有着高等数学背景—数列

{}n x 单调递减有下界因而有极限:).(+∞→→

n a a n

??? ?

?+=

x a x x f 21)(是递推数列????

?

?+=+n n n x a x x 211的母函数,研究其单调性对此数列本质属性的揭示往往具有重要的指导作用。 六 换元放缩 例17 求证).2,(1

2

11≥∈-+

<<

*n N n n n n

简析 令n n n h n a +==1,这里),1(0>>n h n 则有

)1(1202

)1()1(2

>-<

+=n n h h n n h n n n n n ,从而有.1

2111-+<+=

例18 设1>a ,N n n ∈≥,2,求证4

)1(2

2->

a n a n

.

简析 令1+=b a ,则0>b ,b a =-1,应用二项式定理进行部分放缩有

2

2

2221102

)1()1(b n n b C C b C b C b C b a n n n n n n n n n n n n -=

>++++=+=--- ,注意到N n n ∈≥,2,则42)1(222b n b n n ≥-(证明从略),因此4

)1(2

2->a n a n 七 递推放缩

递推放缩的典型例子,可参考上述例14中利用)(i 部分放缩所得结论121+≥+k k a a 进行递推

放缩来证明)(ii ,同理例

11

)

(II 中所得

n

n n n n a a 21

1ln ln 21++≤

-+和

)

1(1

)1ln()1ln(1-<

+-++n n a a n n 、例

12中

n

a a n n 1111≥--、 例13(Ⅰ)之法2所得

2221>-+k k a a 都是进行递推放缩的关键式。

八 分项讨论

例19 已知数列}{n a 的前n 项和n S 满足

.1,)1(2≥-+=n a S n n n

(Ⅰ)写出数列}{n a 的前3项321,,a a a ;(Ⅱ)求数列}{n a 的通项公式;(Ⅲ)证明:对任意的整数4>m ,有8

711154<+++m

a a a (04年全国卷Ⅲ)

简析 (Ⅰ)略,(Ⅱ) []

.)1(23

212

---+=

n n n a ; (Ⅲ)由于通项中含有n

)1(-,很难直接放缩,考虑分项讨论:

当3≥n 且n 为奇数时1

2222223)121121(231121321

2121--++?

=-++=+-------+n n n n n n n n n a a )2

121(23222231

23212-----+?=+?m 且m 为偶数时=+++m a a a 11154 )

11()11(11654m

m a a a a a +++++-

.87

8321)2

11(412321)212121(23214243=+<-??+=++++<

--m m ②当4>

m 且m 为奇数时<+++m

a a a 1115

4

1

5

4

1

111+++++m m

a a a a (添项放缩)由①知

.8

71111154<+++++m m a a a a 由①②得证。 1、 先放缩再求和

例1 (05年湖北理)已知不等式

],[log 2

1

131212n n >+++ 其中n 为不大于2的整数,][log 2n 表示不超过n 2log 的最大整数。设数列{}n a 的各项为正且满足

111),0(--+≤

>=n n n a n na a b b a )4,3,2( =n ,证明:][log 222n b b

a n +<

, 5,4,3=n 分析:由条件11--+≤

n n n a n na a 得:n

a a n n 1

111+≥-

n

a a n n 1

111≥-∴

- )2(≥n

1

1112

1

-≥

-

--n a a n n ……

2

11112≥-a a 以上各式两边分别相加得:

21111111++-+≥- n n a a n 2

1

11111++-++≥∴

n n b a n ][l o g 21

12n b +>

)3(≥n =

b

n b 2]

[log 22+

∴ ]

[log 222n b b

a n +<

)3(≥n

本题由题设条件直接进行放缩,然后求和,命题即得以证明。

例2 (04全国三)已知数列}{n a 的前n 项和n S 满足:n n n a S )1(2-+=, 1≥n (1)写出数列}{n a 的前三项1a ,2a ,3a ; (2)求数列}{n a 的通项公式; (3)证明:对任意的整数4>m ,有

8

711154<+++m a a a 分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2;

⑵由已知得:1

112(1)2(1)

n

n n n n n n a S S a a ---=-=+----(n>1)

化简得:1

122(1)

n n n a a --=+-

2)1(2)1(11---=---n n n n a a ,]3

2

)1([232)1(11+--=+---n n n n a a 故数列{

32)

