多孔介质
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14
ANSYS FLUENT 参考手册
1 150 1 2 Dp 3
C2 3.5 Dp
2
(2.53) (2.54)
1
3
(3) 使用经验公式计算流过多孔板湍流的阻力系数
流过锐边孔多孔板的压力损失系数可以采用 Van Winkle 等的公式计算 (适用于孔呈等边三角形布 置的情况) :
1 a1 n
(2.61)
15
ANSYS FLUENT 参考手册
2.6.7 基于物理速度的多孔介质模型
2.6.6 粘性阻力系数和惯性阻力系数
阻力系数一般是基于流体在多孔介质中的表观速度定义的。 阻力源项的计算可以采用相对速度或绝对速度。选择 Relative Velocity Resistance Formulation(相
13
ANSYS FLUENT 参考手册
对速度阻力公式)选项可以更精确计算有动网格和运动参考坐标系时的源项。 对于高度各向异性的多孔介质,当使用基于压力求解器时,选择 Alternative Formulation(非常规 公式)选项可以使求解过程更稳定。采用非常规公式时,通过多孔介质的压力损失取决于速度矢量第
C2 K L n
式中,Δn 为多孔板厚度。
(2.50)
(2) 使用 Ergun 公式计算通过层床的阻力系数
在湍流时,层床用渗透率和惯性损失系数模拟。对于多种类型的层床,在较宽的 Re 数范围内阻 力系数可以采用半经验的 Ergun 公式计算:
p 150 1 2 1.75 1 2 v¥ v¥ 2 3 L Dp Dp 3
(2.43)
式中,C2,ij 为系数矩阵 C 中的项;Δni 为多孔介质在三个坐标方向上的厚度。
2.6.4 多孔介质中能量方程的处理
对多孔介质修正了扩散项和瞬态项的能量方程为
E 1 E v h f E f p f f s s keff T h j J j eff v S f t j
p
于是,在三个坐标方向上的压力降为
v
(2.40)
pi
v j ni j 1 ij
3
i x, y, z
(2.41)
式中,1/α ij 为系数矩阵 D 的项;Δni 为多孔介质在三个坐标方向上的厚度。
12
ANSYS FLUENT 参考手册
2.6.3 惯性损失项
p a1v a2v 2
(2.58)
式中,a1 和 a2 为拟合系数。 动量方程源项为单位长度的压力降,即
p Si n
(2.59)
式中,Δn 为多孔介质厚度。则比较式(2.38)和式(2.58)及式(2.59),可得阻力系数
C2 a2 1 n 2
(2.60)
和
该方法也可以用于多孔阶跃面。
与速度的关系时,可计算 C2。 流体流过开孔率为 open%的多孔板时,基于实际流动速度的压力损失系数 KL 定义为:
2 p K L 1 vopen % 2
(2.47)
式中, vopen% 为流过多孔板的实际流速。
,有 对于 100%开孔时的压力损失系数值 K L
2 1 v100% p K L 2
(2.45)
采用 UDF 可以定义各向异性的有效导热系数。 孔隙率 γ 定义为多孔介质区中流体的体积分数,也就是介质中空的部分所占的比例。孔隙率影响 传热计算、输运方程中的非稳态项、以及介质中的化学反应和体积力。如果希望模拟介质为全空(即 没有固体介质)的情况,应给定孔隙率等于 1。
2.6.5 多孔介质中湍流的处理
Si C0 v
C1
C0 v
C1 1
vi
i x, y, z
(2.39)
式中,C0 和 C1 为经验系数,且 C0 的单位为 SI 制。采用幂函数时,压力降为各向同性的。
2.6.2 Darcy 粘性阻力项
