(完整版)AAO工艺技术参数

(完整版)AAO工艺技术参数
(完整版)AAO工艺技术参数

工艺设计计算公式定稿版

工艺设计计算公式精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

A/O工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% ④反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N ⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮): <0.05KgTKN/KgMLSS·d ⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD5/KgMLSS·d ⑦混合液浓度x=3000~4000mg/L(MLSS) ⑧溶解氧:A段DO<0.2~0.5mg/L

O段DO>2~4mg/L ⑨pH值:A段pH =6.5~7.5 O段pH =7.0~8.0 ⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾ 碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。 反硝化反应还原1gNO3--N将放出2.6g氧,生成3.75g碱度(以CaCO3计) ⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。 Ro=a’QSr+b’VX+4.6Nr a’─平均转化1Kg的BOD的需氧量KgO2/KgBOD b’─微生物(以VSS计)自身氧化(代谢)所需氧量KgO2/KgVSS·d。 上式也可变换为: Ro/VX=a’·QSr/VX+b’ 或Ro/QSr=a’+b’·VX/QSr Sr─所去除BOD的量(Kg)

AO工艺设计计算公式

A/O工艺设计参数 ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3 ②污泥回流比:50~100% ③混合液回流比:300~400% ④反硝化段碳/氮比:BOD 5 /TN>4,理论BOD消耗量为1.72gBOD/gNOx--N ⑤硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d ⑥硝化段污泥负荷率:BOD/MLSS<0.18KgBOD 5 /KgMLSS·d ⑦混合液浓度x=3000~4000mg/L(MLSS) ⑧溶解氧:A段DO<0.2~0.5mg/L O段DO>2~4mg/L ⑨pH值:A段pH =6.5~7.5 O段pH =7.0~8.0 ⑩水温:硝化20~30℃ 反硝化20~30℃ ⑾ 碱度:硝化反应氧化1gNH 4+-N需氧4.57g,消耗碱度7.1g(以CaCO 3 计)。 反硝化反应还原1gNO 3 --N将放出2.6g氧, 生成3.75g碱度(以CaCO 3 计) ⑿需氧量Ro——单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量 (KgO 2 /h)。微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。 Ro=a’QSr+b’VX+4.6Nr a’─平均转化 1Kg的BOD的需氧量KgO 2 /KgBOD b’─微生物(以VSS 计)自身氧化(代谢)所需氧量KgO 2 /Kg VSS·d。

上式也可变换为: Ro/VX=a’·QSr/VX+b’ 或 Ro/QSr=a’+b’·VX/QSr Sr─所去除BOD的量(Kg) Ro/VX─氧的比耗速度,即每公斤活性污泥(VSS)平均每天的耗氧量KgO 2 /KgVSS·d Ro/QSr─比需氧量,即去除1KgBOD 的需氧量KgO 2 /KgBOD 由此可用以上两方程运用图解法求得a’ b’ Nr—被硝化的氨量kd/d 4.6—1kgNH 3-N转化成NO 3 -所需的氧 量(KgO 2 ) 几种类型污水的a’ b’值 ⒀供氧量─单位时间内供给曝气池的氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。 ⅰ.理论供氧量 1.温度的影响 KLa(θ)=K L(20)×1.024Q-20 θ─实际温度 2.分压力对Cs的影响(ρ压力修正系数) ρ=所在地区实际压力(Pa)/101325(Pa) =实际Cs值/标准大气压下Cs值

工艺设计计算参考

A1/O 生物脱氮工艺 一、设计资料 设计处理能力为日处理废水量为 30000m3 废水水质如下: PH 值 7.0~7.5 水温14~25°C BOD5=160mg/L VSS=126mg/L(VSS/TSS=0.7) TN=40mg/L NH3-N=30mg/L 根据要求:出水水质如下: BOD5=20mg/L TSS=20mg/L TN 15mg/L NH3-N 8mg/L 根据环保部门要求,废水处理站投产运行后排废水应达到国家标准《污水综合排放标准》 GB8978-1996中规定的“二级现有”标准,即 COD 120mg/l BOD 30 mg/l NH -N<20 mg/l PH=6-9 SS<30 mg/l 二、污水处理工艺方案的确定 城市污水用沉淀法处理一般只能去除约 25~30 %的BOD5,污水中的胶体和溶解性有机物不 能利用沉淀方法去除,化学方法由于药剂费用很高而且化学混凝去除溶解性有机物的效果 不好而不宜采用。采用生物处理法是去除废水中有机物的最经济最有效的选择。 废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等四种形态存在。生活污水中氮 的主要存在形态是有机氮和氨氮。其中有机氮占生活污水含氮量的40%~60%,氨氮占50%~60%,亚硝酸盐氮和硝酸盐氮仅占 0%~5%。废水生物脱氮的基本原理是在传统二级生物处理中,将有机氮转化为氨氮的基础上,通过硝化和反硝化菌的作用,将氨氮通过硝化转化为亚硝态

氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,而达到从废水中脱氮的目的。 废水的生物脱氮处理过程,实际上是将氮在自然界中循环的基本原理应用与废水生物处理,并借助于不同微生物的共同协调作用以及合理的认为运用控制,并将生物去碳过程中转化而产生及原废水中存在的氨氮转化为氮气而从废水中脱除的过程。在废水的生物脱氮处理过程中,首先在好氧(oxic)条件下,通过好氧硝化的作用,将废水中的氨氮氧化为亚硝酸盐氮;然后在缺氧(Anoxic)条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气(N2)而从废水中逸出。因而,废水的生物脱氮通常包括氨氮的硝化和亚硝酸盐氮及硝酸盐氮的反硝化两个阶段,只有当废水中的氨以亚硝酸盐氮和硝酸盐的形态存在时,仅需反硝化(脱氮)一个阶段 . ?与传统的生物脱氮工艺相比,A/O脱氮工艺则有流程简短、工程造价低的优点。 该工艺与传统生物脱氮工艺相比的主要特点如下: ①流程简单,构筑物少,大大节省了基建费用; ②在原污水 C/N 较高(大于 4)时,不需外加碳源,以原污水中的有机物为碳源,保证了充分的反硝化,降低了运行费用; ③好养池设在缺养之后,可使反硝化残留的有机物得到进一步去除,提高出水水质; ④缺养池在好养池之前,一方面由于反硝化消耗了一部分碳源有机物,可减轻好养池的有机负荷,另一方面,也可以起到生物选择器的作用,有利于控制污泥膨胀;同时,反硝化 过程产生的碱度也可以补偿部分硝化过程对碱度的消耗; ⑤该工艺在低污泥负荷、长泥龄条件下运行,因此系统剩余污泥量少,有一定稳定性;

AO工艺标准设计计算参考

A1/0生物脱氮工艺 一、设计资料 设计处理能力为日处理废水量为30000m3 废水水质如下: PH 值7.0~7.5 水温14~25 °C BOD5=160mg/L VSS=126mg/L(VSS/TSS=0.7) TN=40mg/L NH3-N=30mg/L 根据要求:出水水质如下: BOD5=20mg/L TSS=20mg/L TN 15mg/L NH3-N 8mg/L 根据环保部门要求,废水处理站投产运行后排废水应达到国家标准 《污水综合排放标准》GB8978-1996中规定的二级现有”标准,即COD 120mg/l BOD 30 mg/l NH -N<20 mg/l PH=6-9 SS<30 mg/l 二、污水处理工艺方案的确定 城市污水用沉淀法处理一般只能去除约25~30%的BOD5,污水中的胶体和溶解性有机物不能利用沉淀方法去除,化学方法由于药剂费用很高而且化学混凝去除溶解性有机物的效果不好而不宜采用。采用生物处理法是去除废水中有机物的最经济最有效的选择。 废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等四种形态存在。生活污水中氮的主要存在形态是有机氮和氨氮。其中有机氮占 生活污水含氮量的40%~60%氨氮占50%~60%亚硝酸盐氮和硝酸盐氮仅占0%~5%。废水生物脱氮的基本原理是在传统二级生物处理中,将有机氮转化为氨氮的基础上,通过硝化和反硝化菌的作用,将氨氮通过硝化转化为亚硝态氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,而达到从废

水中脱氮的目的。 废水的生物脱氮处理过程,实际上是将氮在自然界中循环的基本原理应用与废水生物处理,并借助于不同微生物的共同协调作用以及合理的认为运用控制,并将生物去碳过程中转化而产生及原废水中存在的氨氮转化为氮气而从废水中脱除的过程。在废水的生物脱氮处理过程中,首先在好氧(oxic)条件下,通过好氧硝化的作用,将废水中的氨氮氧化为亚硝酸盐氮;然后在缺氧(Anoxic)条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气(N2)而从废水中逸出。因而,废水的生物脱氮通常包括氨氮的硝化和亚硝酸盐氮及硝酸盐氮的反硝化两个阶段,只有当废水中的氨以亚硝酸盐氮和硝酸盐的形态存在时,仅需反硝化(脱氮)一个阶段. ?与传统的生物脱氮工艺相比,A/O脱氮工艺则有流程简短、工程造价低的优点。 该工艺与传统生物脱氮工艺相比的主要特点如下: ①流程简单,构筑物少,大大节省了基建费用; ②在原污水C/N较高(大于4)时,不需外加碳源,以原污水中的有机物为碳源,保证了充分的反硝化,降低了运行费用; ③好养池设在缺养之后,可使反硝化残留的有机物得到进一步去除, 提高出水水质; ④缺养池在好养池之前,一方面由于反硝化消耗了一部分碳源有机物, 可减轻好养池的有机负荷,另一方面,也可以起到生物选择器的作用,有利于控制污泥膨胀;同时,反硝化过程产生的碱度也可以补偿部分

AAO工艺设计计算

4.2 设计计算 本工艺是采用池体单建的方式, 各个池子根据厌氧 - 好氧-缺氧活性污泥法污 水处理工程技术规范 [20]进行设计计算。 4.2.1 厌氧池设计计算 1)池体设计计算 a. 反应池总容积 式中:t p —— 厌氧池水力停留时间, h ; Q —— 污水设计水量, m 3/d ; V p —— 厌氧池容积, m 3; b. 反应池总面积 反应池有效水深, m ;取 4m c. 单组反应池有效面积 4-3) 式中: A 1 每座厌氧池面积, m 2 ; N ----- 厌氧池个数,个; A 1 375 187.5m 2 2 d. 反应池总深 设超高为 h 1=1.0m ,则反应池总深为: H h h 1 4.0 1.0 5.0m e. 反应池尺寸 V p t p Q 24 4-1) V p 1.8 20000 1500m 3 24 式中: A ---- 反应池总面积, A V h m 2 ; 4-2) 1500 A 375m 2 A 1