1(+-n

n a }是以32

1+-a 为首项, 公比为2-的等比数列. 故

1)2)(31(32)

1(---=+-n n

n a ∴22[2(1)]3n n

n a -=-- ∴数列{n a }的通项公式为:2

2[2(1)]3

n n n a -=

--. ⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能

够求和。而左边=

232451113111[]221212(1)m m

m a a a -+++=+++-+-- ,如果我们把上式中的分母中的1±去掉,就可利用等比数列的前n 项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知:

3

2322

1

21121121+>++-, 43432121121121+

<-++,因此,可将1

21

2-保留,再将后面的项两两组合后放缩,即可求和。这里需要对m 进行分类讨论,(1)当m 为偶数)4(>m 时,

m a a a 11154+++ )1

1()11(11654m

m a a a a a +++++=- )21

2121(2321243-++++<

m )2

11(4123214--?+=m 8321+<87

=

(2)当m 是奇数)4(>m 时,1+m 为偶数,

8

7

11111111165454<+++++<++++m m m a a a a a a a a 所以对任意整数4>m ,有

m a a a 11154+++ 8

7

<。 本题的关键是并项后进行适当的放缩。

2、 先求和再放缩

例3(武汉市模拟)定义数列如下:*

+∈+-==N n a a a a n n n ,1,22

11 证明:(1)对于*

∈N n 恒有n n a a >+1成立。

(2)当*

∈>N n n 且2,有11211+=-+a a a a a n n n 成立。 (3)11112112006

212006

<+++<

-

a a a 。 分析:(1)用数学归纳法易证。 (

2

1

2

1+-=+n n n a a a 得:

)1(11-=-+n n n a a a

)1(111-=-∴--n n n a a a … … )1(1112-=-a a a

以上各式两边分别相乘得: )

1(111211-=--+a a a a a a n n n ,

21=a

11211+=∴-+a a a a a n n n

(3)要证不等式11

112112006

212006

<+++<

-

a a a , 可先设法求和:

2006

21111a a a +++ ,再进行适当的放缩。 )1(11-=-+n n n a a a n

n n a a a 1

111

11--=

-∴

+ 111111---=∴

+n n n a a a 2006

21111a a a +++∴ )1

1

11()1111()1111(

200720063221---++---+---=a a a a a a 11

1120071---=

a a 2006

211

1a a a -

=1<

又20062006

1

2006212=>a a a a

20062006212

1

111->-

∴a a a

∴原不等式得证。

本题的关键是根据题设条件裂项求和。

2021年典型例题:用放缩法证明不等式

用放缩法证明不等式 欧阳光明(2021.03.07) 所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的“度”,否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。下面举例谈谈运用放缩法证题的常见题型。 一. “添舍”放缩 通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a ,b 为不相等的两正数,且a 3-b 3=a 2-b 2,求证 143 <+<a b 。 证明:由题设得a 2+ab +b 2=a +b ,于是(a +b )2>a 2+ab + b 2=a +b ,又a +b >0,得a +b >1,又ab <14 (a +b )2,而(a +b )2=a +b +ab <a +b +14 (a +b )2,即34(a +b )2<a +b ,所以a +b <43,故有1<a +b <43 。 例2. 已知a 、b 、c 不全为零,求证: 证明:因为 a a b b a b b a b a b a b 22222 2342 22++= +++=++()>()≥,同理b bc c b c 222 +++>,c ac a c a 222+++>。

所以 a a b b b b c c c ac a a b c 22222232 ++++++++++>() 二. 分式放缩 一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。 例3. 已知a 、b 、c 为三角形的三边,求证: 12<++<a b c b a c c a b +++。 证明:由于a 、b 、c 为正数,所以a b c a a b c +++> ,b a c b a b c +++>,c a b c a b c +++>,所以 a b c b a c c a b a a b c b a b c c a b c +++++>++++++++=1,又a ,b ,c 为三角 形的边,故b +c >a ,则a b c +为真分数,则a b c a a b c +++<2,同理b a c b a b c +++<2,c a b c a b c +++<2, 故a b c b a c c a b a a b c b a b c c a b c +++++++++=++<++2222. 综合得12<++<a b c b a c c a b +++。 三. 裂项放缩 若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。 例4. 已知n ∈N*,求n 2n 131211<…+ +++。 证明:因为,则11213+ ++

