浮点数在计算机中的表示学习笔记
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
符号位 阶码 尾数 长度
float 1 8 23 32
double 1 11 52 64
12.5:
1. 整数部分12,二进制为1100; 小数部分0.5, 二进制是.1,先把他们连起来,从第一个1数起取24位(后面补0):
1100.10000000000000000000
这部分是有效数字。(把小数点前后两部分连起来再取掉头前的1,就是尾数)
2. 把小数点移到第一个1的后面,需要左移3位, 加上偏移量127:127+3=130,二进制是10000010,这是阶码。
3. -12.5是负数,所以符号位是1。把符号位,阶码和尾数连起来。注意,尾数的第一位总是1,所以规定不存这一位的1,只取后23位:
1 10000010 10010000000000000000000
把这32位按8位一节整理一下,得:
11000001 01001000 00000000 00000000
就是十六进制的 C1480000.
2.025675
1. 整数部分2,二进制为10; 小数部分0.025675, 二进制是.0000011010010010101001,先把他们连起来,从第一个1数起取24位(后面补0):
10.0000011010010010101001
这部分是有效数字。把小数点前后两部分连起来再取掉头前的1,就是尾数: 00000011010010010101001
2. 把小数点移到第一个1的后面,左移了1位, 加上偏移量127:127+1=128,二进制是10000000,这是阶码。
3. 2.025675是正数,所以符号位是0。把符号位,阶码和尾数连起来:
0 10000000 00000011010010010101001
把这32位按8位一节整理一下,得:
01000000 00000001 10100100 10101001
就是十六进制的 4001A4A9.
-1.99744
还需要详细说吗?
如果只有小数部分,那么需要右移小数点. 比如右移3位才能放到第一个1的后面, 阶码就是127-3=124.
补充一个浮点二进制数手工转换成十进制数的例子:
假设浮点二进制数是 1011 1101 0100 0000 0000 0000 0000 0000
按1,8,23位分成三段:
1 01111010 10000000000000000000000
最后一段是尾数。前面加上"1.", 就是 1.10000000000000000000000
下面确定小数点位置。阶码是01111010,加上00000101才是01111111(127),
所以他减去127的偏移量得-5。(或者化成十进制得122,122-127=-5)。
因此尾数1.10(后面的0不写了)是小数点右移5位的结果。要复原它就要左移5位小数点,得0.0000110, 即十进制的0.046875
最后是符号:1代表负数,所以最后的结果是 -0.046875
例三:
0.5的二进制形式是0.1
它用浮点数的形式写出来是如下格式
0 01111110 00000000000000000000000
符号位 阶码 小数位
正数符号位为0,负数符号位为1
阶码是以2为底的指数
小数位表示小数点后面的数字
下面我们来分析一下0.5是如何写成0 01111110 00000000000000000000000
首先0.5是正数所以符号位为0
再来看阶
码部分,0.5的二进制数是0.1,而0.1是1.0*2^(-1),所以我们总结出来:
要把二进制数变成(1.f)*2^(exponent)的形式,其中exponent是指数
而由于阶码有正负之分所以阶码=127+exponent;
即阶码=127+(-1)=126 即 01111110
余下的小数位为二进制小数点后面的数字,即00000000000000000000000
由以上分析得0.5的浮点数存储形式为0 01111110 00000000000000000000000
注:如果只有小数部分,那么需要右移小数点. 比如右移3位才能放到第一个1的后面, 阶码就是127-3=124.