多孔介质中流动为层流时, 典型情况下压力降与速度成正比, 即多孔介质模型简化为 Darcy 定律:
当速度比较高,或模拟多孔板和管排时,有时可忽略渗透项,只保留惯性损失项,则多孔介质方 程简化为
p C2ij 1 vi vБайду номын сангаас2 j 1
或写成三个坐标方向上的压力降:
3
i x, y, z
(2.42)
pi C2ij ni 1 v j v 2 j 1
3
i x, y, z
ANSYS FLUENT 参考手册
2.4.3 可压缩流动的求解策略
可压缩流动求解中速度、 密度、 压力和能量的高度耦合以及可能存在的激波导致求解过程不稳定。 有助于改善可压缩流动计算过程稳定性的方法有:
(仅适用于基于压力求解器) 以接近于滞止条件的流动参数进行初始化 (即, 压力很小但不为零,
压力和温度分别等于进口总压和总温) 。在迭代过程的最初几十步不求解能量方程。设置能量方 程的亚松驰因子等于 1,压力的亚松驰因子 0.4,动量的亚松驰因子 0.3。求解过程稳定后再加入 能量方程的求解,并将压力的亚松驰因子提高到 0.7。
v Sm t
其动量方程与粘性流动的相比,没有粘性应力项 :
(2.34)
v vv p g F t
(2.35)
能量方程与粘性流动相比,没有导热项 keff T 和粘性耗散项 eff v :
CAf m
2p 2 1 Af Ap
(2.55)
为通过板的流量;Af 为孔的总面积;Ap 为板的总面积;C 为适用于不同 Re 数范围和不同孔 式中, m
径厚度比 D/t 情况下的系数,t/D > 1.6 且 Re > 4000 时(Re 数的特征尺寸为孔径,特征速度为孔内的 速度),C 0.98。
vAp ,可得 利用式(2.55)和 m
2 p 1 2 1 Af Ap 1 v 2 x 2 C t
(2.56)
式中,v 为表观速度而非孔内的流速。与式(2.42)比较可得在垂直于板方向的阻力系数 C2:
2 A A 1 C2 12 f p C t
(2.57)
当层床中为层流时,忽略式(2.51)中的第二项,可得 Blake - Kozeny 方程:
(2.51)
p 150 1 2 v¥ 2 3 L Dp
积之比。 比较式(2.40)、式(2.42)和式(2.51),可得各方向粘性阻力系数和惯性损失系数
(2.52)
式中,μ 为粘性系数;Dp 为平均颗粒直径;L 为床厚度;ε 为孔隙率,其定义为孔隙体积与层床总体
(2.48)
式中, v100% 为流过开孔率 100%多孔板时的流速。而在相同流量下,速度与开孔率成反比,将 KL 折
: 算为 100%开孔时的压力损失系数值 K L
KL KL
vopen% v100%
100% K open %
2 L
2
(2.49)
阻力系数 C2 为单位厚度多孔板的压力损失系数:
(2.44)
其中,Ef 为流体总能;Es 为多孔介质基体固体总能;γ 为孔隙率; S h f 为流体焓的源项;keff 为多孔介 质的有效导热系数,采用流体导热系数(包括湍流有效导热系数)kf 与多孔介质中固体材料的导热系 数 ks 的体积加权平均:
keff k f 1 k s
,其中 γ 为孔隙率。 t
对于简单的均匀多孔介质,分别在系数矩阵 D 和 C 中对角线项代入 1/α 和 C2,而其它项为零, 则有
Si
v C 1 v v 2
i 2 i
i x, y, z
(2.38)
其中,α 为渗透率;C2 为惯性阻力系数。 也可以用速度大小的幂函数来模拟阻力:
11
ANSYS FLUENT 参考手册
首选采用(见 节) 。
2.6.1 基于表观速度的多孔介质动量方程