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

高中数学经典题型50道(另附详细答案)讲解学习

高中数学经典题型50道(另附详细答案)

高中数学习题库(50道题另附答案) 1.求下列函数的值域: 解法2 令t=sin x,则f(t)=-t2+t+1,∵ |sin x|≤1, ∴|t|≤1.问题转化为求关于t的二次函数f(t)在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟

悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。 2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道 的焦点处,当此慧星离地球相距m 万千米和m 3 4万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32 π π和,求该慧星与 地球的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆 的方程为122 22=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为3 π 时,由椭圆的几何 意义可知,彗星A 只能满足)3 (3/π π=∠=∠xFA xFA 或。作 m FA FB Ox AB 3 2 21B ==⊥,则于 故由椭圆第二定义可知得???????+-=-=)32(34)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,3 2 31 c c c m c a m a c m =-==∴?=代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a +

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题 惠州市华罗庚中学 欧阳勇 摘要:纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。处理数列型不等式最重要要的方法为放缩法。放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的学生带来一盏明灯。 关键词:放缩法、不等式、数列、数列型不等式、压轴题 主体: 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

线面垂直与面面垂直典型例题

线面垂直与面面垂直 基础要点 1、若直线αβ所成的角相等,则平面αβ B ) A 、//αβ B 、α不一定平行于β C 、α不平行于β D 、以上结论都不正确 2、在斜三棱柱111ABC A B C -,90BAC ∠=,又1BC AC ⊥,过1C 作1C H ⊥底面ABC ,垂足为H ,则H 一定在( B ) A 、直线AC 上 B 、直线AB 上 C 、直线BC 上 D 、△ABC 的内部 3、如图示,平面α⊥平面β,,,A B AB αβ∈∈与两平面,αβ所成的角分别为4π和6 π ,过A 、B 分别作两平面交线的垂线,垂足为,A B '',则:AB A B ''=( A ) A 、2:1 B 、3:1 C 、3:2 D 、4:3 4、如图示,直三棱柱11ABB DCC -中,190,4ABB AB ∠==, 12,1BC CC ==DC 上有一动点P ,则△1APC 周长的最小值是 5.已知长方体1111D C B A ABCD -中,21==AB A A , 若棱AB 上存在点P ,使得PC P D ⊥1,则棱AD 长 的取值范围是 。 题型一:直线、平面垂直的应用 1.(2014,江苏卷)如图,在三棱锥P-ABC 中,D ,E ,F 分别为 PC ,AC ,AB 的中点. 已知,685PA AC PA BC DF ⊥===,,. 求证:(1) PA DEF 平面;(2) BDE ABC ⊥平面平面 . 证明: (1) 因为D ,E 分别为棱PC ,AC 的中点, 所以DE ∥PA. 又因为PA ? 平面DEF ,DE ?平面DEF , 所以直线PA ∥平面DEF. (2) 因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,PA =6,BC =8,所以DE ∥PA ,DE = 12PA =3,EF =1 2 BC =4. 又因 DF =5,故DF 2=DE 2+EF 2, 所以∠DEF =90°,即DE 丄EF. 又PA ⊥AC ,DE ∥PA ,所以DE ⊥AC. 因为AC∩EF =E ,AC ?平面ABC ,EF ?平面ABC ,所以DE ⊥平面ABC. 线面垂直 线线垂直 面面垂直 B` A` B A α β A B C D 1 B 1 C B 1 1 D A D B A

高中数学经典题型50道(另附详细答案)

高中数学习题库(50道题另附答案) 1.求下列函数的值域: 解法2 令t=sin x,则f(t)=-t2+t+1,∵|sin x|≤1, ∴|t|≤1.问题转化为求关于t的二次函数f(t)在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。

2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道 的焦点处,当此慧星离地球相距m 万千米和m 3 4 万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32 π π和,求该慧星与地球 的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的 方程为122 22=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为3π 时,由椭圆的几何 意义可知,彗星A 只能满足)3 (3/π π=∠=∠xFA xFA 或。作 m FA FB Ox AB 3 2 21B ==⊥,则于 故由椭圆第二定义可知得????? ??+-=-=)32(34)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,3 2 31 c c c m c a m a c m =-==∴?=代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2 万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识