B L H 15m 11.7m 5m 2)进、出水管设计 a. 进水设计 进水管设计流量 Q max 0.34m 3 / s ,安全系数为 1.2 故 Q max 1. 2Q max 1.2 0.34 0.408m 3 /s 分两条管道,则每条管道流量为: Q 1 Q max 2 0.4082 0.204m 3/ s 管道流速 v= 1.4m/s ,则进水管理论管径为: 取进水管管径 DN=450mm 。 反应池采用潜孔进水,孔口面积 4-5) 式中: F 每座反应池所需孔口面积, m 2 ; v2 ----- 孔口流速(m/s ),一般采用 0.2—1.5m/s ,本设计取 v 2=0.2m/s 设每个孔口尺寸为 0.5 ×0.5m ,则孔口数为 F n 式中: n ---- 每座曝气池所需孔口数,个; 每个孔口的面积, m 2 ; b. 出水设计 ①堰上水头 出水采用矩形薄壁堰,跌落水头,堰上水 Q 1 R R i Q 1 4 0.204 0.429m 429mm 1.4 4-4) Q 1 v 2 0.204 0.2 1.02m 2 4-6) 1.02 0.5 0.5 4.08个, 4-7) d

MSBR工艺设计(含计算书)

第一章.设计总说明 1.工程概况 松江东部地区污水处理厂建设场地为一直边梯形地块,其尺寸为:底边 350m,上边300m,高300m。北侧民强路为主要通道,东侧为规划路,南侧为北泖泾,西侧为规划路。场地内地面基本平整,为一般闲置农田,无拆迁内容。地面标高3.8~4.2m范围之内。进水管由场地西北角接入,进水管管径为 1350,管低标高-1.5m,管道充满度0.70。 污水处理处理量7.5×104m3/d。设计进水浓度与出水水质标准见下表。 表1 设计进水浓度 (注:污水除生活污水外还可能含有各种行业的工业废水,重污染与特种污染行业的废水已经处理达到《污水排入城市下水道水质标准》(CJ 18-86)的有关规定。) 表2 出水水质标准 3.设计原则 1.贯彻国家关于环境保护的基本国策,执行国家的相关法规、政策、规范和标 准; 2.污水处理厂作为环保工程,设计中尽量减少污水处理厂本身对环境的负面影 响,如气味、噪音、固体废弃物等; 3.污水处理工艺的选择必须根据原水水质与水量,受纳水体的环境容量与利用 情况,综合考虑南通市的实际情况,通过经济技术比较优先采用低能耗、低

运行费用、低基建费用、占地少、操作管理方便成熟的处理工艺; 4.积极慎重地采用经过鉴定或实践证明是行之有效的新技术、新工艺、新材料 和新设备。污水处理厂出水水质达到国家和地方现行的有关规定; 5.污水处理设备、仪表选用首先立足于国内,对目前暂不能生产或质量尚未过 关的部分产品考虑适当引进; 6.污水厂总平面布置力求紧凑,土方平衡,减少占地和投资费用; 7.以人为本,充分考虑便于污水厂运行管理的措施; 8.污水厂的劳动组织、劳动定员、环境保护和安全卫生均严格按照国家和地方 的有关规定; 9.污水处理产生的污泥,其处理和处置的工艺按污泥量、污泥性质,根据国情 和当地的自然环境以及农业、园林业的可利用条件、卫生填埋等因素综合考虑确定; 10.污泥处理应因地制宜采取经济合理的方法进行稳定化处理。 4.工艺简介 根据松江东部地区污水处理厂的污水水质、要求的处理标准以及处理后排放时对污水水质的要求,松江东部地区污水处理厂污水处理工艺采用MSBR工艺的主体二级处理工艺。 5.工艺特点 该工艺的主要特点是: 1.为了防止硝酸盐影响厌氧池中的磷释放,在污泥进入厌氧池之前设置了预缺 氧池,依靠内碳源反硝化去除污泥中的硝酸盐,好氧池后续的两个序批反应池,将其中之一作为沉淀池使用时,通过特殊的配水及中间碟板构造形式,使该序批池可对好氧池的混合液进行接触絮凝沉淀作用,而且不会使系统污泥在该池中过度积累,另一个序批池则进行缺氧、好氧序批反应。 2.MSBR 的总体特点是借助大流量低扬程过墙式回流泵、空气控制出水堰及表 面搅拌器等设备,使各处理功能区可以有机地组合在一起,配上自动控制系统,各反应区域相互协调,功能上相互促进,使灵活集约化的设计理念得以实现。

CASS工艺设计计算

沈阳化工大学 水污染控制工程 三级项目 题目:小区生活污水回用处理设计 院系:环境与安全工程学院 专业:环境工程 提交日期: 2020 年 5 月 26 日

摘要 本文主要介绍了小区生活污水回用处理设计的过程,其中包括工艺流程、以及流程中各个构筑物的设计计算、高程和平面布置。循环式活性污泥法(CASS)是序批式活性污泥法工艺(SBR)的一种变形。它综合了活性污泥法和SBR工艺特点,与生物选择器原理结合在一起,具有抗冲击负荷和脱氮除磷的功能。本次设计采用了CASS工艺进行设计计算。其中包括池体的计算和格栅等辅助物尺寸计算,处理后水质达到一级B标准。 关键词:小区生活污水回用循环式活性污泥法设计计算 Abstract This paper mainly introduces the design process of residential sew age reuse treatment, including the process flow, as well as the design of e ach structure in the process, elevation and plane layout. Circulating activa ted sludge process (CASS) is a variation of sequential batch activated slu dge process (SBR). It integrates the characteristics of activated sludge pro cess and SBR process, combines with the principle of biological selector, and has the functions of impact load resistance and denitrification and de phosphorization. This design adopts CASS technology to design and calc ulate. It includes the calculation of the pool body and the size calculation of the grid and other auxiliary objects. After treatment, the water quality r eaches the standard of grade a B.

