中学生数学建模活动途径研究

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中学生数学建模活动途径研究

东汽八一中学宋辉

《新课程标准》对学生提出了新的教学要求,要求学生:

(1)学会提出问题和明确探究方向;

(2)体验数学活动的过程;

(3)培养创新精神和应用能力。

其中,创新意识与实践能力是新课标中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。

数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义。

数学建模已经成为国际数学教育中稳定的内容和热点之一,相比之下国外的中学数学建模活动已经起步和发展,但在内容、形式、范

围和课堂教学内容真正意义的结合上,还有不少问题有待探索和深入发展。如何在当前社会条件下,利用有限的教学资源在中学开展数学建模活动?从我个人的角度看,应当从如下的途径来对中学生渗透数学建模教育。

一、常规课堂教学中的数学建模教学

广义地说,一切数学概念、数学理论体系、数学公式、方程式和算法系统都可以称为数学模形。如“椭圆的方程及图象”就是一个数学模型。针对学生在数学建模中不会对实际问题进行抽象、简化、假设变量和参数,形成明确的数学框架的困难,我们在常规的数学课堂教学中,有意识地选择合适的教学内容,模仿实际问题中建立数学模型的过程,来处理教材中常规的学习内容,从而为学生由实际问题来建立模型奠定基础。

例如,对于二面角内容的教学,在学生原有生活经历中,有水坝面和水平面成适当的角的印象;有半开着的门与墙面形成角的印象,那么我们在让学生形成二面角的概念时,应当从学生已有的这些认识中,舍弃具体的水坝、门等对象,而抽象出“从一条直线出发的两个半平面所组成的图形叫做二面角”,在这里,半平面是相对于水坝拦水面、门等的具体对象而进行合理假设得到的理想化对象,而在进一步研究如何度量一个二面角的大小时,我们是让学生提出各种方案,然后通过讨论、比较各方案所定义的几何量对给定的二面角是不是不变量,同时又简洁表达了二面角中两个半平面闭合程度的大小。以上关于二

面角的概念及其度量方法的教学过程,实际上就是建立数学模型并研究模型的过程。

这个教学案例说明,在常规的曰常课堂教学中,完全可以选定适当内容,创设出数学建模的教学情景来处理教学内容,从而为学生真正面对实际问题来建立模型、研究模型创造条件。

二、教师提供问题的数学建模教学

教师提供问题的数学建模,基本上同目前开展的大学生、中学生数学建模竞赛中需要完成的建模任务相同。这种形式的数学建模学生不需要自己选定实际问题研究,而是由教师选定适合于学生水平的实际问题呈现给学生,在教师的启发、引导下,学生小组通过讨论,自己完成模型选择和建立、计算、验证等过程,最后用小论文的形式呈现自己的研究成果,这种形式的数学建模学生已真正接触到实际问题,并经历建模的全过程。

经过了曰常课堂教学中的数学建模教学,学生对什么是数学建模已有了一定的认识,并已经历了由具体问题抽象出明确数学框架的锻练,因此,我们在这种形式的数学建模教学中,主要是加强以下几个方面的教学。

1、提供的实际问题必须难易适度,应当适合于学生的认知水平。对于较难的问题,我们往往给出必要提示,如启发学生通过提出合符常理的假设来将复杂的问题化为可以建模的问题;通过提示学生设定相关变量来达到使模型容易建立等。

教师可从选定的实际问题、模型假设、变量设定等方面来控制难度,其中模型假设和变量设定是直接影响到模型建立的关键因素,对此关键点教师没计适当的教学形式,是“教师给定问题型”建模教学的关键。

2、在对学生的辅导过程中,我们感到以下一些问题可用来训练学生的数学建模能力,它们是:(1)路桥问题,(2)限定区域的驾驶问题,(3)交通信号灯管理问题,(4)球的内接多面体问题,(5)螺旋线问题,(6)最短路问题,(7)最小连接问题,(8)选址问题,(9)面包进货问题等。

3、在“教师给定问题型”的数学建模实践中,学生的研究结果,必须会用论文进行表达,会表达自己的研究思路及结果,是一个学生综合素质的体现。由于数学建模论文的撰写有一定的格式要求,当然这种格式要求是为了更好地使作者展现自己的研究结果,也是对论文质量的保证。所以,我们在教学中对学生论文撰写的格式也要进行专门的辅导。

三、学生自选问题的数学建模教学。

有了前面两种形式的建模教学。学生具备了一定的建模水平后,就可进入学生自选问题的数学建模教学阶段了。这一阶段是要求学生依据自己已掌握的建模知识和具备的经验,自己选定一个实际问题,通过建立数学模型加以解决,最后以论文的形式反映自已的研究成果。这一阶段的数学建模教学实践,若开展的好,则广大学生在解决

实际问题中所表现出的挑战困难的勇气和丰富的想象力都将是我们老师始料未及的。

四、教师在设计数学建模活动时,应该注意以下几点:

1、结合学生的实际水平,分层次逐步推进。

数学建模对教师和对学生都会有一个逐步的学习和适应过程。教师在设计数学建模活动时,特别是应该考虑学生的实际能力和水平,起点要低,形式应该有利于更多的学生参与。如果在实际的数学建模活动中参与的都是比较优秀的学生,这不便于推广数学建模,更不是我们教学的初衷。而是通过有趣的、丰富的、生动的数学建模活动来激发中差生的学习兴趣,锻炼优等学生的数学分析能力。可以在讲解知识的同时有意识地介绍知识的应用背景。在应用的重点环节有比较多的准备和训练,如实际语言和数学语言的相互转化,列方程和列不等式解应用题等。然后逐步到让学生用已有的数学知识解释一些实际结果,描述一些实际现象,模仿例题解决一些比较简单的实际应用题,然后再发展到能独立解决教师提供的数学应用和建模问题,最后使少数学生发展成为能独立发现、提出一些实际问题、并能用数学建模的方式解决和部分解决问题的能力。

2、注意结合正常教学的教材内容。

数学应用和建模应该与在实际教学中的教材内容息息相关并更加系统的结合起来。在中学开展数学建模活动其最终目的是为了更好的实施对学生的主体教育模式。教师要通过活动的指导引导学生了解知识的功能,在实际生活中的作用,了解数学应用、数学建

相关文档
最新文档