(完整版)放缩法典型例题

放缩法典型例题 数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列的前项的和,满足,试求: (1)数列的通项公式; (2)设,数列的前项的和为,求证: 解:(1)由已知得,时,,作差得: ,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以 (2),所以 注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这 里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和. 二.先放缩再求和 1.放缩后成等差数列,再求和 例2.已知各项均为正数的数列的前项和为,且. (1) 求证:; (2)求证:

解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得 ∴ 所以,, 所以 (2)因为,所以,所以 ; 2.放缩后成等比数列,再求和 例3.(1)设a,n∈N*,a≥2,证明:; (2)等比数列{a n}中,,前n项的和为A n,且A7,A9,A8成等差数列.设,数列{b n}前n项的和为B n,证明:B n<. 解:(1)当n为奇数时,a n≥a,于是,. 当n为偶数时,a-1≥1,且a n≥a2,于是 .(2)∵,,,∴公比. ∴..

∴.3.放缩后为差比数列,再求和 例4.已知数列满足:,.求证: 证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:. 令,所以,两式相减得: ,所以,所以, 故得. 4.放缩后为裂项相消,再求和 例5.在m(m≥2)个不同数的排列P1P2…P n中,若1≤i<j≤m时P i>P(即前面某数大于后面某数),则称P i与P j构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为a n,如排列21的逆序数,排列321的逆序数.j (1)求a4、a5,并写出a n的表达式; (2)令,证明,n=1,2,…. (2)因为,

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

线面垂直经典例题及练习题-.

立体几何 1.P 点在则ABC ?所在的平面外,O 点是P 点在平面ABC 内的射影 ,PA 、PB 、PC 两 两垂直,则D 点是则ABC ? ( B ) (A)重心 (B) 垂心 (C)内心 (D)外心 2.与两个相交平面的交线平行的直线和这两个平面的位置关系是 ( A ) (A)都平行 (B) 都相交 (C) 在两个平面内 (D)至少与其中一个平行 3.若两个平面内分别有一条直线,这两条直线互相平行,那么这两平面的位置关系是( A ) (A)平行 (B) 相交 (C)平行或相交 (D)垂直 4.在空间,下述命题正确的是 ( B ) (A)若直线//a 平面M ,直线b a ⊥,则直线⊥b 平面M (B)若平面M //平面N ,则平面M 内任意直线a //平面N (C)若平面M 与N 的交线为a ,平面M 内的直线a b ⊥,则N b ⊥ (D)若平面N 的两条直线都平行平面M ,则平面N //平面M 5.a 、b 表示两条直线,α、β、γ表示三个平面,下列命题中错误的是 (A ) (A),,αα??b a 且ββ//,//b a ,则βα// (B)a 、b 是异面直线,则存在唯一的平面与a 、 b 等距 (C) ,,,b a b a ⊥?⊥βα则βα// (D),,,//,βαβγγα⊥⊥⊥b a 则b a ⊥ 6.直线l //平面α,αβ⊥,则l 与平面β的位置关系是 ( D ) (A) l β? (B) //l β (C) l β与相交 (D ) 以上三种情况均有可能 7.已知直线l ⊥平面α,直线m ?平面β,有以下四个命题:①//l m αβ?⊥② //l m αβ⊥?③//l m αβ?⊥④//l m αβ⊥?,其中正确的是(D ) (A) ①② (B) ②④ (C) ③④ (D) ①③ 8.αβγδ,,,是四个不同的平面,且αγβγαδβδ⊥⊥⊥⊥,,,,则( B ) (A) ////αβγδ或 (B) ////αβγδ且 (C) 四个平面中可能任意两个都不平行 (D) 四个平面中至多有一对平面平行 9.已知平面α和平面β相交,a 是α内的一条直线,则( D ) (A) 在β内一定存在与a 平行的直线 (B) 在β内一定存在与a 垂直的直线 (C) 在β内一定不存在与a 平行的直线 (D) 在β内一定不存在与a 垂直的直线 10.已知PA ⊥正方形ABCD 所在平面,垂足为A ,连PB PC PD AC BD ,,、,,则互 相垂直的平面有( C ) (A) 5对 (B) 6对 (C) 7对 (D) 8对

高中数学必修一集合经典题型总结高分必备

慧诚教育2017年秋季高中数学讲义 必修一第一章复习 知识点一集合的概念 1.集合 一般地,把一些能够________________对象看成一个整体,就说这个整体是由这些对象________构成的集合(或集),通常用大写拉丁字母A,B,C,…来表示. 2.元素 构成集合的____________叫做这个集合的元素,通常用小写拉丁字母a,b,c,…来表示. 3.空集 不含任何元素的集合叫做空集,记为?.