AO工艺设计计算

A 2 /O 工艺生化池设计 一、 设计最大流量 Q max=73500m 3/d= m 3/h= m 3/s 二、 进出水水质要求 表1 进出水水质指标及处理程度 三、 设计参数计算 ①. BOD 5污泥负荷 N=(kgMLSS ·d) ②. 回流污泥浓度 X R =10 000mg/L ③. 污泥回流比 R=50% ④. 混合液悬浮固体浓度(污泥浓度) ⑤. TN 去除率 ⑥. 内回流倍数 四、 A 2/O 曝气池计算 ①. 反应池容积 ②. 反应水力总停留时间 ③. 各段水力停留时间和容积 厌氧:缺氧:好氧=1:1:4 厌氧池停留时间h t 33.21461=?= ,池容37.70874252661 m V =?=; 缺氧池停留时间h t 33.21461=?= ,池容37.70874252661 m V =?=; 好氧池停留时间h t 34.91464=?= ,池容36.283504252664 m V =?=。 ④. 校核氮磷负荷

好氧段TN 负荷为: ()d kgMLSS kgTN N ?=??=??/024.06.8350233339 .3073500V X T Q 30 厌氧段TP 负荷为: ()d kgMLSS kgTN P ?=??=??/017.07 .708733334 .573500V X T Q 10 ① 剩余污泥量:X ?,(kg/d) 式中: 取污泥增值系数Y=,污泥自身氧化率05.0=d K ,代入公式得: =5395kg/d 则: 湿污泥量:设污泥含水率P=% 则剩余污泥量为: ⑤. 反应池主要尺寸 反应池总容积:V=425263m 设反应池2组,单组池容积:V = 3212632 m V = 有效水深5m ,则: S=V/5=2m 取超高为,则反应池总高m H 0.60.10.5=+= 生化池廊道设置: 设厌氧池1廊道,缺氧池1廊道,好氧池4廊道,共6条廊道。廊道宽10m 。则每条廊道长度为 m bn S L 88.706 106 .4252=?== ,取71m 尺寸校核 1.71071==b L ,25 10 ==h b 查《污水生物处理新技术》,长比宽在5~10间,宽比高在1~2间 可见长、宽、深皆符合要求 五、 反应池进、出水系统计算 1) 进水管 单组反应池进水管设计流量s m Q Q /425.02 85 .023max 1===

A工艺设计计算

1、缺氧池、好氧池(曝气池)的设计计算: (1)、设计水量的计算 由于硝化和反硝化的污泥龄和水力停留时间都较长,设计水量应按照最高日流量计算。 式中: Q ——设计水量,m 3 /d ; Q ——日平均水量,m 3 /d ; K ——变化系数; (2)、确定设计污泥龄C θ 需反硝化的硝态氮浓度为 式中: N ——进水总氮浓度,mg/L ; 0S ——进水BOD 值 【1】 ,mg/L ; e S ——出水BOD 值,mg/L ; e N ——出水总氮浓度,mg/L ; 反硝化速率计算 计算出de K 值后查下表选取相应的V V D /值,再查下表取得C θ值。

反硝化设计参数表(T=10~12℃) (3)、计算污泥产率系数Y 【2】 式中: Y ——污泥产率系数,kgSS/kgBOD ; K ——修正系数,取9.0=K ; 0X ——进水SS 值mg/L; T ——设计水温,与污泥龄计算取相同数值。

然后按下式进行污泥负荷核算: 式中: L——污泥负荷,我国规范推荐取值范围为0.2~0.4kgBOD/(kgMLSS?d)。 S 活性污泥工艺的最小污泥龄和建议污泥龄表(T=10℃)【3】单位:d

(4)、确定MLSS(X) MLSS(X)取值通过查下表可得。 反应池MLSS取值范围

取定MLSS(X)值后,应用污泥回流比R反复核算 式中: R——污泥回流比,不大于150%; t——浓缩时间,其取值参见下表。 E 浓缩时间取值范围 (5)、计算反应池容积 计算出反应池容积V后,即可根据V V /的比值分别计算出缺氧反应池和好氧反 D 应池的容积。 2、厌氧池的设计计算: 厌氧反应池的容积计算 式中: V——厌氧反应池容积,m3。 A