对于单相介质和多相介质,多孔介质模型可以使用表观速度或物理速度形式的公式。 基于表观速度的多孔介质模型根据多孔介质区中的体积流量率计算表观相速度或混合物速度。 基 于表观速度的多孔介质模型能够较好模拟多孔介质区内部的压力损失。但是, 在多孔介质区与非多孔 介质区的交界面处的表观速度与的速度是相同的, 不能反映实际速度变化所引起的动量变化,对计算 精度不利。 多孔介质模型通过在动量方程中增加源项来模拟计算域中多孔性材料对流体的流动阻力。 该源项 由两部分组成,即 Darcy 粘性阻力项和惯性损失项:
在多孔介质中,当介质的渗透性很大且介质的几何尺度与湍流涡的尺度不发生相互作用时, 可以 认为固体基体对湍流的生成和耗散率没有影响。但其它情况下应降低多孔介质中湍流的影响。 当采用湍流模型时(LES 除外) ,可通过将多孔介质指定为层流区(Laminar Zone)而使湍流粘 性 μt 为零来抑制多孔介质区中湍流效应。此时,进口湍流量被输运穿过多孔介质区,而其对流体混合 及动量的影响被忽略,同时介质中湍流生成被置为零。
(4) 用实验数据计算流过纤维状材料层流的阻力系数
在已知任意排列的纤维材料的无量纲渗透率 B 与纤维体积分数之间关系的情况下, 粘性阻力系数
1/α 可由无量纲渗透率的定义 B = α/a (a 为纤维直径)确定。
2
(5) 用压力降与速度关系实验数据计算阻力系数
可以用通过多孔介质的压力降 Δp 与速度 v 关系的实验数据确定阻力系数。设实验数据用二次多 项式拟合为:
i 个方向分量的大小:
Si 1 Ci vi vi 2
计算粘性阻力系数和惯性阻力系数的方法如下:
(2.46)
(1) 已知压力降,计算基于表观速度的阻力系数
FLUENT 假定单元中没有多孔介质的固体基体, 使用多孔介质模型时, 即单元是 100%开孔的 (100% open) ,且所给定的阻力系数值是基于这一假设的。在已知流体流过实际设备中多孔介质的压力降 Δp
设置合理的温度和压力限制值以避免求解过程发散。 必要时,先以较低的进、出口边界压力比进行求解,然后再逐步升高压力比直到预定工况。对于
低 Mach 数流动,也可以先求解不可压缩流动,然后以所得到的解作为可压缩流动的迭代初值。 某些情况下,也可以先求解无粘性流动作为迭代初值。
2.5 无粘性流动
在高 Re 数流动中,惯性力相对于粘性力而言起支配作用,可忽略粘性的影响。例如高速飞行器 在空气动力学方案分析阶段可以采用无粘性流动计算初步确定外形, 然后进行粘性计算,将流体粘性 和湍流粘性对升力和阻力的影响计入。 无粘性流动计算的另一个用途是给复杂的流动提供好的迭代初值。对于特别复杂的问题,有时这 是唯一能使求解过程进行下去的方法。 无粘性流动的计算求解 Euler 方程。其中,质量方程与粘性流动的相同:
1 Si Dij v j Cij v v j 2 j 1 j 1
3
3
i x, y, z
(2.37)
D 和 C 分别为粘性阻力和惯性损失系数矩阵。 其中, 这个负的动量源项导致多孔介质单元中的压力降。 同时,在全部变量的输运方程和连续性方程中,瞬态项变为
E v E p h j J j Sh t j
式(2.34) ~ 式(2.36)中符号的意义与粘性流动控制方程的相同(见 2.1.1 ~ 2.1.3 节)。 (2.36)
2.6 多孔介质模型
多孔介质(Porous Media)模型可用于模拟许多问题,包括流过填充床、滤纸、多孔板、布流器、 管排等的流动。多孔介质模型在流体区上定义(见 17.2.1 节) 。 此外,一个被称为多孔阶跃面(porous jump)的多孔介质模型的一维简化可用于模拟已知速度− 压降特性的薄膜。多孔阶跃面在界面区上定义。多孔阶跃面比多孔介质模型更健壮,收敛性更好,应