知识点二 集合与元素的关系 1.属于 如果a 是集合A 的元素,就说a ________集合A ,记作a ________A . 2.不属于 如果a 不是集合A 中的元素,就说a ________集合A ,记作a ________A . 知识点三 集合的特性及分类 1.集合元素的特性 ________、________、________. 2.集合的分类 (1)有限集:含有________元素的集合. (2)无限集:含有________元素的集合. 3.常用数集及符号表示 知识点四 1.列举法 把集合的元素________________,并用花括号“{}”括起来表示集合的方法叫做列举法. 2.描述法 用集合所含元素的 ________表示集合的方法称为描述法. 知识点五 集合与集合的关系 1.子集与真子集

2.子集的性质 (1)规定:空集是____________的子集,也就是说,对任意集合A,都有________. (2)任何一个集合A都是它本身的子集,即________. (3)如果A?B,B?C,则________. (4)如果A?B,B?C,则________. 3.集合相等 4.集合相等的性质 如果A?B,B?A,则A=B;反之,________________________. 知识点六集合的运算 1.交集

典型例题:用放缩法证明不等式

用放缩法证明不等式 所谓放缩法就是利用不等式的传递性, 对照证题目标进行合情合理的放大和缩小的过程, 在使用 放缩法证题时要注意放和缩的 度”否则就不能同向传递了,此法既可以单独用来证明不等式,也可 以是其他方法证题时的一个重要步骤。下面举例谈谈运用放缩法证题的常见题型。 一. 添舍”放缩 通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1.设a ,b 为不相等的两正数,且a 3— b 3 = a 4 5 — b 2,求证1a 2+ ab + b 2= a + b ,又 a + b >0,得 a + b > 1,又 ab < 4 (a + b ) 2,而(a + b ) 2 = a + b + ab 2 (a b C ) 一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加 上同一个正数则分式值变大,禾U 用这些性质,可达到证题目的。 b 2 bc c 2 > b C , ?. c 2 ac a 2 > C a 。 5 2 所以 a 2 ab b 2 b 2 bc C 2 心 ac a 2 > 2 ( a b C ) 二. 分式放缩 例3.已知a b 、C 为三角形的三边,求证:1< L + L + J < 2 o b C a C a b 证明:由于a b 、C 为正数,所以严> —,4 > J ,七 > —,所以 b C a b c a C a b c a b a b C

高中数学四种命题经典例题

例命题“若=,则与成反比例关系”的否命题是1 y x y k x [ ] A y x y B y kx x y C x y y .若≠ ,则与成正比例关系.若≠,则与成反比例关系.若与不成反比例关系,则≠k x k x D y x y .若≠,则与不成反比例关系k x 分析 条件及结论同时否定,位置不变. 答 选D . 例2 设原命题为:“对顶角相等”,把它写成“若p 则q ”形式为________.它的逆命题为________,否命题为________,逆否命题为________. 分析 只要确定了“p ”和“q ”,则四种命题形式都好写了. 解 若两个角是对顶角,则两个角相等;若两个角相等,则这两个角是对顶角;若两个角不是对顶点,则这两个角不相等;若两个角不相等,则这两个角不是对顶角. 例3 “若P ={x |x|<1},则0∈P ”的等价命题是________. 分析 等价命题可以是多个,我们这里是确定命题的逆否命题. 解原命题的等价命题可以是其逆否命题,所以填“若,则 0P p ≠{x||x|<1}” 例4 分别写出命题“若x 2+y 2=0,则x 、y 全为0”的逆命题、否命题和逆否命题.