工艺设计的基本原则和程序

工艺设计的基本原则和程序 一、工艺设计的基本原则 水泥厂工艺设计的基本原则可归纳如下: (1)根据计划任务书规定的产品品种、质量、产量要求进行设计。 计划任务书规定的产品产量往往有一定范围,设计产量在该范围之内或略超出该范围,都应认为是合适的;但如限于设备选型,设计达到的产量略低干该范围,则应提出报告,说明原因,取得上级同意后,按此继续设计。 对于产品品种,如果设计考虑认为计划任务书的规定在技术上和经济上有不适当之处,也应提出报告,阐明理由,建议调整,并取得上级的同意。例如,某大型水泥厂计划任务书要求生产少量特种水泥,设计单位经过论证,认为大型窑改变生产品种,在技术上和经济上均不合理,建议将少量特种水泥安排给某中小型水泥厂生产,经上级批准后,改变了要求的品种。 窑、磨等主机的产量,除了参考设备说明和经验公式计算以外,还应根据国内同类型主机的生产数据并参考国内外近似规格的主机产量进行标定。在工厂建成后的较短时期内,主机应能达到标定的产量;同时,标定的主机产量应符合优质、高产、低消耗和设备长期安全运转的要求,既要发挥设备能力,但又不能过分追求强化操作。 (2)选择技术先进、经济合理的工艺流程和设备。 工厂的工艺流程和主要设备确定以后,整个工厂设计可谓大局已定。工厂建成后,再想改变其工艺流程和主要设备,将是十分困难的。例如,要把湿法厂改为干法厂,固然困难;要把旧干法厂改为新型干法厂,也非易事。例如,为了利用窑尾废气余热来烘干原料,生料磨系统也得迁移,输送设备等也得重新建设,诸如此类的情况,在某些条件下就不一定可行。 在选择生产工艺流程和设备时,应尽量考虑节省能源,采用国内较成熟的先进经验和先进技术;

AAO工艺设计计算

设计计算 本工艺是采用池体单建的方式,各个池子根据厌氧-好氧-缺氧活性污泥法污水处理工程技术规范[20]进行设计计算。 厌氧池设计计算 (1)池体设计计算 a.反应池总容积 (4-1) 式中:t p —— 厌氧池水力停留时间,h ; Q —— 污水设计水量,m 3/d ; V p —— 厌氧池容积,m 3; 3150024 20000 8.1m V p =?= b.反应池总面积 h V A = (4-2) 式中:A ------反应池总面积,2 m ; h ------反应池有效水深,m ;取4m 237541500 m A == c.单组反应池有效面积 N A A = 1 (4-3) 式中:1A ------每座厌氧池面积,2 m ; N ------厌氧池个数,个; 21m 5.1872 375 == A d.反应池总深 设超高为h 1=,则反应池总深为: m H 0.50.10.4h h 1=+=+= e.反应池尺寸

m m m H L B 57.1115??=?? (2)进、出水管设计 a.进水设计 进水管设计流量s m Q /34.03max =,安全系数为 故 分两条管道,则每条管道流量为: 管道流速v = s ,则进水管理论管径为: mm m Q 429429.04 .1204 .044d 1 ==??= = ππν (4-4) 取进水管管径DN=450mm 。 反应池采用潜孔进水,孔口面积 2 1 v Q F = (4-5) 式中:F ------每座反应池所需孔口面积,2m ; 2v ------孔口流速(m/s ),一般采用—s m /,本设计取2v =s m / 202.12 .0204 .0m F == 设每个孔口尺寸为×,则孔口数为 (4-6) 式中:n ------每座曝气池所需孔口数,个; f ------每个孔口的面积,2m ; 个个,取508.45 .05.002 .1==?= n n b.出水设计 ①堰上水头 出水采用矩形薄壁堰,跌落水头,堰上水 (4-7)

工艺设计及PFD设计

工艺设计及PFD设计 在化工装置设计中,除了工艺系统设计以外,还有管道、设备、机械、建构筑物、公用工程、电气、仪表、安全卫生、消防、分析化验、环境保护等领域的设计工作,还要从全局考虑总平面布置、原料和产品的输送及设计方案的技术经济性,这些都需要在化工工艺系统设计中充分考虑,所以说化工工艺系统设计是一门综合的技术。在各个设计阶段中,作为设计主体的化工工程师,必须与其他各专业密切沟通,相互配合,才能完成整个设计任务。这就要求化工工程师不仅精通、熟悉有关的标准规范和设计技能,并能在工程设计项目中恰当地应用、执行它,同时还要具备较广泛的相关专业知识。 国内工程设计阶段一般分为初步设计阶段和施工图设计阶段,国际上通行的作法是分为工艺包设计阶段、基础设计阶段和详细设计阶段。 在化工工艺系统设计中,工艺流程设计的各个阶段的设计成果都是通过各种流程图和表格表达出来,按照设计阶段的不同,先后有方框流程图(block flowsheet)、工艺流程草(简)图(simplified flowsheet)、工艺物料流程图(Process Flow Diagram即PFD)和管道仪表流程图(Piping & Instrumentation Diagram 即P&I D)〈也有用“带控制点的工艺流程图(Process and Control Diagram 即PCD”代替P&ID)〉等种类。对于医药行业来说,根据其特有的生产洁净区级别要求,还有人员-物料分流图(Material and Personnel Flow Drawing)、工艺流程及环境区域划分示意图(Plant Schematic and Process Flow Diagram)等。

工艺设计计算

1、缺氧池、好氧池(曝气池)的设计计算: (1)、设计水量的计算 由于硝化和反硝化的污泥龄和水力停留时间都较长,设计水量应按照最高日流量计算。 式中: 3/d;m ——设计水量,Q3/d;——日平均水量,m Q——变化系数;K)、确定设计污泥龄(2θC需反硝化的硝态氮浓度为 式中: ——进水总氮浓度,mg/L;N【1】——进水BOD值,mg/L;S0——出水BOD值,mg/L;S e——出水总氮浓度,mg/L;N e反硝化速率计算值。值,再查下表取得计算出值后查下表选取相应的θKV/V CdeD. 【2】)、计算污泥产率系数Y(3式中: ——污泥产率系数,kgSS/kgBOD;Y——修正系数,取;90.K=K——进水SS值mg/L; X0——设计水温,与污泥龄计算取相同数值。T然后按下式进行污泥