分析根据命题的四种形式的结构确定. 解逆命题:若x、y全为0,则x2+y2=0; 否命题:若x2+y2≠0,则x,y不全为0; 逆否命题:若x、y不全为0,则x2+y2≠0. 说明:“x、y全为0”的否定不要写成“x、y全不为0”,应当是“x,y不全为0”,这要特别小心. 例5有下列四个命题: ①“若xy=1,则x、y互为倒数”的逆命题; ②“相似三角形的周长相等”的否命题; ③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题; ④“若∪=,则”的逆否命题,其中真命题是 A B B A B [ ] A.①②B.②③ C.①③D.③④ 分析应用相应知识分别验证. 解写出相应命题并判定真假 ①“若x,y互为倒数,则xy=1”为真命题; ②“不相似三角形周长不相等”为假命题; ③“若方程x2-2bx+b2+b=0没有实根,则b>-1”为真命题;

直线与平面垂直的典型例题

直线与平面垂直的典型例题 例1 判断题:正确的在括号内打“√”号,不正确的打“×”号. (1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.( ) (2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.( ) (3)垂直于三角形两边的直线必垂直于第三边.( ) (4)过点A 垂直于直线a 的所有直线都在过点A 垂直于α的平面内.( ) (5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.( ) 例2 在正方体1111D C B A ABCD -中,E 是1BB 的中点,O 是底面正方形ABCD 的中心,求证:⊥OE 平面1ACD 例3 如图,在△ABC 中, 90=∠B ,⊥SA 平面ABC ,点A 在SB 和SC 上的射影分别为N M 、,求证:SC MN ⊥

例4如图,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,θ=∠ABH ,α=∠HBC ,β=∠ABC ,求证:θαβcos cos cos ?= 例5如图,已知正方形ABCD 边长为4,⊥CG 平面ABCD ,2=CG ,F E 、分别是AD AB 、中点,求点B 到平面GEF 的距离 例6 如图所示,直角ABC ?所在平面外一点S ,且SC SB SA ==. (1)求证:点S 与斜边AC 中点D 的连线SD ⊥面ABC ; (2)若直角边BC BA =,求证:BD ⊥面SAC .

例7如图所示,?=∠90BAC .在平面α内,PA 是α的斜线,?=∠=∠60PAC PAB .求PA 与平面α所成的角. 例8如图,ABCD 是正方形,SA 垂直于平面ABCD ,过A 且垂直于SC 的平面交SB 、SC 、SD 分别于点E 、F 、G ,求证:SB AE ⊥,SD AG ⊥. 例9 如图,求证:如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面内的射影在这个角的平分线上.

高中数学经典题型50道(另附详细答案)

高中数学经典题型50 道(另附详细答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中数学习题库(50道题另附答案) 1.求下列函数的值域: 解法2 令t=sin x,则f(t)=-t2+t+1,∵ |sin x|≤1, ∴ |t|≤1.问题转化为求关于t的二次函数f(t)在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。

2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道 的焦点处,当此慧星离地球相距m 万千米和m 3 4万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32 π π和,求该慧星与 地球的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆 的方程为122 22=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为3 π 时,由椭圆的几何 意义可知,彗星A 只能满足)3 (3/π π=∠=∠xFA xFA 或。作 m FA FB Ox AB 3 2 21B ==⊥,则于 故由椭圆第二定义可知得????? ??+-=-=)32(34)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,3 2 31 c c c m c a m a c m =-==∴?=代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

线面垂直--经典练习题(精选.)

1.如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,90BCD ∠=?,AB CD ∥,又1AB BC PC ===,2PB =,2CD =,AB PC ⊥. (Ⅰ)求证:PC ⊥平面ABCD ; (Ⅱ)求PA 与平面ABCD 所成角的大小; (Ⅲ)求二面角B PD C --的大小. 2.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为直角梯形,且AB CD ∥,90BAD ∠=?,2PA AD DC ===,4AB =. (Ⅰ)求证:BC PC ⊥; (Ⅱ)求PB 与平面PAC 所成角的正弦值; (Ⅲ)求点A 到平面PBC 的距离. 3.在直四棱柱1111ABCD A B C D -中,AB CD ∥,1AB AD ==,12D D CD ==,AB AD ⊥. (Ⅰ)求证:BC ⊥平面1D DB ; (Ⅱ)求1D B 与平面11D DCC 所成角的大小.