负荷核算: 式中: ——污泥负荷,我国规范推荐取值范围为~(kgMLSSd)。?L S【3】单位:℃)d (4)、确定MLSS(X) MLSS(X)取值通过查下表可得。

取定MLSS(X)值后,应用污泥回流比反复核算R式中: ——污泥回流比,不大于150%;R——浓缩时间,其取值参见下表。 (5)、计算反应池容积 计算出反应池容积后,即可根据的比值分别计算出缺氧反应V/V V D池和好氧反应池的容积。 、厌氧池的设计计算:2. 厌氧反应池的容积计算 式中: 3。——厌氧反应池容积,m V A3、曝气量的计算: (1)、实际需氧量的计算 式中: O——实际需氧量,kgO/d;22——去除含碳有机物单位耗氧量,包括BOD降解耗氧量和活性污O C泥衰减耗氧量,kgO/kgBOD;2——BOD去除量,kg/d;S t——硝化的氨氮量,kg/d;N ht——反硝化的硝酸盐量,kg/d。N ot其中,去除含碳有机物单位耗氧量按下式计算:O C【4】,设计时可直接值列于表5按该式计算出不同泥龄和不同水温下的O C 查下表。 2

AO工艺设计计算参考

A1/O生物脱氮工艺一、设计资料 设计处理能力为日处理废水量为30000m3 废水水质如下: PH值~水温14~25℃ BOD5=160mg/LVSS=126mg/L(VSS/TSS=TN=40mg/LNH3-N=30mg/L 根据要求:出水水质如下: BOD5=20mg/LTSS=20mg/LTN15mg/LNH3-N8mg/L 根据环保部门要求,废水处理站投产运行后排废水应达到国家标准《污水综合排放标准》GB8978-1996中规定的“二级现有”标准,即 COD120mg/lBOD30mg/lNH-N<20mg/lPH=6-9SS<30mg/l 二、污水处理工艺方案的确定 城市污水用沉淀法处理一般只能去除约25~30℅的BOD5,污水中的胶体和溶解性有机物不能利用沉淀方法去除,化学方法由于药剂费用很高而且化学混凝去除溶解性有机物的效果不好而不宜采用。采用生物处理法是去除废水中有机物的最经济最有效的选择。 废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等四种形态存在。生活污水中氮的主要存在形态是有机氮和氨氮。其中有机氮占生活污水含氮量的40%~60%,氨氮占50%~60%,亚硝酸盐氮和硝酸盐氮仅占0%~5%。废水生物脱氮的基本原理是在传统二级生物处理中,将有机氮转化为氨氮的基础上,通过硝化和反硝化菌的作用,将氨氮通过硝化转

化为亚硝态氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,而达到从废水中脱氮的目的。 废水的生物脱氮处理过程,实际上是将氮在自然界中循环的基本原理应用与废水生物处理,并借助于不同微生物的共同协调作用以及合理的认为运用控制,并将生物去碳过程中转化而产生及原废水中存在的氨氮转化为氮气而从废水中脱除的过程。在废水的生物脱氮处理过程中,首先在好氧(oxic)条件下,通过好氧硝化的作用,将废水中的氨氮氧化为亚硝酸盐氮;然后在缺氧(Anoxic)条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气(N2)而从废水中逸出。因而,废水的生物脱氮通常包括氨氮的硝化和亚硝酸盐氮及硝酸盐氮的反硝化两个阶段,只有当废水中的氨以亚硝酸盐氮和硝酸盐的形态存在时,仅需反硝化(脱氮)一个阶段. ◆与传统的生物脱氮工艺相比,A/O脱氮工艺则有流程简短、工程造价低的优点。 该工艺与传统生物脱氮工艺相比的主要特点如下: ①流程简单,构筑物少,大大节省了基建费用; ②在原污水C/N较高(大于4)时,不需外加碳源,以原污水中的有机物为碳源,保证了充分的反硝化,降低了运行费用; ③好养池设在缺养之后,可使反硝化残留的有机物得到进一步去除,提高出水水质; ④缺养池在好养池之前,一方面由于反硝化消耗了一部分碳源有机物,可减轻好养池的有机负荷,另一方面,也可以起到生物选择器的作用,

精馏塔工艺工艺设计计算

第三章 精馏塔工艺设计计算 塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。 板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。 本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。 3.1 设计依据[6] 3.1.1 板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度 T T T H E N Z )1( -= (3-1) 式中 Z –––––板式塔的有效高度,m ; –––––塔内所需要的理论板层数; –––––总板效率; –––––塔板间距,m 。 (2) 塔径的计算 u V D S π4= (3-2) 式中 D –––––塔径,m ; –––––气体体积流量,m 3 u –––––空塔气速, u =(0.6~0.8) (3-3) V V L C u ρρρ-=m a x (3-4) 式中 L ρ–––––液相密度,3

V ρ–––––气相密度,3 C –––––负荷因子, 2 .02020?? ? ??=L C C σ (3-5) 式中 C –––––操作物系的负荷因子, L σ–––––操作物系的液体表面张力, 3.1.2 板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计 W OW L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。 3 2100084.2??? ? ??=W h OW l L E h (3-7) 式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取1。 h T f L H A 3600= θ≥3~5 (3-8) 006.00-=W h h (3-9) ' 360000u l L h W h = (3-10) 式中 u 0ˊ–––––液体通过底隙时的流速,。 (2) 踏板设计 开孔区面积a A : ??? ? ? ?+-=-r x r x r x A a 1 222s i n 1802π (3-11)

工艺设计计算参考

A1/O生物脱氮工艺 一、设计资料 设计处理能力为日处理废水量为30000m3 废水水质如下: PH值7.0~7.5 水温14~25℃BOD5=160mg/L VSS=126mg/L(VSS/TSS=0.7) TN=40mg/L NH3-N=30mg/L 根据要求:出水水质如下: BOD5=20mg/L TSS=20mg/L TN 15mg/L NH3-N 8mg/L 根据环保部门要求,废水处理站投产运行后排废水应达到国家标准《污水综合排放标准》GB8978-1996中规定的“二级现有”标准,即COD 120mg/l BOD 30 mg/l NH -N<20 mg/l PH=6-9 SS<30 mg/l 二、污水处理工艺方案的确定 城市污水用沉淀法处理一般只能去除约25~30℅的BOD5,污水中的胶体和溶解性有机物不能利用沉淀方法去除,化学方法由于药剂费用很高而且化学混凝去除溶解性有机物的效果不好而不宜采用。采用生物处理法是去除废水中有机物的最经济最有效的选择。 废水中的氮一般以有机氮、氨氮、亚硝酸盐氮和硝酸盐氮等四种形态存在。生活污水中氮的主要存在形态是有机氮和氨氮。其中有机氮占生活污水含氮量的40%~60%,氨氮占50%~60%,亚硝酸盐氮和硝酸盐氮仅占0%~5%。废水生物脱氮的基本原理是在传统二级生物处理中,将有机氮转化为氨氮的基础上,通过硝化和反硝化菌的作用,将氨氮通过硝化转化为亚硝态氮、硝态氮,再通过反硝化作用将硝态氮转化为氮气,而达到从废水中脱氮的目的。

废水的生物脱氮处理过程,实际上是将氮在自然界中循环的基本原理应用与废水生物处理,并借助于不同微生物的共同协调作用以及合理的认为运用控制,并将生物去碳过程中转化而产生及原废水中存在的氨氮转化为氮气而从废水中脱除的过程。在废水的生物脱氮处理过程中,首先在好氧(oxic)条件下,通过好氧硝化的作用,将废水中的氨氮氧化为亚硝酸盐氮;然后在缺氧(Anoxic)条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气(N2)而从废水中逸出。因而,废水的生物脱氮通常包括氨氮的硝化和亚硝酸盐氮及硝酸盐氮的反硝化两个阶段,只有当废水中的氨以亚硝酸盐氮和硝酸盐的形态存在时,仅需反硝化(脱氮)一个阶段. ◆与传统的生物脱氮工艺相比,A/O脱氮工艺则有流程简短、工程造价低的优点。 该工艺与传统生物脱氮工艺相比的主要特点如下: ①流程简单,构筑物少,大大节省了基建费用; ②在原污水C/N较高(大于4)时,不需外加碳源,以原污水中的有机物为碳源,保证了充分的反硝化,降低了运行费用; ③好养池设在缺养之后,可使反硝化残留的有机物得到进一步去除,提高出水水质; ④缺养池在好养池之前,一方面由于反硝化消耗了一部分碳源有机物,可减轻好养池的有机负荷,另一方面,也可以起到生物选择器的作用,有利于控制污泥膨胀;同时,反硝化过程产生的碱度也可以补偿部分硝化过程对碱度的消耗;

工艺设计计算

A 2 /O 工艺生化池设计 一、 设计最大流量 Q max=73500m 3/d=3062.5 m 3/h=0.850 m 3/s 二、 进出水水质要求 表1 进出水水质指标及处理程度 三、 设计参数计算 ①. BOD 5污泥负荷 N=0.14kgBOD 5/(kgMLSS ·d) ②. 回流污泥浓度 X R =10 000mg/L ③. 污泥回流比 R=50% ④. 混合液悬浮固体浓度(污泥浓度) ⑤. TN 去除率 ⑥. 内回流倍数 四、 A 2/O 曝气池计算 ①. 反应池容积 ②. 反应水力总停留时间 ③. 各段水力停留时间和容积 厌氧:缺氧:好氧=1:1:4 厌氧池停留时间h t 33.21461=?= ,池容37.70874252661 m V =?=; 缺氧池停留时间h t 33.21461=?= ,池容37.7087425266 1 m V =?=;

好氧池停留时间h t 34.91464=?= ,池容36.28350425266 4 m V =?=。 ④. 校核氮磷负荷 好氧段TN 负荷为: ()d kgMLSS kgTN N ?=??=??/024.06.8350233339 .3073500V X T Q 30 厌氧段TP 负荷为: ()d kgMLSS kgTN P ?=??=??/017.07 .708733334 .573500V X T Q 10 ① 剩余污泥量:X ?,(kg/d) 式中: 取污泥增值系数Y=0.5,污泥自身氧化率05.0=d K ,代入公式得: =5395kg/d 则: 湿污泥量:设污泥含水率P=99.2% 则剩余污泥量为: ⑤. 反应池主要尺寸 反应池总容积:V=425263m 设反应池2组,单组池容积:V = 3212632 m V = 有效水深5m ,则: S=V/5=4252.62m 取超高为1.0m ,则反应池总高m H 0.60.10.5=+= 生化池廊道设置: 设厌氧池1廊道,缺氧池1廊道,好氧池4廊道,共6条廊道。廊道宽10m 。则每条廊道长度为 m bn S L 88.706 106 .4252=?== ,取71m 尺寸校核 1.71071==b L ,25 10 ==h b 查《污水生物处理新技术》,长比宽在5~10间,宽比高在1~2间 可见长、宽、深皆符合要求