9.如图,在三棱锥P -ABC 中,△PAC 和△PBC 是边长为2的等边三角形,AB =2,O 是AB 中点. (1)在棱PA 上求一点M ,使得OM ∥平面PBC ; (2)求证:平面PAB ⊥平面ABC . 10.如图所示,三棱锥V -ABC 中,AH ⊥侧面VBC ,且H 是△VBC 的垂心,BE 是VC 边上的高. 求证:VC ⊥AB ; 11.如图,在直三棱柱111C B A ABC -中,1AB BB =,1AC ⊥平面D BD A ,1为AC 的中点. (1)求证://1C B 平面BD A 1; (2)求证:⊥11C B 平面11A ABB ; 提示:11A C 中点和1B A 连 D A C B S E F G A 1 B 1 C 1 A B C D

高中数学经典50题(附问题详解)

高中数学题库 1. 求下列函数的值域: 解法2 令t =sin x ,则f (t )=-t 2 +t +1,∵ |sin x |≤1, ∴ |t |≤1.问题转化为求关于t 的二次函数f (t )在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。 2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此慧星离 地球相距m 万千米和 m 3 4 万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为3 2 π π 和 ,求该慧星与地球的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的方程为1 22 22=+b y a x (图见教材P132页例1)。

当过地球和彗星的直线与椭圆的长轴夹角为 3 π 时,由椭圆的几何意义可知,彗星A 只能满足)3(3/ ππ=∠=∠xFA xFA 或。作m FA FB Ox AB 3 221B ==⊥,则于 故由椭圆第二定义可知得???????+-=-=)32(3 4)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,323 1c c c m c a m a c m =-==∴?= 代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2 万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识地训练数学思维的品质。 3. A ,B ,C 是我方三个炮兵阵地,A 在B 正东6Km ,C 在B 正北偏西ο 30,相距4Km ,P 为敌炮阵地,某时刻A 处发现敌炮阵地的某种信号,由于B ,C 两地比A 距P 地远,因此4s 后,B ,C 才同时发现这一信号,此信号的传播速度为1s Km /,A 若炮击P 地,求炮击的方位角。(图见优化设计教师用书P249例2) 解:如图,以直线BA 为x 轴,线段BA 的中垂线为y 轴建立坐标系,则 )32,5(),0,3(),0,3(--C A B ,因为PC PB =,所以点P 在线段BC 的垂直平分线上。 因为3-=BC k ,BC 中点)3,4(-D ,所以直线PD 的方程为)4(3 13+= -x y (1) 又,4=-PA PB 故P 在以A ,B 为焦点的双曲线右支上。设),(y x P ,则双曲线方程为 )0(15 42 2≥=-x y x (2)。联立(1)(2),得35,8==y x , 所以).35,8(P 因此33 83 5=-= PA k ,故炮击的方位角北偏东?30。 说明:本题的关键是确定P 点的位置,另外还要求学生掌握方位角的基本概念。 4. 河上有抛物线型拱桥,当水面距拱顶5米时,水面宽度为8米,一小船宽4米,高2

放缩法证明数列不等式经典例题

放缩法证明数列不等式 主要放缩技能: 1.211111111(1)(n 1)1n n n n n n n n -=<<=-++-- 2221144112()141(21)(21)21214 n n n n n n n <===--+--+- ==>= ==<= =<= == =< = = 5. 121122211(21)(21)(22)(21)(21)2121 n n n n n n n n n n ---<==-------- 6. 111 22(1)11(1)2(1)22(1)2n n n n n n n n n n n n n +++++-==-+?+??+?

例1.设函数2*2()1x x n y n N x -+=∈+的最小值为n a ,最大值为n b , 且n c =(1)求n c ;(2)证明: 4444123111174n c c c c ++++ < 例2.证明:1611780<+ ++< 例3.已知正项数列{}n a 的前n 项的和为n s ,且12n n n a s a + =,*n N ∈; (1)求证:数列{} 2n s 是等差数列; (2)解关于数列n 的不等式:11()48n n n a s s n ++?+>- (3)记312311112,n n n n b s T b b b b = = ++++,证明:312n T <<

例4. 已知数列{}n a 满足:n a n ?????? 是公差为1的等差数列,且121n n n a a n ++=+; (1) 求n a ;(2 12n na +++< 例5.在数列{}n a 中,已知1112,2n n n n a a a a a ++==-; (1)求n a ;(2)证明:112233(1)(1)(1)(1)3n n a a a a a a a a -+-+-++-< 例6. 数列{}n a 满足:11122,1()22 n n n n n a a a n a ++==++; (1)设2n n n b a =,求n b ;(2)记11(1)n n c n n a +=+,求证:12351162 n c c c c ≤++++<

相关文档
最新文档