UASB工艺设计计算

UASB工艺设计计算 (一)适用性 升流式厌氧污泥床(UASB)工艺设计进水水质一般CODcr应在1000mg/L以上。UASB反应器进水中悬浮物的含量一般不宜超过500mg/L,否则应设置混凝沉淀或混凝气浮进行处理。当进水悬浮物过高或可生化性较差是,宜设置水解池进行预酸化。 (二)预处理要求 预处理部分包括以下环节:格栅、调节池、营养盐和PH值及温度调控系统。预处理部分是UASB及其艳阳设计的关键。关系到系统能否正常运行,应充分考虑其运行的可靠性。 1.格栅 UASB废水处理工艺系统前应设置细格栅、粗格栅或水力筛。最后一道格栅的格栅间隙宜在1--3mm之间,宜采用旋转滤网等高效的固液分离设备代替普通格栅。 2.调节池 (1)废水进入UASB应设置调节池。 (2)调节池的有效时间宜为6--12h。 (3)调节池应具备均质、均量、调节PH值、防止不溶物沉淀的功能。 (4)调节池宜设置机械搅拌的方式实现均质,搅拌机的容积功率宜为4--8w/m3;对小型废水处理站可采用曝气搅拌方式,气水比宜控制在(7 :1)--(10 :1)。 (5)调节池中应设置碱度补充和营养盐补充装置。 (6)调节池的出水端应设置去除浮渣装置。 (7)调节池的底部应易于沉淀物的清出。 调节 (1)UASB反应器的进水PH值应保证在之间 (2)酸碱的投加应采用计量泵自动投加装置,中和池出水应设置PH 自动检测系统,与前端计量泵联动。 4.温度调节 (1)中温厌氧的温度应保持在35℃±2℃,如不能满足应设置加温装置。 (2)热源可采用锅炉蒸汽或沼气发电余热,管路上应设置电动阀和温度计,通过显示温度自动调接开关,实现自动控制。 (三)UASB反应器设计计算 反应器有效容积的计算 UASB反应器的设计参数是容积负荷或水力停留有时间。这两个参数难以从理论上推导得到,往往是通过试验取得,而且颗粒污泥和絮状污泥反应器的设计负荷是不相同的。一旦所需容积负荷(或停留时间)确定,反应器的有效容积可通过以下公式计算。 (1)有机负荷容积算法

A2O工艺设计计算

目录 设计总说明 (1) 设计任务书 (2) 一.设计任务 (2) 二.任务目的 (2) 三.任务要求 (2) 四.设计基础资料 (2) (一)水质 (2) (二)水量 (3) (三)设计需要使用的有关法规、标准、设计规范和资料 (3) 第一章A2/O工艺介绍 (4) 1.基本原理 (4) 2.工艺特点 (5) 3.注意事项 (5) 第二章A2/O工艺生化池设计 (6) 1.设计最大流量 (6) 2.进出水水质要求 (6) 3.设计参数计算 (6) 4.A2/O工艺曝气池计算 (7) 5.反应池进、出水系统计算 (8) 6.反应池回流系统计算 (10) 7.厌氧缺氧池设备选择 (11) 第三章 A2/O工艺需氧量设计 (13) 1.需氧量计算 (13) 2.供气量 (13) 3.所需空气压力 (14) 4.风机类型 (15) 5.曝气器数量计算 (15) 6.空气管路计算 (16)

第四章 A2/O工艺生化池单元设备一览 (17) 第五章参考文献 (18) 第六章致谢 (19) 附1 水污染课程设计感想 (20) 附2 A2/O工艺生化池图纸 (22)

设计总说明 随着经济快速发展和城市化程度越来越高,中心城区和小城镇建设步伐不断加快,城市生活污水对城区及附近河流的污染也越来越严重。为了改善人民的生活环境,各地政府大力投入资金,力图改变现今水体的水质。 本设计为污水处理厂生化池单元,要求运用A2/O工艺进行设计,对生化池的工艺尺寸进行设计计算,最后完成设计计算说明书和设计图。污水处理水量为10000t/d。污水水质:COD Cr250mg/L,BOD5100mg/L,NH3-N30mg/L,SS120mg/L,磷酸盐(以P 计)5mg/L。出水水质达到广东省地方标准《水污染物排放限值(DB44/26-2001)》最高允许排放浓度一级标准,污水经二级处理后应符合以下具体要求:COD Cr≤40mg/L,BOD5≤20mg/L,NH3-N≤10mg/L,SS≤20mg/L,磷酸盐(以P计)≤0.5mg/L。其对应的去除率为COD Cr≥84%,BOD5≥80%,NH3-N≥67%,SS≥87%,磷酸盐(以P计)≥90%。 A2/O是流程最简单,应用最广泛的脱氮除磷工艺。A2/O脱氮除磷工艺中,污水首先进入厌氧池,兼性厌氧发酵菌将污水中有机物氮化。回流污泥带入的聚磷菌将体内贮存的聚磷分解释放出磷。缺氧区中反硝化菌就利用混合液回流带入的硝酸盐以及进水中的有机物进行反硝化脱氮。好氧区中聚磷菌生动吸收环境中的溶解磷,以聚磷的形式在体内贮积。污水经厌氧、缺氧区有机物分别被聚磷菌和反硝化菌利用后浓度已经很低,有利于自养的硝化菌的生长繁殖。 关键词:城镇生活污水,A2/O工艺,脱氮除磷

相关文档
最新文档